kaiko-eva 0.0.1__py3-none-any.whl → 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kaiko-eva might be problematic. Click here for more details.
- eva/core/callbacks/__init__.py +3 -2
- eva/core/callbacks/config.py +143 -0
- eva/core/callbacks/writers/__init__.py +6 -3
- eva/core/callbacks/writers/embeddings/__init__.py +6 -0
- eva/core/callbacks/writers/embeddings/_manifest.py +71 -0
- eva/core/callbacks/writers/embeddings/base.py +192 -0
- eva/core/callbacks/writers/embeddings/classification.py +117 -0
- eva/core/callbacks/writers/embeddings/segmentation.py +78 -0
- eva/core/callbacks/writers/embeddings/typings.py +38 -0
- eva/core/data/datasets/__init__.py +10 -2
- eva/core/data/datasets/classification/__init__.py +5 -2
- eva/core/data/datasets/classification/embeddings.py +15 -135
- eva/core/data/datasets/classification/multi_embeddings.py +110 -0
- eva/core/data/datasets/embeddings.py +167 -0
- eva/core/data/splitting/__init__.py +6 -0
- eva/core/data/splitting/random.py +41 -0
- eva/core/data/splitting/stratified.py +56 -0
- eva/core/data/transforms/__init__.py +3 -1
- eva/core/data/transforms/padding/__init__.py +5 -0
- eva/core/data/transforms/padding/pad_2d_tensor.py +38 -0
- eva/core/data/transforms/sampling/__init__.py +5 -0
- eva/core/data/transforms/sampling/sample_from_axis.py +40 -0
- eva/core/loggers/__init__.py +7 -0
- eva/core/loggers/dummy.py +38 -0
- eva/core/loggers/experimental_loggers.py +8 -0
- eva/core/loggers/log/__init__.py +6 -0
- eva/core/loggers/log/image.py +71 -0
- eva/core/loggers/log/parameters.py +74 -0
- eva/core/loggers/log/utils.py +13 -0
- eva/core/loggers/loggers.py +6 -0
- eva/core/metrics/__init__.py +6 -2
- eva/core/metrics/defaults/__init__.py +10 -3
- eva/core/metrics/defaults/classification/__init__.py +1 -1
- eva/core/metrics/defaults/classification/binary.py +0 -9
- eva/core/metrics/defaults/classification/multiclass.py +0 -8
- eva/core/metrics/defaults/segmentation/__init__.py +5 -0
- eva/core/metrics/defaults/segmentation/multiclass.py +43 -0
- eva/core/metrics/generalized_dice.py +59 -0
- eva/core/metrics/mean_iou.py +120 -0
- eva/core/metrics/structs/schemas.py +3 -1
- eva/core/models/__init__.py +3 -1
- eva/core/models/modules/head.py +16 -15
- eva/core/models/modules/module.py +25 -1
- eva/core/models/modules/typings.py +14 -1
- eva/core/models/modules/utils/batch_postprocess.py +37 -5
- eva/core/models/networks/__init__.py +1 -2
- eva/core/models/networks/mlp.py +2 -2
- eva/core/models/transforms/__init__.py +6 -0
- eva/core/models/{networks/transforms → transforms}/extract_cls_features.py +10 -2
- eva/core/models/transforms/extract_patch_features.py +47 -0
- eva/core/models/wrappers/__init__.py +13 -0
- eva/core/models/{networks/wrappers → wrappers}/base.py +3 -2
- eva/core/models/{networks/wrappers → wrappers}/from_function.py +5 -12
- eva/core/models/{networks/wrappers → wrappers}/huggingface.py +15 -11
- eva/core/models/{networks/wrappers → wrappers}/onnx.py +6 -3
- eva/core/trainers/_recorder.py +69 -7
- eva/core/trainers/functional.py +23 -5
- eva/core/trainers/trainer.py +20 -6
- eva/core/utils/__init__.py +6 -0
- eva/core/utils/clone.py +27 -0
- eva/core/utils/memory.py +28 -0
- eva/core/utils/operations.py +26 -0
- eva/core/utils/parser.py +20 -0
- eva/vision/__init__.py +2 -2
- eva/vision/callbacks/__init__.py +5 -0
- eva/vision/callbacks/loggers/__init__.py +5 -0
- eva/vision/callbacks/loggers/batch/__init__.py +5 -0
- eva/vision/callbacks/loggers/batch/base.py +130 -0
- eva/vision/callbacks/loggers/batch/segmentation.py +188 -0
- eva/vision/data/datasets/__init__.py +24 -4
- eva/vision/data/datasets/_utils.py +3 -3
- eva/vision/data/datasets/_validators.py +15 -2
- eva/vision/data/datasets/classification/__init__.py +6 -2
- eva/vision/data/datasets/classification/bach.py +10 -15
- eva/vision/data/datasets/classification/base.py +17 -24
- eva/vision/data/datasets/classification/camelyon16.py +244 -0
- eva/vision/data/datasets/classification/crc.py +10 -15
- eva/vision/data/datasets/classification/mhist.py +10 -15
- eva/vision/data/datasets/classification/panda.py +184 -0
- eva/vision/data/datasets/classification/patch_camelyon.py +13 -16
- eva/vision/data/datasets/classification/wsi.py +105 -0
- eva/vision/data/datasets/segmentation/__init__.py +15 -2
- eva/vision/data/datasets/segmentation/_utils.py +38 -0
- eva/vision/data/datasets/segmentation/base.py +31 -47
- eva/vision/data/datasets/segmentation/bcss.py +236 -0
- eva/vision/data/datasets/segmentation/consep.py +156 -0
- eva/vision/data/datasets/segmentation/embeddings.py +34 -0
- eva/vision/data/datasets/segmentation/lits.py +178 -0
- eva/vision/data/datasets/segmentation/monusac.py +236 -0
- eva/vision/data/datasets/segmentation/total_segmentator_2d.py +325 -0
- eva/vision/data/datasets/wsi.py +187 -0
- eva/vision/data/transforms/__init__.py +3 -2
- eva/vision/data/transforms/common/__init__.py +2 -1
- eva/vision/data/transforms/common/resize_and_clamp.py +51 -0
- eva/vision/data/transforms/common/resize_and_crop.py +6 -7
- eva/vision/data/transforms/normalization/__init__.py +6 -0
- eva/vision/data/transforms/normalization/clamp.py +43 -0
- eva/vision/data/transforms/normalization/functional/__init__.py +5 -0
- eva/vision/data/transforms/normalization/functional/rescale_intensity.py +28 -0
- eva/vision/data/transforms/normalization/rescale_intensity.py +53 -0
- eva/vision/data/wsi/__init__.py +16 -0
- eva/vision/data/wsi/backends/__init__.py +69 -0
- eva/vision/data/wsi/backends/base.py +115 -0
- eva/vision/data/wsi/backends/openslide.py +73 -0
- eva/vision/data/wsi/backends/pil.py +52 -0
- eva/vision/data/wsi/backends/tiffslide.py +42 -0
- eva/vision/data/wsi/patching/__init__.py +6 -0
- eva/vision/data/wsi/patching/coordinates.py +98 -0
- eva/vision/data/wsi/patching/mask.py +123 -0
- eva/vision/data/wsi/patching/samplers/__init__.py +14 -0
- eva/vision/data/wsi/patching/samplers/_utils.py +50 -0
- eva/vision/data/wsi/patching/samplers/base.py +48 -0
- eva/vision/data/wsi/patching/samplers/foreground_grid.py +99 -0
- eva/vision/data/wsi/patching/samplers/grid.py +47 -0
- eva/vision/data/wsi/patching/samplers/random.py +41 -0
- eva/vision/losses/__init__.py +5 -0
- eva/vision/losses/dice.py +40 -0
- eva/vision/models/__init__.py +4 -2
- eva/vision/models/modules/__init__.py +5 -0
- eva/vision/models/modules/semantic_segmentation.py +161 -0
- eva/vision/models/networks/__init__.py +1 -2
- eva/vision/models/networks/backbones/__init__.py +6 -0
- eva/vision/models/networks/backbones/_utils.py +39 -0
- eva/vision/models/networks/backbones/pathology/__init__.py +31 -0
- eva/vision/models/networks/backbones/pathology/bioptimus.py +34 -0
- eva/vision/models/networks/backbones/pathology/gigapath.py +33 -0
- eva/vision/models/networks/backbones/pathology/histai.py +46 -0
- eva/vision/models/networks/backbones/pathology/kaiko.py +123 -0
- eva/vision/models/networks/backbones/pathology/lunit.py +68 -0
- eva/vision/models/networks/backbones/pathology/mahmood.py +62 -0
- eva/vision/models/networks/backbones/pathology/owkin.py +22 -0
- eva/vision/models/networks/backbones/registry.py +47 -0
- eva/vision/models/networks/backbones/timm/__init__.py +5 -0
- eva/vision/models/networks/backbones/timm/backbones.py +54 -0
- eva/vision/models/networks/backbones/universal/__init__.py +8 -0
- eva/vision/models/networks/backbones/universal/vit.py +54 -0
- eva/vision/models/networks/decoders/__init__.py +6 -0
- eva/vision/models/networks/decoders/decoder.py +7 -0
- eva/vision/models/networks/decoders/segmentation/__init__.py +11 -0
- eva/vision/models/networks/decoders/segmentation/common.py +74 -0
- eva/vision/models/networks/decoders/segmentation/conv2d.py +114 -0
- eva/vision/models/networks/decoders/segmentation/linear.py +125 -0
- eva/vision/models/wrappers/__init__.py +6 -0
- eva/vision/models/wrappers/from_registry.py +48 -0
- eva/vision/models/wrappers/from_timm.py +68 -0
- eva/vision/utils/colormap.py +77 -0
- eva/vision/utils/convert.py +67 -0
- eva/vision/utils/io/__init__.py +10 -4
- eva/vision/utils/io/image.py +21 -2
- eva/vision/utils/io/mat.py +36 -0
- eva/vision/utils/io/nifti.py +40 -15
- eva/vision/utils/io/text.py +10 -3
- kaiko_eva-0.1.0.dist-info/METADATA +553 -0
- kaiko_eva-0.1.0.dist-info/RECORD +205 -0
- {kaiko_eva-0.0.1.dist-info → kaiko_eva-0.1.0.dist-info}/WHEEL +1 -1
- {kaiko_eva-0.0.1.dist-info → kaiko_eva-0.1.0.dist-info}/entry_points.txt +2 -0
- eva/core/callbacks/writers/embeddings.py +0 -169
- eva/core/callbacks/writers/typings.py +0 -23
- eva/core/models/networks/transforms/__init__.py +0 -5
- eva/core/models/networks/wrappers/__init__.py +0 -8
- eva/vision/data/datasets/classification/total_segmentator.py +0 -213
- eva/vision/data/datasets/segmentation/total_segmentator.py +0 -212
- eva/vision/models/networks/postprocesses/__init__.py +0 -5
- eva/vision/models/networks/postprocesses/cls.py +0 -25
- kaiko_eva-0.0.1.dist-info/METADATA +0 -405
- kaiko_eva-0.0.1.dist-info/RECORD +0 -110
- /eva/core/models/{networks → wrappers}/_utils.py +0 -0
- {kaiko_eva-0.0.1.dist-info → kaiko_eva-0.1.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,212 +0,0 @@
|
|
|
1
|
-
"""TotalSegmentator 2D segmentation dataset class."""
|
|
2
|
-
|
|
3
|
-
import functools
|
|
4
|
-
import os
|
|
5
|
-
from glob import glob
|
|
6
|
-
from typing import Callable, Dict, List, Literal, Tuple
|
|
7
|
-
|
|
8
|
-
import numpy as np
|
|
9
|
-
from torchvision.datasets import utils
|
|
10
|
-
from typing_extensions import override
|
|
11
|
-
|
|
12
|
-
from eva.vision.data.datasets import _utils, _validators, structs
|
|
13
|
-
from eva.vision.data.datasets.segmentation import base
|
|
14
|
-
from eva.vision.utils import io
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class TotalSegmentator2D(base.ImageSegmentation):
|
|
18
|
-
"""TotalSegmentator 2D segmentation dataset."""
|
|
19
|
-
|
|
20
|
-
_train_index_ranges: List[Tuple[int, int]] = [(0, 83)]
|
|
21
|
-
"""Train range indices."""
|
|
22
|
-
|
|
23
|
-
_val_index_ranges: List[Tuple[int, int]] = [(83, 103)]
|
|
24
|
-
"""Validation range indices."""
|
|
25
|
-
|
|
26
|
-
_n_slices_per_image: int = 20
|
|
27
|
-
"""The amount of slices to sample per 3D CT scan image."""
|
|
28
|
-
|
|
29
|
-
_resources_full: List[structs.DownloadResource] = [
|
|
30
|
-
structs.DownloadResource(
|
|
31
|
-
filename="Totalsegmentator_dataset_v201.zip",
|
|
32
|
-
url="https://zenodo.org/records/10047292/files/Totalsegmentator_dataset_v201.zip",
|
|
33
|
-
md5="fe250e5718e0a3b5df4c4ea9d58a62fe",
|
|
34
|
-
),
|
|
35
|
-
]
|
|
36
|
-
"""Resources for the full dataset version."""
|
|
37
|
-
|
|
38
|
-
_resources_small: List[structs.DownloadResource] = [
|
|
39
|
-
structs.DownloadResource(
|
|
40
|
-
filename="Totalsegmentator_dataset_small_v201.zip",
|
|
41
|
-
url="https://zenodo.org/records/10047263/files/Totalsegmentator_dataset_small_v201.zip",
|
|
42
|
-
md5="6b5524af4b15e6ba06ef2d700c0c73e0",
|
|
43
|
-
),
|
|
44
|
-
]
|
|
45
|
-
"""Resources for the small dataset version."""
|
|
46
|
-
|
|
47
|
-
def __init__(
|
|
48
|
-
self,
|
|
49
|
-
root: str,
|
|
50
|
-
split: Literal["train", "val"] | None,
|
|
51
|
-
version: Literal["small", "full"] = "small",
|
|
52
|
-
download: bool = False,
|
|
53
|
-
image_transforms: Callable | None = None,
|
|
54
|
-
target_transforms: Callable | None = None,
|
|
55
|
-
image_target_transforms: Callable | None = None,
|
|
56
|
-
) -> None:
|
|
57
|
-
"""Initialize dataset.
|
|
58
|
-
|
|
59
|
-
Args:
|
|
60
|
-
root: Path to the root directory of the dataset. The dataset will
|
|
61
|
-
be downloaded and extracted here, if it does not already exist.
|
|
62
|
-
split: Dataset split to use. If `None`, the entire dataset is used.
|
|
63
|
-
version: The version of the dataset to initialize.
|
|
64
|
-
download: Whether to download the data for the specified split.
|
|
65
|
-
Note that the download will be executed only by additionally
|
|
66
|
-
calling the :meth:`prepare_data` method and if the data does not
|
|
67
|
-
exist yet on disk.
|
|
68
|
-
image_transforms: A function/transform that takes in an image
|
|
69
|
-
and returns a transformed version.
|
|
70
|
-
target_transforms: A function/transform that takes in the target
|
|
71
|
-
and transforms it.
|
|
72
|
-
image_target_transforms: A function/transforms that takes in an
|
|
73
|
-
image and a label and returns the transformed versions of both.
|
|
74
|
-
This transform happens after the `image_transforms` and
|
|
75
|
-
`target_transforms`.
|
|
76
|
-
"""
|
|
77
|
-
super().__init__(
|
|
78
|
-
image_transforms=image_transforms,
|
|
79
|
-
target_transforms=target_transforms,
|
|
80
|
-
image_target_transforms=image_target_transforms,
|
|
81
|
-
)
|
|
82
|
-
|
|
83
|
-
self._root = root
|
|
84
|
-
self._split = split
|
|
85
|
-
self._version = version
|
|
86
|
-
self._download = download
|
|
87
|
-
|
|
88
|
-
self._samples_dirs: List[str] = []
|
|
89
|
-
self._indices: List[int] = []
|
|
90
|
-
|
|
91
|
-
@functools.cached_property
|
|
92
|
-
@override
|
|
93
|
-
def classes(self) -> List[str]:
|
|
94
|
-
def get_filename(path: str) -> str:
|
|
95
|
-
"""Returns the filename from the full path."""
|
|
96
|
-
return os.path.basename(path).split(".")[0]
|
|
97
|
-
|
|
98
|
-
first_sample_labels = os.path.join(
|
|
99
|
-
self._root, self._samples_dirs[0], "segmentations", "*.nii.gz"
|
|
100
|
-
)
|
|
101
|
-
return sorted(map(get_filename, glob(first_sample_labels)))
|
|
102
|
-
|
|
103
|
-
@property
|
|
104
|
-
@override
|
|
105
|
-
def class_to_idx(self) -> Dict[str, int]:
|
|
106
|
-
return {label: index for index, label in enumerate(self.classes)}
|
|
107
|
-
|
|
108
|
-
@override
|
|
109
|
-
def filename(self, index: int) -> str:
|
|
110
|
-
sample_dir = self._samples_dirs[self._indices[index]]
|
|
111
|
-
return os.path.join(sample_dir, "ct.nii.gz")
|
|
112
|
-
|
|
113
|
-
@override
|
|
114
|
-
def prepare_data(self) -> None:
|
|
115
|
-
if self._download:
|
|
116
|
-
self._download_dataset()
|
|
117
|
-
|
|
118
|
-
@override
|
|
119
|
-
def configure(self) -> None:
|
|
120
|
-
self._samples_dirs = self._fetch_samples_dirs()
|
|
121
|
-
self._indices = self._create_indices()
|
|
122
|
-
|
|
123
|
-
@override
|
|
124
|
-
def validate(self) -> None:
|
|
125
|
-
_validators.check_dataset_integrity(
|
|
126
|
-
self,
|
|
127
|
-
length=1660 if self._split == "train" else 400,
|
|
128
|
-
n_classes=117,
|
|
129
|
-
first_and_last_labels=("adrenal_gland_left", "vertebrae_T9"),
|
|
130
|
-
)
|
|
131
|
-
|
|
132
|
-
@override
|
|
133
|
-
def __len__(self) -> int:
|
|
134
|
-
return len(self._indices) * self._n_slices_per_image
|
|
135
|
-
|
|
136
|
-
@override
|
|
137
|
-
def load_image(self, index: int) -> np.ndarray:
|
|
138
|
-
image_path = self._get_image_path(index)
|
|
139
|
-
slice_index = self._get_sample_slice_index(index)
|
|
140
|
-
image_array = io.read_nifti_slice(image_path, slice_index)
|
|
141
|
-
return image_array.repeat(3, axis=2)
|
|
142
|
-
|
|
143
|
-
@override
|
|
144
|
-
def load_mask(self, index: int) -> np.ndarray:
|
|
145
|
-
masks_dir = self._get_masks_dir(index)
|
|
146
|
-
slice_index = self._get_sample_slice_index(index)
|
|
147
|
-
mask_paths = (os.path.join(masks_dir, label + ".nii.gz") for label in self.classes)
|
|
148
|
-
masks = [io.read_nifti_slice(path, slice_index) for path in mask_paths]
|
|
149
|
-
return np.concatenate(masks, axis=-1)
|
|
150
|
-
|
|
151
|
-
def _get_masks_dir(self, index: int) -> str:
|
|
152
|
-
"""Returns the directory of the corresponding masks."""
|
|
153
|
-
sample_dir = self._get_sample_dir(index)
|
|
154
|
-
return os.path.join(self._root, sample_dir, "segmentations")
|
|
155
|
-
|
|
156
|
-
def _get_image_path(self, index: int) -> str:
|
|
157
|
-
"""Returns the corresponding image path."""
|
|
158
|
-
sample_dir = self._get_sample_dir(index)
|
|
159
|
-
return os.path.join(self._root, sample_dir, "ct.nii.gz")
|
|
160
|
-
|
|
161
|
-
def _get_sample_dir(self, index: int) -> str:
|
|
162
|
-
"""Returns the corresponding sample directory."""
|
|
163
|
-
sample_index = self._indices[index // self._n_slices_per_image]
|
|
164
|
-
return self._samples_dirs[sample_index]
|
|
165
|
-
|
|
166
|
-
def _get_sample_slice_index(self, index: int) -> int:
|
|
167
|
-
"""Returns the corresponding slice index."""
|
|
168
|
-
image_path = self._get_image_path(index)
|
|
169
|
-
total_slices = io.fetch_total_nifti_slices(image_path)
|
|
170
|
-
slice_indices = np.linspace(0, total_slices - 1, num=self._n_slices_per_image, dtype=int)
|
|
171
|
-
return slice_indices[index % self._n_slices_per_image]
|
|
172
|
-
|
|
173
|
-
def _fetch_samples_dirs(self) -> List[str]:
|
|
174
|
-
"""Returns the name of all the samples of all the splits of the dataset."""
|
|
175
|
-
sample_filenames = [
|
|
176
|
-
filename
|
|
177
|
-
for filename in os.listdir(self._root)
|
|
178
|
-
if os.path.isdir(os.path.join(self._root, filename))
|
|
179
|
-
]
|
|
180
|
-
return sorted(sample_filenames)
|
|
181
|
-
|
|
182
|
-
def _create_indices(self) -> List[int]:
|
|
183
|
-
"""Builds the dataset indices for the specified split."""
|
|
184
|
-
split_index_ranges = {
|
|
185
|
-
"train": self._train_index_ranges,
|
|
186
|
-
"val": self._val_index_ranges,
|
|
187
|
-
None: [(0, 103)],
|
|
188
|
-
}
|
|
189
|
-
index_ranges = split_index_ranges.get(self._split)
|
|
190
|
-
if index_ranges is None:
|
|
191
|
-
raise ValueError("Invalid data split. Use 'train', 'val' or `None`.")
|
|
192
|
-
|
|
193
|
-
return _utils.ranges_to_indices(index_ranges)
|
|
194
|
-
|
|
195
|
-
def _download_dataset(self) -> None:
|
|
196
|
-
"""Downloads the dataset."""
|
|
197
|
-
dataset_resources = {
|
|
198
|
-
"small": self._resources_small,
|
|
199
|
-
"full": self._resources_full,
|
|
200
|
-
None: (0, 103),
|
|
201
|
-
}
|
|
202
|
-
resources = dataset_resources.get(self._version)
|
|
203
|
-
if resources is None:
|
|
204
|
-
raise ValueError("Invalid data version. Use 'small' or 'full'.")
|
|
205
|
-
|
|
206
|
-
for resource in resources:
|
|
207
|
-
utils.download_and_extract_archive(
|
|
208
|
-
resource.url,
|
|
209
|
-
download_root=self._root,
|
|
210
|
-
filename=resource.filename,
|
|
211
|
-
remove_finished=True,
|
|
212
|
-
)
|
|
@@ -1,25 +0,0 @@
|
|
|
1
|
-
"""Transforms for extracting the CLS output from a model output."""
|
|
2
|
-
|
|
3
|
-
import torch
|
|
4
|
-
from transformers import modeling_outputs
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
class ExtractCLSFeatures:
|
|
8
|
-
"""Extracts the CLS token from a ViT model output."""
|
|
9
|
-
|
|
10
|
-
def __call__(
|
|
11
|
-
self, tensor: torch.Tensor | modeling_outputs.BaseModelOutputWithPooling
|
|
12
|
-
) -> torch.Tensor:
|
|
13
|
-
"""Call method for the transformation.
|
|
14
|
-
|
|
15
|
-
Args:
|
|
16
|
-
tensor: The tensor representing the model output.
|
|
17
|
-
"""
|
|
18
|
-
if isinstance(tensor, torch.Tensor):
|
|
19
|
-
transformed_tensor = tensor[:, 0, :]
|
|
20
|
-
elif isinstance(tensor, modeling_outputs.BaseModelOutputWithPooling):
|
|
21
|
-
transformed_tensor = tensor.last_hidden_state[:, 0, :]
|
|
22
|
-
else:
|
|
23
|
-
raise ValueError(f"Unsupported type {type(tensor)}")
|
|
24
|
-
|
|
25
|
-
return transformed_tensor
|
|
@@ -1,405 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: kaiko-eva
|
|
3
|
-
Version: 0.0.1
|
|
4
|
-
Summary: Evaluation Framework for oncology foundation models.
|
|
5
|
-
Keywords: machine-learning evaluation-framework oncology foundation-models
|
|
6
|
-
Author-Email: Ioannis Gatopoulos <ioannis@kaiko.ai>, Nicolas Känzig <nicolas@kaiko.ai>, Roman Moser <roman@kaiko.ai>
|
|
7
|
-
Maintainer-Email: Ioannis Gatopoulos <ioannis@kaiko.ai>, Nicolas Känzig <nicolas@kaiko.ai>, Roman Moser <roman@kaiko.ai>
|
|
8
|
-
License: Apache License
|
|
9
|
-
Version 2.0, January 2004
|
|
10
|
-
http://www.apache.org/licenses/
|
|
11
|
-
|
|
12
|
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
13
|
-
|
|
14
|
-
1. Definitions.
|
|
15
|
-
|
|
16
|
-
"License" shall mean the terms and conditions for use, reproduction,
|
|
17
|
-
and distribution as defined by Sections 1 through 9 of this document.
|
|
18
|
-
|
|
19
|
-
"Licensor" shall mean the copyright owner or entity authorized by
|
|
20
|
-
the copyright owner that is granting the License.
|
|
21
|
-
|
|
22
|
-
"Legal Entity" shall mean the union of the acting entity and all
|
|
23
|
-
other entities that control, are controlled by, or are under common
|
|
24
|
-
control with that entity. For the purposes of this definition,
|
|
25
|
-
"control" means (i) the power, direct or indirect, to cause the
|
|
26
|
-
direction or management of such entity, whether by contract or
|
|
27
|
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
28
|
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
29
|
-
|
|
30
|
-
"You" (or "Your") shall mean an individual or Legal Entity
|
|
31
|
-
exercising permissions granted by this License.
|
|
32
|
-
|
|
33
|
-
"Source" form shall mean the preferred form for making modifications,
|
|
34
|
-
including but not limited to software source code, documentation
|
|
35
|
-
source, and configuration files.
|
|
36
|
-
|
|
37
|
-
"Object" form shall mean any form resulting from mechanical
|
|
38
|
-
transformation or translation of a Source form, including but
|
|
39
|
-
not limited to compiled object code, generated documentation,
|
|
40
|
-
and conversions to other media types.
|
|
41
|
-
|
|
42
|
-
"Work" shall mean the work of authorship, whether in Source or
|
|
43
|
-
Object form, made available under the License, as indicated by a
|
|
44
|
-
copyright notice that is included in or attached to the work
|
|
45
|
-
(an example is provided in the Appendix below).
|
|
46
|
-
|
|
47
|
-
"Derivative Works" shall mean any work, whether in Source or Object
|
|
48
|
-
form, that is based on (or derived from) the Work and for which the
|
|
49
|
-
editorial revisions, annotations, elaborations, or other modifications
|
|
50
|
-
represent, as a whole, an original work of authorship. For the purposes
|
|
51
|
-
of this License, Derivative Works shall not include works that remain
|
|
52
|
-
separable from, or merely link (or bind by name) to the interfaces of,
|
|
53
|
-
the Work and Derivative Works thereof.
|
|
54
|
-
|
|
55
|
-
"Contribution" shall mean any work of authorship, including
|
|
56
|
-
the original version of the Work and any modifications or additions
|
|
57
|
-
to that Work or Derivative Works thereof, that is intentionally
|
|
58
|
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
59
|
-
or by an individual or Legal Entity authorized to submit on behalf of
|
|
60
|
-
the copyright owner. For the purposes of this definition, "submitted"
|
|
61
|
-
means any form of electronic, verbal, or written communication sent
|
|
62
|
-
to the Licensor or its representatives, including but not limited to
|
|
63
|
-
communication on electronic mailing lists, source code control systems,
|
|
64
|
-
and issue tracking systems that are managed by, or on behalf of, the
|
|
65
|
-
Licensor for the purpose of discussing and improving the Work, but
|
|
66
|
-
excluding communication that is conspicuously marked or otherwise
|
|
67
|
-
designated in writing by the copyright owner as "Not a Contribution."
|
|
68
|
-
|
|
69
|
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
70
|
-
on behalf of whom a Contribution has been received by Licensor and
|
|
71
|
-
subsequently incorporated within the Work.
|
|
72
|
-
|
|
73
|
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
74
|
-
this License, each Contributor hereby grants to You a perpetual,
|
|
75
|
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
76
|
-
copyright license to reproduce, prepare Derivative Works of,
|
|
77
|
-
publicly display, publicly perform, sublicense, and distribute the
|
|
78
|
-
Work and such Derivative Works in Source or Object form.
|
|
79
|
-
|
|
80
|
-
3. Grant of Patent License. Subject to the terms and conditions of
|
|
81
|
-
this License, each Contributor hereby grants to You a perpetual,
|
|
82
|
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
83
|
-
(except as stated in this section) patent license to make, have made,
|
|
84
|
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
85
|
-
where such license applies only to those patent claims licensable
|
|
86
|
-
by such Contributor that are necessarily infringed by their
|
|
87
|
-
Contribution(s) alone or by combination of their Contribution(s)
|
|
88
|
-
with the Work to which such Contribution(s) was submitted. If You
|
|
89
|
-
institute patent litigation against any entity (including a
|
|
90
|
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
91
|
-
or a Contribution incorporated within the Work constitutes direct
|
|
92
|
-
or contributory patent infringement, then any patent licenses
|
|
93
|
-
granted to You under this License for that Work shall terminate
|
|
94
|
-
as of the date such litigation is filed.
|
|
95
|
-
|
|
96
|
-
4. Redistribution. You may reproduce and distribute copies of the
|
|
97
|
-
Work or Derivative Works thereof in any medium, with or without
|
|
98
|
-
modifications, and in Source or Object form, provided that You
|
|
99
|
-
meet the following conditions:
|
|
100
|
-
|
|
101
|
-
(a) You must give any other recipients of the Work or
|
|
102
|
-
Derivative Works a copy of this License; and
|
|
103
|
-
|
|
104
|
-
(b) You must cause any modified files to carry prominent notices
|
|
105
|
-
stating that You changed the files; and
|
|
106
|
-
|
|
107
|
-
(c) You must retain, in the Source form of any Derivative Works
|
|
108
|
-
that You distribute, all copyright, patent, trademark, and
|
|
109
|
-
attribution notices from the Source form of the Work,
|
|
110
|
-
excluding those notices that do not pertain to any part of
|
|
111
|
-
the Derivative Works; and
|
|
112
|
-
|
|
113
|
-
(d) If the Work includes a "NOTICE" text file as part of its
|
|
114
|
-
distribution, then any Derivative Works that You distribute must
|
|
115
|
-
include a readable copy of the attribution notices contained
|
|
116
|
-
within such NOTICE file, excluding those notices that do not
|
|
117
|
-
pertain to any part of the Derivative Works, in at least one
|
|
118
|
-
of the following places: within a NOTICE text file distributed
|
|
119
|
-
as part of the Derivative Works; within the Source form or
|
|
120
|
-
documentation, if provided along with the Derivative Works; or,
|
|
121
|
-
within a display generated by the Derivative Works, if and
|
|
122
|
-
wherever such third-party notices normally appear. The contents
|
|
123
|
-
of the NOTICE file are for informational purposes only and
|
|
124
|
-
do not modify the License. You may add Your own attribution
|
|
125
|
-
notices within Derivative Works that You distribute, alongside
|
|
126
|
-
or as an addendum to the NOTICE text from the Work, provided
|
|
127
|
-
that such additional attribution notices cannot be construed
|
|
128
|
-
as modifying the License.
|
|
129
|
-
|
|
130
|
-
You may add Your own copyright statement to Your modifications and
|
|
131
|
-
may provide additional or different license terms and conditions
|
|
132
|
-
for use, reproduction, or distribution of Your modifications, or
|
|
133
|
-
for any such Derivative Works as a whole, provided Your use,
|
|
134
|
-
reproduction, and distribution of the Work otherwise complies with
|
|
135
|
-
the conditions stated in this License.
|
|
136
|
-
|
|
137
|
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
138
|
-
any Contribution intentionally submitted for inclusion in the Work
|
|
139
|
-
by You to the Licensor shall be under the terms and conditions of
|
|
140
|
-
this License, without any additional terms or conditions.
|
|
141
|
-
Notwithstanding the above, nothing herein shall supersede or modify
|
|
142
|
-
the terms of any separate license agreement you may have executed
|
|
143
|
-
with Licensor regarding such Contributions.
|
|
144
|
-
|
|
145
|
-
6. Trademarks. This License does not grant permission to use the trade
|
|
146
|
-
names, trademarks, service marks, or product names of the Licensor,
|
|
147
|
-
except as required for reasonable and customary use in describing the
|
|
148
|
-
origin of the Work and reproducing the content of the NOTICE file.
|
|
149
|
-
|
|
150
|
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
151
|
-
agreed to in writing, Licensor provides the Work (and each
|
|
152
|
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
153
|
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
154
|
-
implied, including, without limitation, any warranties or conditions
|
|
155
|
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
156
|
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
157
|
-
appropriateness of using or redistributing the Work and assume any
|
|
158
|
-
risks associated with Your exercise of permissions under this License.
|
|
159
|
-
|
|
160
|
-
8. Limitation of Liability. In no event and under no legal theory,
|
|
161
|
-
whether in tort (including negligence), contract, or otherwise,
|
|
162
|
-
unless required by applicable law (such as deliberate and grossly
|
|
163
|
-
negligent acts) or agreed to in writing, shall any Contributor be
|
|
164
|
-
liable to You for damages, including any direct, indirect, special,
|
|
165
|
-
incidental, or consequential damages of any character arising as a
|
|
166
|
-
result of this License or out of the use or inability to use the
|
|
167
|
-
Work (including but not limited to damages for loss of goodwill,
|
|
168
|
-
work stoppage, computer failure or malfunction, or any and all
|
|
169
|
-
other commercial damages or losses), even if such Contributor
|
|
170
|
-
has been advised of the possibility of such damages.
|
|
171
|
-
|
|
172
|
-
9. Accepting Warranty or Additional Liability. While redistributing
|
|
173
|
-
the Work or Derivative Works thereof, You may choose to offer,
|
|
174
|
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
175
|
-
or other liability obligations and/or rights consistent with this
|
|
176
|
-
License. However, in accepting such obligations, You may act only
|
|
177
|
-
on Your own behalf and on Your sole responsibility, not on behalf
|
|
178
|
-
of any other Contributor, and only if You agree to indemnify,
|
|
179
|
-
defend, and hold each Contributor harmless for any liability
|
|
180
|
-
incurred by, or claims asserted against, such Contributor by reason
|
|
181
|
-
of your accepting any such warranty or additional liability.
|
|
182
|
-
|
|
183
|
-
END OF TERMS AND CONDITIONS
|
|
184
|
-
|
|
185
|
-
APPENDIX: How to apply the Apache License to your work.
|
|
186
|
-
|
|
187
|
-
To apply the Apache License to your work, attach the following
|
|
188
|
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
|
189
|
-
replaced with your own identifying information. (Don't include
|
|
190
|
-
the brackets!) The text should be enclosed in the appropriate
|
|
191
|
-
comment syntax for the file format. We also recommend that a
|
|
192
|
-
file or class name and description of purpose be included on the
|
|
193
|
-
same "printed page" as the copyright notice for easier
|
|
194
|
-
identification within third-party archives.
|
|
195
|
-
|
|
196
|
-
Copyright 2024 kaiko.ai
|
|
197
|
-
|
|
198
|
-
Licensed under the Apache License, Version 2.0 (the "License");
|
|
199
|
-
you may not use this file except in compliance with the License.
|
|
200
|
-
You may obtain a copy of the License at
|
|
201
|
-
|
|
202
|
-
http://www.apache.org/licenses/LICENSE-2.0
|
|
203
|
-
|
|
204
|
-
Unless required by applicable law or agreed to in writing, software
|
|
205
|
-
distributed under the License is distributed on an "AS IS" BASIS,
|
|
206
|
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
207
|
-
See the License for the specific language governing permissions and
|
|
208
|
-
limitations under the License.
|
|
209
|
-
Classifier: Topic :: Software Development :: Build Tools
|
|
210
|
-
Classifier: Programming Language :: Python :: 3
|
|
211
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
212
|
-
Classifier: Programming Language :: Python :: 3.11
|
|
213
|
-
Classifier: Programming Language :: Python :: 3.12
|
|
214
|
-
Project-URL: Homepage, https://kaiko-ai.github.io/eva/dev/
|
|
215
|
-
Project-URL: Repository, https://github.com/kaiko-ai/eva
|
|
216
|
-
Project-URL: Documentation, https://kaiko-ai.github.io/eva/dev/
|
|
217
|
-
Requires-Python: >=3.10
|
|
218
|
-
Requires-Dist: lightning>=2.2.1
|
|
219
|
-
Requires-Dist: jsonargparse[omegaconf]>=4.27.4
|
|
220
|
-
Requires-Dist: tensorboard>=2.16.2
|
|
221
|
-
Requires-Dist: loguru>=0.7.2
|
|
222
|
-
Requires-Dist: pandas>=2.2.0
|
|
223
|
-
Requires-Dist: transformers>=4.38.2
|
|
224
|
-
Requires-Dist: onnxruntime>=1.17.1
|
|
225
|
-
Requires-Dist: onnx>=1.15.0
|
|
226
|
-
Requires-Dist: toolz>=0.12.1
|
|
227
|
-
Requires-Dist: h5py>=3.10.0; extra == "vision"
|
|
228
|
-
Requires-Dist: nibabel>=5.2.0; extra == "vision"
|
|
229
|
-
Requires-Dist: opencv-python-headless>=4.9.0.80; extra == "vision"
|
|
230
|
-
Requires-Dist: timm>=0.9.12; extra == "vision"
|
|
231
|
-
Requires-Dist: torchvision>=0.17.0; extra == "vision"
|
|
232
|
-
Requires-Dist: h5py>=3.10.0; extra == "all"
|
|
233
|
-
Requires-Dist: nibabel>=5.2.0; extra == "all"
|
|
234
|
-
Requires-Dist: opencv-python-headless>=4.9.0.80; extra == "all"
|
|
235
|
-
Requires-Dist: timm>=0.9.12; extra == "all"
|
|
236
|
-
Requires-Dist: torchvision>=0.17.0; extra == "all"
|
|
237
|
-
Provides-Extra: vision
|
|
238
|
-
Provides-Extra: all
|
|
239
|
-
Description-Content-Type: text/markdown
|
|
240
|
-
|
|
241
|
-
<div align="center">
|
|
242
|
-
|
|
243
|
-
<img src="https://github.com/kaiko-ai/eva/blob/main/docs/images/eva-logo.png?raw=true" width="400">
|
|
244
|
-
|
|
245
|
-
<br />
|
|
246
|
-
|
|
247
|
-
_Oncology FM Evaluation Framework by kaiko.ai_
|
|
248
|
-
|
|
249
|
-
[](https://pypi.python.org/pypi/kaiko-eva)
|
|
250
|
-
[](https://github.com/kaiko-ai/eva/actions?query=workflow%3ACI)
|
|
251
|
-
[](https://github.com/kaiko-ai/eva#license)
|
|
252
|
-
|
|
253
|
-
<p align="center">
|
|
254
|
-
<a href="https://github.com/kaiko-ai/eva#installation">Installation</a> •
|
|
255
|
-
<a href="https://github.com/kaiko-ai/eva#how-to-use">How To Use</a> •
|
|
256
|
-
<a href="https://kaiko-ai.github.io/eva/">Documentation</a> •
|
|
257
|
-
<a href="https://kaiko-ai.github.io/eva/dev/datasets/">Datasets</a> •
|
|
258
|
-
<a href="https://github.com/kaiko-ai/eva#benchmarks">Benchmarks</a> <br>
|
|
259
|
-
<a href="https://github.com/kaiko-ai/eva#contributing">Contribute</a> •
|
|
260
|
-
<a href="https://github.com/kaiko-ai/eva#acknowledgements">Acknowledgements</a>
|
|
261
|
-
</p>
|
|
262
|
-
|
|
263
|
-
</div>
|
|
264
|
-
|
|
265
|
-
<br />
|
|
266
|
-
|
|
267
|
-
_`eva`_ is an evaluation framework for oncology foundation models (FMs) by [kaiko.ai](https://kaiko.ai/).
|
|
268
|
-
Check out the [documentation](https://kaiko-ai.github.io/eva/) for more information.
|
|
269
|
-
|
|
270
|
-
### Highlights:
|
|
271
|
-
- Easy and reliable benchmark of Oncology FMs
|
|
272
|
-
- Automatic embedding inference and evaluation of a downstream task
|
|
273
|
-
- Native support of popular medical [datasets](https://kaiko-ai.github.io/eva/dev/datasets/) and models
|
|
274
|
-
- Produce statistics over multiple evaluation fits and multiple metrics
|
|
275
|
-
|
|
276
|
-
## Installation
|
|
277
|
-
|
|
278
|
-
Simple installation from PyPI:
|
|
279
|
-
```sh
|
|
280
|
-
# to install the core version only
|
|
281
|
-
pip install kaiko-eva
|
|
282
|
-
|
|
283
|
-
# to install the expanded `vision` version
|
|
284
|
-
pip install 'kaiko-eva[vision]'
|
|
285
|
-
|
|
286
|
-
# to install everything
|
|
287
|
-
pip install 'kaiko-eva[all]'
|
|
288
|
-
```
|
|
289
|
-
|
|
290
|
-
To install the latest version of the `main` branch:
|
|
291
|
-
```sh
|
|
292
|
-
pip install "kaiko-eva[all] @ git+https://github.com/kaiko-ai/eva.git"
|
|
293
|
-
```
|
|
294
|
-
|
|
295
|
-
You can verify that the installation was successful by executing:
|
|
296
|
-
```sh
|
|
297
|
-
eva --version
|
|
298
|
-
```
|
|
299
|
-
|
|
300
|
-
## How To Use
|
|
301
|
-
|
|
302
|
-
_eva_ can be used directly from the terminal as a CLI tool as follows:
|
|
303
|
-
```sh
|
|
304
|
-
eva {fit,predict,predict_fit} --config url/or/path/to/the/config.yaml
|
|
305
|
-
```
|
|
306
|
-
|
|
307
|
-
When used as a CLI tool, `_eva_` supports configuration files (`.yaml`) as an argument to define its functionality.
|
|
308
|
-
Native supported configs can be found at the [configs](https://github.com/kaiko-ai/eva/tree/main/configs) directory
|
|
309
|
-
of the repo. Apart from cloning the repo, you can download the latest config folder as `.zip` from your browser from
|
|
310
|
-
[here](https://download-directory.github.io/?url=https://github.com/kaiko-ai/eva/tree/main/configs). Alternatively,
|
|
311
|
-
from a specific release the configs can be downloaded from the terminal as follows:
|
|
312
|
-
```sh
|
|
313
|
-
curl -LO https://github.com/kaiko-ai/eva/releases/download/0.0.1/configs.zip | unzip configs.zip
|
|
314
|
-
```
|
|
315
|
-
|
|
316
|
-
For example, to perform a downstream evaluation of DINO ViT-S/16 on the BACH dataset with
|
|
317
|
-
linear probing by first inferring the embeddings and performing 5 sequential fits, execute:
|
|
318
|
-
```sh
|
|
319
|
-
# from a locally stored config file
|
|
320
|
-
eva predict_fit --config ./configs/vision/dino_vit/offline/bach.yaml
|
|
321
|
-
|
|
322
|
-
# from a remote stored config file
|
|
323
|
-
eva predict_fit --config https://raw.githubusercontent.com/kaiko-ai/eva/main/configs/vision/dino_vit/offline/bach.yaml
|
|
324
|
-
```
|
|
325
|
-
|
|
326
|
-
> [!NOTE]
|
|
327
|
-
> All the datasets that support automatic download in the repo have by default the option to automatically download set to false.
|
|
328
|
-
> For automatic download you have to manually set download=true.
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
To view all the possibles, execute:
|
|
332
|
-
```sh
|
|
333
|
-
eva --help
|
|
334
|
-
```
|
|
335
|
-
|
|
336
|
-
For more information, please refer to the [documentation](https://kaiko-ai.github.io/eva/dev/user-guide/tutorials/offline_vs_online/)
|
|
337
|
-
and [tutorials](https://kaiko-ai.github.io/eva/dev/user-guide/advanced/replicate_evaluations/).
|
|
338
|
-
|
|
339
|
-
## Benchmarks
|
|
340
|
-
|
|
341
|
-
In this section you will find model benchmarks which were generated with _eva_.
|
|
342
|
-
|
|
343
|
-
### Table I: WSI patch-level benchmark
|
|
344
|
-
|
|
345
|
-
<br />
|
|
346
|
-
|
|
347
|
-
<div align="center">
|
|
348
|
-
|
|
349
|
-
| Model | BACH | CRC | MHIST | PCam/val | PCam/test |
|
|
350
|
-
|--------------------------------------------------|-------|-------|-------|----------|-----------|
|
|
351
|
-
| ViT-S/16 _(random)_ <sup>[1]</sup> | 0.410 | 0.617 | 0.501 | 0.753 | 0.728 |
|
|
352
|
-
| ViT-S/16 _(ImageNet)_ <sup>[1]</sup> | 0.695 | 0.935 | 0.831 | 0.864 | 0.849 |
|
|
353
|
-
| ViT-B/8 _(ImageNet)_ <sup>[1]</sup> | 0.710 | 0.939 | 0.814 | 0.870 | 0.856 |
|
|
354
|
-
| DINO<sub>(p=16)</sub> <sup>[2]</sup> | 0.801 | 0.934 | 0.768 | 0.889 | 0.895 |
|
|
355
|
-
| Phikon <sup>[3]</sup> | 0.725 | 0.935 | 0.777 | 0.912 | 0.915 |
|
|
356
|
-
| ViT-S/16 _(kaiko.ai)_ <sup>[4]</sup> | 0.797 | 0.943 | 0.828 | 0.903 | 0.893 |
|
|
357
|
-
| ViT-S/8 _(kaiko.ai)_ <sup>[4]</sup> | 0.834 | 0.946 | 0.832 | 0.897 | 0.887 |
|
|
358
|
-
| ViT-B/16 _(kaiko.ai)_ <sup>[4]</sup> | 0.810 | 0.960 | 0.826 | 0.900 | 0.898 |
|
|
359
|
-
| ViT-B/8 _(kaiko.ai)_ <sup>[4]</sup> | 0.865 | 0.956 | 0.809 | 0.913 | 0.921 |
|
|
360
|
-
| ViT-L/14 _(kaiko.ai)_ <sup>[4]</sup> | 0.870 | 0.930 | 0.809 | 0.908 | 0.898 |
|
|
361
|
-
|
|
362
|
-
_Table I: Linear probing evaluation of FMs on patch-level downstream datasets.<br> We report averaged balanced accuracy
|
|
363
|
-
over 5 runs, with an average standard deviation of ±0.003._
|
|
364
|
-
|
|
365
|
-
</div>
|
|
366
|
-
|
|
367
|
-
<br />
|
|
368
|
-
|
|
369
|
-
_References_:
|
|
370
|
-
1. _"Emerging properties in self-supervised vision transformers”_
|
|
371
|
-
2. _"Benchmarking self-supervised learning on diverse pathology datasets”_
|
|
372
|
-
3. _"Scaling self-supervised learning for histopathology with masked image modeling”_
|
|
373
|
-
4. _"Towards Training Large-Scale Pathology Foundation Models: from TCGA to Hospital Scale”_
|
|
374
|
-
|
|
375
|
-
## Contributing
|
|
376
|
-
|
|
377
|
-
_eva_ is an open source project and welcomes contributions of all kinds. Please checkout the [developer](./docs/DEVELOPER_GUIDE.md)
|
|
378
|
-
and [contributing guide](./docs/CONTRIBUTING.md) for help on how to do so.
|
|
379
|
-
|
|
380
|
-
All contributors must follow the [code of conduct](./docs/CODE_OF_CONDUCT.md).
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
## Acknowledgements
|
|
384
|
-
|
|
385
|
-
Our codebase is built using multiple opensource contributions
|
|
386
|
-
|
|
387
|
-
<div align="center">
|
|
388
|
-
|
|
389
|
-
[](https://github.com/pre-commit/pre-commit)
|
|
390
|
-
[](https://pytorch.org/get-started/locally/)
|
|
391
|
-
[](https://pytorchlightning.ai/)<br>
|
|
392
|
-
[](https://black.readthedocs.io/en/stable/)
|
|
393
|
-
[](https://pycqa.github.io/isort/)
|
|
394
|
-
[](https://github.com/astral-sh/ruff)
|
|
395
|
-
[](https://microsoft.github.io/pyright/)<br>
|
|
396
|
-
[](https://pdm-project.org)
|
|
397
|
-
[](https://github.com/wntrblm/nox)
|
|
398
|
-
[](https://squidfunk.github.io/mkdocs-material/)
|
|
399
|
-
|
|
400
|
-
</div>
|
|
401
|
-
|
|
402
|
-
---
|
|
403
|
-
<div align="center">
|
|
404
|
-
<img src="https://github.com/kaiko-ai/eva/blob/main/docs/images/kaiko-logo.png?raw=true" width="200">
|
|
405
|
-
</div>
|