kaiko-eva 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kaiko-eva might be problematic. Click here for more details.
- eva/.DS_Store +0 -0
- eva/core/callbacks/__init__.py +2 -1
- eva/core/callbacks/config.py +143 -0
- eva/core/data/datasets/__init__.py +10 -2
- eva/core/data/datasets/embeddings/__init__.py +13 -0
- eva/core/data/datasets/{classification/embeddings.py → embeddings/base.py} +41 -43
- eva/core/data/datasets/embeddings/classification/__init__.py +10 -0
- eva/core/data/datasets/embeddings/classification/embeddings.py +66 -0
- eva/core/data/datasets/embeddings/classification/multi_embeddings.py +106 -0
- eva/core/data/transforms/__init__.py +3 -1
- eva/core/data/transforms/padding/__init__.py +5 -0
- eva/core/data/transforms/padding/pad_2d_tensor.py +38 -0
- eva/core/data/transforms/sampling/__init__.py +5 -0
- eva/core/data/transforms/sampling/sample_from_axis.py +40 -0
- eva/core/loggers/__init__.py +7 -0
- eva/core/loggers/dummy.py +38 -0
- eva/core/loggers/experimental_loggers.py +8 -0
- eva/core/loggers/log/__init__.py +5 -0
- eva/core/loggers/log/parameters.py +64 -0
- eva/core/loggers/log/utils.py +13 -0
- eva/core/models/modules/head.py +6 -11
- eva/core/models/modules/module.py +25 -1
- eva/core/trainers/_recorder.py +69 -7
- eva/core/trainers/functional.py +22 -5
- eva/core/trainers/trainer.py +20 -6
- eva/vision/data/datasets/__init__.py +1 -8
- eva/vision/data/datasets/_utils.py +3 -3
- eva/vision/data/datasets/classification/__init__.py +1 -8
- eva/vision/data/datasets/segmentation/base.py +20 -35
- eva/vision/data/datasets/segmentation/total_segmentator.py +88 -69
- eva/vision/models/.DS_Store +0 -0
- eva/vision/models/networks/.DS_Store +0 -0
- eva/vision/utils/convert.py +24 -0
- eva/vision/utils/io/nifti.py +10 -6
- {kaiko_eva-0.0.1.dist-info → kaiko_eva-0.0.2.dist-info}/METADATA +51 -25
- {kaiko_eva-0.0.1.dist-info → kaiko_eva-0.0.2.dist-info}/RECORD +39 -22
- {kaiko_eva-0.0.1.dist-info → kaiko_eva-0.0.2.dist-info}/WHEEL +1 -1
- eva/core/data/datasets/classification/__init__.py +0 -5
- eva/vision/data/datasets/classification/total_segmentator.py +0 -213
- {kaiko_eva-0.0.1.dist-info → kaiko_eva-0.0.2.dist-info}/entry_points.txt +0 -0
- {kaiko_eva-0.0.1.dist-info → kaiko_eva-0.0.2.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,213 +0,0 @@
|
|
|
1
|
-
"""TotalSegmentator 2D segmentation dataset class."""
|
|
2
|
-
|
|
3
|
-
import functools
|
|
4
|
-
import os
|
|
5
|
-
from glob import glob
|
|
6
|
-
from typing import Callable, Dict, List, Literal, Tuple
|
|
7
|
-
|
|
8
|
-
import numpy as np
|
|
9
|
-
from torchvision.datasets import utils
|
|
10
|
-
from typing_extensions import override
|
|
11
|
-
|
|
12
|
-
from eva.vision.data.datasets import _utils, _validators, structs
|
|
13
|
-
from eva.vision.data.datasets.classification import base
|
|
14
|
-
from eva.vision.utils import io
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class TotalSegmentatorClassification(base.ImageClassification):
|
|
18
|
-
"""TotalSegmentator multi-label classification dataset."""
|
|
19
|
-
|
|
20
|
-
_train_index_ranges: List[Tuple[int, int]] = [(0, 83)]
|
|
21
|
-
"""Train range indices."""
|
|
22
|
-
|
|
23
|
-
_val_index_ranges: List[Tuple[int, int]] = [(83, 103)]
|
|
24
|
-
"""Validation range indices."""
|
|
25
|
-
|
|
26
|
-
_n_slices_per_image: int = 20
|
|
27
|
-
"""The amount of slices to sample per 3D CT scan image."""
|
|
28
|
-
|
|
29
|
-
_resources_full: List[structs.DownloadResource] = [
|
|
30
|
-
structs.DownloadResource(
|
|
31
|
-
filename="Totalsegmentator_dataset_v201.zip",
|
|
32
|
-
url="https://zenodo.org/records/10047292/files/Totalsegmentator_dataset_v201.zip",
|
|
33
|
-
md5="fe250e5718e0a3b5df4c4ea9d58a62fe",
|
|
34
|
-
),
|
|
35
|
-
]
|
|
36
|
-
"""Resources for the full dataset version."""
|
|
37
|
-
|
|
38
|
-
_resources_small: List[structs.DownloadResource] = [
|
|
39
|
-
structs.DownloadResource(
|
|
40
|
-
filename="Totalsegmentator_dataset_small_v201.zip",
|
|
41
|
-
url="https://zenodo.org/records/10047263/files/Totalsegmentator_dataset_small_v201.zip",
|
|
42
|
-
md5="6b5524af4b15e6ba06ef2d700c0c73e0",
|
|
43
|
-
),
|
|
44
|
-
]
|
|
45
|
-
"""Resources for the small dataset version."""
|
|
46
|
-
|
|
47
|
-
def __init__(
|
|
48
|
-
self,
|
|
49
|
-
root: str,
|
|
50
|
-
split: Literal["train", "val"] | None,
|
|
51
|
-
version: Literal["small", "full"] = "small",
|
|
52
|
-
download: bool = False,
|
|
53
|
-
image_transforms: Callable | None = None,
|
|
54
|
-
target_transforms: Callable | None = None,
|
|
55
|
-
) -> None:
|
|
56
|
-
"""Initialize dataset.
|
|
57
|
-
|
|
58
|
-
Args:
|
|
59
|
-
root: Path to the root directory of the dataset. The dataset will
|
|
60
|
-
be downloaded and extracted here, if it does not already exist.
|
|
61
|
-
split: Dataset split to use. If None, the entire dataset is used.
|
|
62
|
-
version: The version of the dataset to initialize.
|
|
63
|
-
download: Whether to download the data for the specified split.
|
|
64
|
-
Note that the download will be executed only by additionally
|
|
65
|
-
calling the :meth:`prepare_data` method and if the data does not
|
|
66
|
-
exist yet on disk.
|
|
67
|
-
image_transforms: A function/transform that takes in an image
|
|
68
|
-
and returns a transformed version.
|
|
69
|
-
target_transforms: A function/transform that takes in the target
|
|
70
|
-
and transforms it.
|
|
71
|
-
"""
|
|
72
|
-
super().__init__(
|
|
73
|
-
image_transforms=image_transforms,
|
|
74
|
-
target_transforms=target_transforms,
|
|
75
|
-
)
|
|
76
|
-
|
|
77
|
-
self._root = root
|
|
78
|
-
self._split = split
|
|
79
|
-
self._version = version
|
|
80
|
-
self._download = download
|
|
81
|
-
|
|
82
|
-
self._samples_dirs: List[str] = []
|
|
83
|
-
self._indices: List[int] = []
|
|
84
|
-
|
|
85
|
-
@functools.cached_property
|
|
86
|
-
@override
|
|
87
|
-
def classes(self) -> List[str]:
|
|
88
|
-
def get_filename(path: str) -> str:
|
|
89
|
-
"""Returns the filename from the full path."""
|
|
90
|
-
return os.path.basename(path).split(".")[0]
|
|
91
|
-
|
|
92
|
-
first_sample_labels = os.path.join(
|
|
93
|
-
self._root, self._samples_dirs[0], "segmentations", "*.nii.gz"
|
|
94
|
-
)
|
|
95
|
-
return sorted(map(get_filename, glob(first_sample_labels)))
|
|
96
|
-
|
|
97
|
-
@property
|
|
98
|
-
@override
|
|
99
|
-
def class_to_idx(self) -> Dict[str, int]:
|
|
100
|
-
return {label: index for index, label in enumerate(self.classes)}
|
|
101
|
-
|
|
102
|
-
@override
|
|
103
|
-
def filename(self, index: int) -> str:
|
|
104
|
-
sample_dir = self._samples_dirs[self._indices[index]]
|
|
105
|
-
return os.path.join(sample_dir, "ct.nii.gz")
|
|
106
|
-
|
|
107
|
-
@override
|
|
108
|
-
def prepare_data(self) -> None:
|
|
109
|
-
if self._download:
|
|
110
|
-
self._download_dataset()
|
|
111
|
-
_validators.check_dataset_exists(self._root, True)
|
|
112
|
-
|
|
113
|
-
@override
|
|
114
|
-
def configure(self) -> None:
|
|
115
|
-
self._samples_dirs = self._fetch_samples_dirs()
|
|
116
|
-
self._indices = self._create_indices()
|
|
117
|
-
|
|
118
|
-
@override
|
|
119
|
-
def validate(self) -> None:
|
|
120
|
-
_validators.check_dataset_integrity(
|
|
121
|
-
self,
|
|
122
|
-
length=1660 if self._split == "train" else 400,
|
|
123
|
-
n_classes=117,
|
|
124
|
-
first_and_last_labels=("adrenal_gland_left", "vertebrae_T9"),
|
|
125
|
-
)
|
|
126
|
-
|
|
127
|
-
@override
|
|
128
|
-
def __len__(self) -> int:
|
|
129
|
-
return len(self._indices) * self._n_slices_per_image
|
|
130
|
-
|
|
131
|
-
@override
|
|
132
|
-
def load_image(self, index: int) -> np.ndarray:
|
|
133
|
-
image_path = self._get_image_path(index)
|
|
134
|
-
slice_index = self._get_sample_slice_index(index)
|
|
135
|
-
image_array = io.read_nifti_slice(image_path, slice_index)
|
|
136
|
-
return image_array.repeat(3, axis=2)
|
|
137
|
-
|
|
138
|
-
@override
|
|
139
|
-
def load_target(self, index: int) -> np.ndarray:
|
|
140
|
-
masks = self._load_masks(index)
|
|
141
|
-
targets = [1 in masks[..., mask_index] for mask_index in range(masks.shape[-1])]
|
|
142
|
-
return np.asarray(targets, dtype=np.int64)
|
|
143
|
-
|
|
144
|
-
def _load_masks(self, index: int) -> np.ndarray:
|
|
145
|
-
"""Returns the `index`'th target mask sample."""
|
|
146
|
-
masks_dir = self._get_masks_dir(index)
|
|
147
|
-
slice_index = self._get_sample_slice_index(index)
|
|
148
|
-
mask_paths = (os.path.join(masks_dir, label + ".nii.gz") for label in self.classes)
|
|
149
|
-
masks = [io.read_nifti_slice(path, slice_index) for path in mask_paths]
|
|
150
|
-
return np.concatenate(masks, axis=-1)
|
|
151
|
-
|
|
152
|
-
def _get_masks_dir(self, index: int) -> str:
|
|
153
|
-
"""Returns the directory of the corresponding masks."""
|
|
154
|
-
sample_dir = self._get_sample_dir(index)
|
|
155
|
-
return os.path.join(self._root, sample_dir, "segmentations")
|
|
156
|
-
|
|
157
|
-
def _get_image_path(self, index: int) -> str:
|
|
158
|
-
"""Returns the corresponding image path."""
|
|
159
|
-
sample_dir = self._get_sample_dir(index)
|
|
160
|
-
return os.path.join(self._root, sample_dir, "ct.nii.gz")
|
|
161
|
-
|
|
162
|
-
def _get_sample_dir(self, index: int) -> str:
|
|
163
|
-
"""Returns the corresponding sample directory."""
|
|
164
|
-
sample_index = self._indices[index // self._n_slices_per_image]
|
|
165
|
-
return self._samples_dirs[sample_index]
|
|
166
|
-
|
|
167
|
-
def _get_sample_slice_index(self, index: int) -> int:
|
|
168
|
-
"""Returns the corresponding slice index."""
|
|
169
|
-
image_path = self._get_image_path(index)
|
|
170
|
-
total_slices = io.fetch_total_nifti_slices(image_path)
|
|
171
|
-
slice_indices = np.linspace(0, total_slices - 1, num=self._n_slices_per_image, dtype=int)
|
|
172
|
-
return slice_indices[index % self._n_slices_per_image]
|
|
173
|
-
|
|
174
|
-
def _fetch_samples_dirs(self) -> List[str]:
|
|
175
|
-
"""Returns the name of all the samples of all the splits of the dataset."""
|
|
176
|
-
sample_filenames = [
|
|
177
|
-
filename
|
|
178
|
-
for filename in os.listdir(self._root)
|
|
179
|
-
if os.path.isdir(os.path.join(self._root, filename))
|
|
180
|
-
]
|
|
181
|
-
return sorted(sample_filenames)
|
|
182
|
-
|
|
183
|
-
def _create_indices(self) -> List[int]:
|
|
184
|
-
"""Builds the dataset indices for the specified split."""
|
|
185
|
-
split_index_ranges = {
|
|
186
|
-
"train": self._train_index_ranges,
|
|
187
|
-
"val": self._val_index_ranges,
|
|
188
|
-
None: [(0, 103)],
|
|
189
|
-
}
|
|
190
|
-
index_ranges = split_index_ranges.get(self._split)
|
|
191
|
-
if index_ranges is None:
|
|
192
|
-
raise ValueError("Invalid data split. Use 'train', 'val' or `None`.")
|
|
193
|
-
|
|
194
|
-
return _utils.ranges_to_indices(index_ranges)
|
|
195
|
-
|
|
196
|
-
def _download_dataset(self) -> None:
|
|
197
|
-
"""Downloads the dataset."""
|
|
198
|
-
dataset_resources = {
|
|
199
|
-
"small": self._resources_small,
|
|
200
|
-
"full": self._resources_full,
|
|
201
|
-
None: (0, 103),
|
|
202
|
-
}
|
|
203
|
-
resources = dataset_resources.get(self._version)
|
|
204
|
-
if resources is None:
|
|
205
|
-
raise ValueError("Invalid data version. Use 'small' or 'full'.")
|
|
206
|
-
|
|
207
|
-
for resource in resources:
|
|
208
|
-
utils.download_and_extract_archive(
|
|
209
|
-
resource.url,
|
|
210
|
-
download_root=self._root,
|
|
211
|
-
filename=resource.filename,
|
|
212
|
-
remove_finished=True,
|
|
213
|
-
)
|
|
File without changes
|
|
File without changes
|