kaiko-eva 0.0.0.dev7__py3-none-any.whl → 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kaiko-eva might be problematic. Click here for more details.
- eva/core/data/datamodules/call.py +1 -1
- eva/core/trainers/_logging.py +5 -4
- eva/core/trainers/trainer.py +1 -1
- eva/vision/__init__.py +1 -1
- eva/vision/data/datasets/_validators.py +16 -1
- eva/vision/data/datasets/classification/bach.py +5 -4
- eva/vision/data/datasets/classification/crc.py +4 -3
- eva/vision/data/datasets/classification/mhist.py +4 -0
- eva/vision/data/datasets/classification/patch_camelyon.py +1 -0
- eva/vision/data/datasets/classification/total_segmentator.py +1 -0
- {kaiko_eva-0.0.0.dev7.dist-info → kaiko_eva-0.0.1.dist-info}/METADATA +35 -23
- {kaiko_eva-0.0.0.dev7.dist-info → kaiko_eva-0.0.1.dist-info}/RECORD +15 -16
- eva/.DS_Store +0 -0
- {kaiko_eva-0.0.0.dev7.dist-info → kaiko_eva-0.0.1.dist-info}/WHEEL +0 -0
- {kaiko_eva-0.0.0.dev7.dist-info → kaiko_eva-0.0.1.dist-info}/entry_points.txt +0 -0
- {kaiko_eva-0.0.0.dev7.dist-info → kaiko_eva-0.0.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -19,7 +19,7 @@ def call_method_if_exists(objects: Iterable[Any], /, method: str) -> None:
|
|
|
19
19
|
|
|
20
20
|
|
|
21
21
|
def _recursive_iter(objects: Iterable[Any], /) -> Iterable[datasets_lib.TorchDataset]:
|
|
22
|
-
"""Iterates
|
|
22
|
+
"""Iterates through an iterable of objects and their respective iterable values.
|
|
23
23
|
|
|
24
24
|
Args:
|
|
25
25
|
objects: The objects to iterate from.
|
eva/core/trainers/_logging.py
CHANGED
|
@@ -11,8 +11,9 @@ from loguru import logger
|
|
|
11
11
|
def generate_session_id() -> str:
|
|
12
12
|
"""Generates and returns a unique string ID of an experiment.
|
|
13
13
|
|
|
14
|
-
The ID is composed of the run timestamp and a
|
|
15
|
-
configuration hash is an empty string, it will use
|
|
14
|
+
The ID is composed of the run timestamp and a hash based on th used
|
|
15
|
+
config. If the configuration hash is an empty string, it will use
|
|
16
|
+
only the timestamp.
|
|
16
17
|
"""
|
|
17
18
|
timestamp = _generate_timestamp_hash()
|
|
18
19
|
config_hash = _generate_config_hash()
|
|
@@ -34,8 +35,8 @@ def _generate_config_hash(max_hash_len: int = 8) -> str:
|
|
|
34
35
|
config_path = _fetch_config_path()
|
|
35
36
|
if config_path is None:
|
|
36
37
|
logger.warning(
|
|
37
|
-
"No or multiple configuration
|
|
38
|
-
"No configuration hash code will created for this experiment."
|
|
38
|
+
"No or multiple configuration files found from command line arguments. "
|
|
39
|
+
"No configuration hash code will be created for this experiment."
|
|
39
40
|
)
|
|
40
41
|
return ""
|
|
41
42
|
|
eva/core/trainers/trainer.py
CHANGED
|
@@ -78,7 +78,7 @@ class Trainer(pl_trainer.Trainer):
|
|
|
78
78
|
model: modules.ModelModule,
|
|
79
79
|
datamodule: datamodules.DataModule,
|
|
80
80
|
) -> None:
|
|
81
|
-
"""Runs
|
|
81
|
+
"""Runs an evaluation session out-of-place.
|
|
82
82
|
|
|
83
83
|
It performs an evaluation run (fit and evaluate) the model
|
|
84
84
|
`self._n_run` times. Note that the input `base_model` would
|
eva/vision/__init__.py
CHANGED
|
@@ -7,7 +7,7 @@ except ImportError as e:
|
|
|
7
7
|
msg = (
|
|
8
8
|
"eva vision requirements are not installed.\n\n"
|
|
9
9
|
"Please pip install as follows:\n"
|
|
10
|
-
' python -m pip install "eva[vision]" --upgrade'
|
|
10
|
+
' python -m pip install "kaiko-eva[vision]" --upgrade'
|
|
11
11
|
)
|
|
12
12
|
raise ImportError(str(e) + "\n\n" + msg) from e
|
|
13
13
|
|
|
@@ -1,5 +1,7 @@
|
|
|
1
1
|
"""Dataset validation related functions."""
|
|
2
2
|
|
|
3
|
+
import os
|
|
4
|
+
|
|
3
5
|
from typing_extensions import List, Tuple
|
|
4
6
|
|
|
5
7
|
from eva.vision.data.datasets import vision
|
|
@@ -18,7 +20,7 @@ def check_dataset_integrity(
|
|
|
18
20
|
"""Verifies the datasets integrity.
|
|
19
21
|
|
|
20
22
|
Raise:
|
|
21
|
-
|
|
23
|
+
ValueError: If the input dataset's values do not
|
|
22
24
|
match the expected ones.
|
|
23
25
|
"""
|
|
24
26
|
if len(dataset) != length:
|
|
@@ -42,3 +44,16 @@ def check_dataset_integrity(
|
|
|
42
44
|
f"({(dataset_classes[0], dataset_classes[-1])}) does not match the expected "
|
|
43
45
|
f"ones ({first_and_last_labels}). {_SUFFIX_ERROR_MESSAGE}"
|
|
44
46
|
)
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def check_dataset_exists(dataset_dir: str, download_available: bool) -> None:
|
|
50
|
+
"""Verifies that the dataset folder exists.
|
|
51
|
+
|
|
52
|
+
Raise:
|
|
53
|
+
FileNotFoundError: If the dataset folder does not exist.
|
|
54
|
+
"""
|
|
55
|
+
if not os.path.isdir(dataset_dir):
|
|
56
|
+
error_message = f"Dataset not found at '{dataset_dir}'."
|
|
57
|
+
if download_available:
|
|
58
|
+
error_message += " You can set `download=True` to download the dataset automatically."
|
|
59
|
+
raise FileNotFoundError(error_message)
|
|
@@ -96,24 +96,25 @@ class BACH(base.ImageClassification):
|
|
|
96
96
|
return {"Benign": 0, "InSitu": 1, "Invasive": 2, "Normal": 3}
|
|
97
97
|
|
|
98
98
|
@property
|
|
99
|
-
def
|
|
99
|
+
def _dataset_path(self) -> str:
|
|
100
100
|
"""Returns the path of the image data of the dataset."""
|
|
101
101
|
return os.path.join(self._root, "ICIAR2018_BACH_Challenge", "Photos")
|
|
102
102
|
|
|
103
103
|
@override
|
|
104
104
|
def filename(self, index: int) -> str:
|
|
105
105
|
image_path, _ = self._samples[self._indices[index]]
|
|
106
|
-
return os.path.relpath(image_path, self.
|
|
106
|
+
return os.path.relpath(image_path, self._dataset_path)
|
|
107
107
|
|
|
108
108
|
@override
|
|
109
109
|
def prepare_data(self) -> None:
|
|
110
110
|
if self._download:
|
|
111
111
|
self._download_dataset()
|
|
112
|
+
_validators.check_dataset_exists(self._root, True)
|
|
112
113
|
|
|
113
114
|
@override
|
|
114
115
|
def configure(self) -> None:
|
|
115
116
|
self._samples = folder.make_dataset(
|
|
116
|
-
directory=self.
|
|
117
|
+
directory=self._dataset_path,
|
|
117
118
|
class_to_idx=self.class_to_idx,
|
|
118
119
|
extensions=(".tif"),
|
|
119
120
|
)
|
|
@@ -145,7 +146,7 @@ class BACH(base.ImageClassification):
|
|
|
145
146
|
def _download_dataset(self) -> None:
|
|
146
147
|
"""Downloads the dataset."""
|
|
147
148
|
for resource in self._resources:
|
|
148
|
-
if os.path.isdir(self.
|
|
149
|
+
if os.path.isdir(self._dataset_path):
|
|
149
150
|
continue
|
|
150
151
|
|
|
151
152
|
self._print_license()
|
|
@@ -95,12 +95,13 @@ class CRC(base.ImageClassification):
|
|
|
95
95
|
@override
|
|
96
96
|
def filename(self, index: int) -> str:
|
|
97
97
|
image_path, *_ = self._samples[index]
|
|
98
|
-
return os.path.relpath(image_path, self.
|
|
98
|
+
return os.path.relpath(image_path, self._dataset_path)
|
|
99
99
|
|
|
100
100
|
@override
|
|
101
101
|
def prepare_data(self) -> None:
|
|
102
102
|
if self._download:
|
|
103
103
|
self._download_dataset()
|
|
104
|
+
_validators.check_dataset_exists(self._root, True)
|
|
104
105
|
|
|
105
106
|
@override
|
|
106
107
|
def configure(self) -> None:
|
|
@@ -135,7 +136,7 @@ class CRC(base.ImageClassification):
|
|
|
135
136
|
return len(self._samples)
|
|
136
137
|
|
|
137
138
|
@property
|
|
138
|
-
def
|
|
139
|
+
def _dataset_path(self) -> str:
|
|
139
140
|
"""Returns the full path of dataset directory."""
|
|
140
141
|
dataset_dirs = {
|
|
141
142
|
"train": os.path.join(self._root, "NCT-CRC-HE-100K"),
|
|
@@ -150,7 +151,7 @@ class CRC(base.ImageClassification):
|
|
|
150
151
|
def _make_dataset(self) -> List[Tuple[str, int]]:
|
|
151
152
|
"""Builds the dataset for the specified split."""
|
|
152
153
|
dataset = folder.make_dataset(
|
|
153
|
-
directory=self.
|
|
154
|
+
directory=self._dataset_path,
|
|
154
155
|
class_to_idx=self.class_to_idx,
|
|
155
156
|
extensions=(".tif"),
|
|
156
157
|
)
|
|
@@ -56,6 +56,10 @@ class MHIST(base.ImageClassification):
|
|
|
56
56
|
image_filename, _ = self._samples[index]
|
|
57
57
|
return image_filename
|
|
58
58
|
|
|
59
|
+
@override
|
|
60
|
+
def prepare_data(self) -> None:
|
|
61
|
+
_validators.check_dataset_exists(self._root, False)
|
|
62
|
+
|
|
59
63
|
@override
|
|
60
64
|
def configure(self) -> None:
|
|
61
65
|
self._samples = self._make_dataset()
|
|
@@ -108,6 +108,7 @@ class TotalSegmentatorClassification(base.ImageClassification):
|
|
|
108
108
|
def prepare_data(self) -> None:
|
|
109
109
|
if self._download:
|
|
110
110
|
self._download_dataset()
|
|
111
|
+
_validators.check_dataset_exists(self._root, True)
|
|
111
112
|
|
|
112
113
|
@override
|
|
113
114
|
def configure(self) -> None:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: kaiko-eva
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.1
|
|
4
4
|
Summary: Evaluation Framework for oncology foundation models.
|
|
5
5
|
Keywords: machine-learning evaluation-framework oncology foundation-models
|
|
6
6
|
Author-Email: Ioannis Gatopoulos <ioannis@kaiko.ai>, Nicolas Känzig <nicolas@kaiko.ai>, Roman Moser <roman@kaiko.ai>
|
|
@@ -251,26 +251,21 @@ _Oncology FM Evaluation Framework by kaiko.ai_
|
|
|
251
251
|
[](https://github.com/kaiko-ai/eva#license)
|
|
252
252
|
|
|
253
253
|
<p align="center">
|
|
254
|
-
<a href="#installation">Installation</a> •
|
|
255
|
-
<a href="#how-to-use">How To Use</a> •
|
|
254
|
+
<a href="https://github.com/kaiko-ai/eva#installation">Installation</a> •
|
|
255
|
+
<a href="https://github.com/kaiko-ai/eva#how-to-use">How To Use</a> •
|
|
256
256
|
<a href="https://kaiko-ai.github.io/eva/">Documentation</a> •
|
|
257
257
|
<a href="https://kaiko-ai.github.io/eva/dev/datasets/">Datasets</a> •
|
|
258
|
-
<a href="#benchmarks">Benchmarks</a> <br>
|
|
259
|
-
<a href="#contributing">Contribute</a> •
|
|
260
|
-
<a href="#acknowledgements">Acknowledgements</a>
|
|
258
|
+
<a href="https://github.com/kaiko-ai/eva#benchmarks">Benchmarks</a> <br>
|
|
259
|
+
<a href="https://github.com/kaiko-ai/eva#contributing">Contribute</a> •
|
|
260
|
+
<a href="https://github.com/kaiko-ai/eva#acknowledgements">Acknowledgements</a>
|
|
261
261
|
</p>
|
|
262
262
|
|
|
263
263
|
</div>
|
|
264
264
|
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
_`eva`_ is an evaluation framework for oncology foundation models (FMs) by [kaiko.ai](https://kaiko.ai/). Check out the [documentation](https://kaiko-ai.github.io/eva/) for more information.
|
|
268
|
-
|
|
269
|
-
<div align="center">
|
|
270
|
-
|
|
271
|
-
<img src="https://github.com/kaiko-ai/eva/blob/main/docs/images/eva-process.gif?raw=true" width="800">
|
|
265
|
+
<br />
|
|
272
266
|
|
|
273
|
-
|
|
267
|
+
_`eva`_ is an evaluation framework for oncology foundation models (FMs) by [kaiko.ai](https://kaiko.ai/).
|
|
268
|
+
Check out the [documentation](https://kaiko-ai.github.io/eva/) for more information.
|
|
274
269
|
|
|
275
270
|
### Highlights:
|
|
276
271
|
- Easy and reliable benchmark of Oncology FMs
|
|
@@ -294,7 +289,7 @@ pip install 'kaiko-eva[all]'
|
|
|
294
289
|
|
|
295
290
|
To install the latest version of the `main` branch:
|
|
296
291
|
```sh
|
|
297
|
-
pip install "kaiko-eva[
|
|
292
|
+
pip install "kaiko-eva[all] @ git+https://github.com/kaiko-ai/eva.git"
|
|
298
293
|
```
|
|
299
294
|
|
|
300
295
|
You can verify that the installation was successful by executing:
|
|
@@ -309,13 +304,28 @@ _eva_ can be used directly from the terminal as a CLI tool as follows:
|
|
|
309
304
|
eva {fit,predict,predict_fit} --config url/or/path/to/the/config.yaml
|
|
310
305
|
```
|
|
311
306
|
|
|
312
|
-
|
|
307
|
+
When used as a CLI tool, `_eva_` supports configuration files (`.yaml`) as an argument to define its functionality.
|
|
308
|
+
Native supported configs can be found at the [configs](https://github.com/kaiko-ai/eva/tree/main/configs) directory
|
|
309
|
+
of the repo. Apart from cloning the repo, you can download the latest config folder as `.zip` from your browser from
|
|
310
|
+
[here](https://download-directory.github.io/?url=https://github.com/kaiko-ai/eva/tree/main/configs). Alternatively,
|
|
311
|
+
from a specific release the configs can be downloaded from the terminal as follows:
|
|
313
312
|
```sh
|
|
313
|
+
curl -LO https://github.com/kaiko-ai/eva/releases/download/0.0.1/configs.zip | unzip configs.zip
|
|
314
|
+
```
|
|
315
|
+
|
|
316
|
+
For example, to perform a downstream evaluation of DINO ViT-S/16 on the BACH dataset with
|
|
317
|
+
linear probing by first inferring the embeddings and performing 5 sequential fits, execute:
|
|
318
|
+
```sh
|
|
319
|
+
# from a locally stored config file
|
|
320
|
+
eva predict_fit --config ./configs/vision/dino_vit/offline/bach.yaml
|
|
321
|
+
|
|
322
|
+
# from a remote stored config file
|
|
314
323
|
eva predict_fit --config https://raw.githubusercontent.com/kaiko-ai/eva/main/configs/vision/dino_vit/offline/bach.yaml
|
|
315
324
|
```
|
|
316
325
|
|
|
317
326
|
> [!NOTE]
|
|
318
|
-
> All the datasets that support automatic download in the repo have by default the option to automatically download set to false.
|
|
327
|
+
> All the datasets that support automatic download in the repo have by default the option to automatically download set to false.
|
|
328
|
+
> For automatic download you have to manually set download=true.
|
|
319
329
|
|
|
320
330
|
|
|
321
331
|
To view all the possibles, execute:
|
|
@@ -323,7 +333,8 @@ To view all the possibles, execute:
|
|
|
323
333
|
eva --help
|
|
324
334
|
```
|
|
325
335
|
|
|
326
|
-
For more information, please refer to the [documentation](https://kaiko-ai.github.io/eva/dev/user-guide/tutorials/offline_vs_online/)
|
|
336
|
+
For more information, please refer to the [documentation](https://kaiko-ai.github.io/eva/dev/user-guide/tutorials/offline_vs_online/)
|
|
337
|
+
and [tutorials](https://kaiko-ai.github.io/eva/dev/user-guide/advanced/replicate_evaluations/).
|
|
327
338
|
|
|
328
339
|
## Benchmarks
|
|
329
340
|
|
|
@@ -339,8 +350,8 @@ In this section you will find model benchmarks which were generated with _eva_.
|
|
|
339
350
|
|--------------------------------------------------|-------|-------|-------|----------|-----------|
|
|
340
351
|
| ViT-S/16 _(random)_ <sup>[1]</sup> | 0.410 | 0.617 | 0.501 | 0.753 | 0.728 |
|
|
341
352
|
| ViT-S/16 _(ImageNet)_ <sup>[1]</sup> | 0.695 | 0.935 | 0.831 | 0.864 | 0.849 |
|
|
342
|
-
| ViT-B/8 _(ImageNet)_ <sup>[1]</sup> | 0.
|
|
343
|
-
| DINO<sub>(p=16)</sub> <sup>[2]</sup> | 0.
|
|
353
|
+
| ViT-B/8 _(ImageNet)_ <sup>[1]</sup> | 0.710 | 0.939 | 0.814 | 0.870 | 0.856 |
|
|
354
|
+
| DINO<sub>(p=16)</sub> <sup>[2]</sup> | 0.801 | 0.934 | 0.768 | 0.889 | 0.895 |
|
|
344
355
|
| Phikon <sup>[3]</sup> | 0.725 | 0.935 | 0.777 | 0.912 | 0.915 |
|
|
345
356
|
| ViT-S/16 _(kaiko.ai)_ <sup>[4]</sup> | 0.797 | 0.943 | 0.828 | 0.903 | 0.893 |
|
|
346
357
|
| ViT-S/8 _(kaiko.ai)_ <sup>[4]</sup> | 0.834 | 0.946 | 0.832 | 0.897 | 0.887 |
|
|
@@ -349,7 +360,7 @@ In this section you will find model benchmarks which were generated with _eva_.
|
|
|
349
360
|
| ViT-L/14 _(kaiko.ai)_ <sup>[4]</sup> | 0.870 | 0.930 | 0.809 | 0.908 | 0.898 |
|
|
350
361
|
|
|
351
362
|
_Table I: Linear probing evaluation of FMs on patch-level downstream datasets.<br> We report averaged balanced accuracy
|
|
352
|
-
over 5
|
|
363
|
+
over 5 runs, with an average standard deviation of ±0.003._
|
|
353
364
|
|
|
354
365
|
</div>
|
|
355
366
|
|
|
@@ -359,11 +370,12 @@ _References_:
|
|
|
359
370
|
1. _"Emerging properties in self-supervised vision transformers”_
|
|
360
371
|
2. _"Benchmarking self-supervised learning on diverse pathology datasets”_
|
|
361
372
|
3. _"Scaling self-supervised learning for histopathology with masked image modeling”_
|
|
362
|
-
4. _"Towards
|
|
373
|
+
4. _"Towards Training Large-Scale Pathology Foundation Models: from TCGA to Hospital Scale”_
|
|
363
374
|
|
|
364
375
|
## Contributing
|
|
365
376
|
|
|
366
|
-
_eva_ is an open source project and welcomes contributions of all kinds. Please checkout the [developer](./docs/DEVELOPER_GUIDE.md)
|
|
377
|
+
_eva_ is an open source project and welcomes contributions of all kinds. Please checkout the [developer](./docs/DEVELOPER_GUIDE.md)
|
|
378
|
+
and [contributing guide](./docs/CONTRIBUTING.md) for help on how to do so.
|
|
367
379
|
|
|
368
380
|
All contributors must follow the [code of conduct](./docs/CODE_OF_CONDUCT.md).
|
|
369
381
|
|
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
eva/.DS_Store,sha256=nHFfks7iwDvTdxEQbx3nJ4A8L95xoUm4jl5emHwGusQ,6148
|
|
2
1
|
eva/__init__.py,sha256=bYBwklT7diG8NBIBDbpwjN4RUsvGv0ShWBXPxWgz404,518
|
|
3
2
|
eva/__main__.py,sha256=kM5tQ0egTuBWixNLLx9QU-PpS2Bbs3zE3nYE6b2vWa0,282
|
|
4
3
|
eva/__version__.py,sha256=YFR4oOlvPg0sS4Ni7GJ_vU42VTs5WiWp6odK7yH4TBY,611
|
|
@@ -15,7 +14,7 @@ eva/core/data/__init__.py,sha256=yG3BeOWhp1EjVYMFqx8M_TBWFDyfIwwksQGQmMdSPaI,340
|
|
|
15
14
|
eva/core/data/dataloaders/__init__.py,sha256=fbNClVZ8J3QoGi4qiPq635ig1j9GdI7six3RhfwDbjY,110
|
|
16
15
|
eva/core/data/dataloaders/dataloader.py,sha256=-mWFFLtem1Ijbi8XGveFSv5XzUU7SyKwiT5Ahikzghw,2368
|
|
17
16
|
eva/core/data/datamodules/__init__.py,sha256=qZchYbgxo9lxYnGoqdk0C6MfS2IbF0WItO0kCdP9Mqc,229
|
|
18
|
-
eva/core/data/datamodules/call.py,sha256=
|
|
17
|
+
eva/core/data/datamodules/call.py,sha256=jjj9w3UXYuQB-qyCcw1EZpRJW10OC1I3dvgvsuQWLck,940
|
|
19
18
|
eva/core/data/datamodules/datamodule.py,sha256=dclC2YJAXUGEUpV9ZRWQS43-ksFIPgVeFudsyrj9kdc,3878
|
|
20
19
|
eva/core/data/datamodules/schemas.py,sha256=EXnUPNd9Pj3RjnxJIzAcC2qp6TtBSvPDx28fV_ovWAA,1869
|
|
21
20
|
eva/core/data/datasets/__init__.py,sha256=pMU-w6aQoRFgSwPB9GLXNilnsbwd6HqLlgw49e4rlj0,281
|
|
@@ -63,28 +62,28 @@ eva/core/models/networks/wrappers/from_function.py,sha256=fuh-UEe3eppTwuSA2gEgCm
|
|
|
63
62
|
eva/core/models/networks/wrappers/huggingface.py,sha256=81j0pcEx3DW6gR-81Fz6tZkJPBZYiQ-g45igFvkqX1o,1289
|
|
64
63
|
eva/core/models/networks/wrappers/onnx.py,sha256=LZEGOpg1VYrB3wXMAA5IMfiKNTkOXQ50agHjTvYnnsU,1718
|
|
65
64
|
eva/core/trainers/__init__.py,sha256=jhsKJF7HAae7EOiG3gKIAHH_h3dZlTE2JRcCHJmOzJc,208
|
|
66
|
-
eva/core/trainers/_logging.py,sha256=
|
|
65
|
+
eva/core/trainers/_logging.py,sha256=gi4FqPy2GuVmh0WZY6mYwF7zMPvnoFA050B0XdCP6PU,2571
|
|
67
66
|
eva/core/trainers/_recorder.py,sha256=_Vfp7Njh_9qP-SWbBGYp8solnfFgIUi2Z9pGLXt52WY,5652
|
|
68
67
|
eva/core/trainers/_utils.py,sha256=M3h8lVhUmkeSiEXpX9hRdMvThGFCnTP15gv-hd1CZkc,321
|
|
69
68
|
eva/core/trainers/functional.py,sha256=pIeGXoO63Wh6n1mOYlBo5ACCteGuNV9pZhqxfN4RLSs,3775
|
|
70
|
-
eva/core/trainers/trainer.py,sha256=
|
|
69
|
+
eva/core/trainers/trainer.py,sha256=j4rYWiG9COxBbZ6WIlpRPBE153XqlYK7eAWlRsZgljU,3261
|
|
71
70
|
eva/core/utils/__init__.py,sha256=F1C69M9y7W8qh1J2k-X4frRHa7r1mPXewscC94fFYtk,58
|
|
72
71
|
eva/core/utils/io/__init__.py,sha256=SAME0kuSvDE1DKFJwMBmnCkpDAy4ujXuRTSJsHNhwUI,112
|
|
73
72
|
eva/core/utils/io/dataframe.py,sha256=CIHFowljH17waDkJ9YJVEVXAIcxMwoLjUgoBttiNk8w,509
|
|
74
73
|
eva/core/utils/multiprocessing.py,sha256=PxUxMyvI62lghyWF46O5RNL-J7DUR2IrXSwdkbhC0ic,1383
|
|
75
74
|
eva/core/utils/workers.py,sha256=hfx63M82qNg0Dwhre2tl53MnhtRsV7APaDONM9nhVB8,634
|
|
76
|
-
eva/vision/__init__.py,sha256=
|
|
75
|
+
eva/vision/__init__.py,sha256=Z9AuPmTO-i73pUtq3IkZzwRlY1E5xCE8IZiyl5S71TM,438
|
|
77
76
|
eva/vision/data/__init__.py,sha256=aoKPmX8P2Q2k2W3nlq8vFU41FV6Sze-0SDuWtU-ETh4,111
|
|
78
77
|
eva/vision/data/datasets/__init__.py,sha256=aV4qPqtlt0PnaGoxUW_xEwAr8b8ddkl_YE4_fAdavds,497
|
|
79
78
|
eva/vision/data/datasets/_utils.py,sha256=5GAZEHn-VezxTXaW1jVZO5zvdVl1Vz8_5gV2qkoMu4s,1414
|
|
80
|
-
eva/vision/data/datasets/_validators.py,sha256=
|
|
79
|
+
eva/vision/data/datasets/_validators.py,sha256=uPbbUNnftb8mYzsKVrF-ZX_xinB2zQkuQLFYMprVjhY,2099
|
|
81
80
|
eva/vision/data/datasets/classification/__init__.py,sha256=I9vTkETzGnTNNvyRB96ut1YHx9ARmZVO0-0l3ZLWEAs,520
|
|
82
|
-
eva/vision/data/datasets/classification/bach.py,sha256=
|
|
81
|
+
eva/vision/data/datasets/classification/bach.py,sha256=_xuA4evV9jCI76bUKbzom4ECLKShCsd95S8PtvhRAH4,5637
|
|
83
82
|
eva/vision/data/datasets/classification/base.py,sha256=zBqn8rQP59j1DEChf3rDXgyMtB_sbug8kPvgFCqZyl4,3060
|
|
84
|
-
eva/vision/data/datasets/classification/crc.py,sha256=
|
|
85
|
-
eva/vision/data/datasets/classification/mhist.py,sha256=
|
|
86
|
-
eva/vision/data/datasets/classification/patch_camelyon.py,sha256=
|
|
87
|
-
eva/vision/data/datasets/classification/total_segmentator.py,sha256=
|
|
83
|
+
eva/vision/data/datasets/classification/crc.py,sha256=7RR0PJWnhLMa3AUB_F2XMYawF5gnCNbGMv25ejOEeNA,5875
|
|
84
|
+
eva/vision/data/datasets/classification/mhist.py,sha256=yoDHZ2vqa26YKVvJ9t6aidOVGazGIwUD6F3o0zNsxjM,3257
|
|
85
|
+
eva/vision/data/datasets/classification/patch_camelyon.py,sha256=CH9sveoMppNWPQHm4qPTONRSGqX3O8P3OYwMB6mO678,7253
|
|
86
|
+
eva/vision/data/datasets/classification/total_segmentator.py,sha256=OkbqS41ykdUX0wGf6jSja5WzeeRmevUnH5alfcEQhwg,8069
|
|
88
87
|
eva/vision/data/datasets/segmentation/__init__.py,sha256=byQCBHicM6mQkljHPllUqRvoFaJxHtPMKcyjPmK6dUM,249
|
|
89
88
|
eva/vision/data/datasets/segmentation/base.py,sha256=JogXJ3KiOaUybAcyvoqjR4yjlBfVTt2Rt8OOAz32Jrc,3630
|
|
90
89
|
eva/vision/data/datasets/segmentation/total_segmentator.py,sha256=NUh-NlrsTcUsbe3qLd_d481mok970bNF7zIdpAS7eks,8075
|
|
@@ -104,8 +103,8 @@ eva/vision/utils/io/_utils.py,sha256=JzOt7Frj6ScF_aNjFtfHBn4ROnl6NhUZucmQhLc4Cww
|
|
|
104
103
|
eva/vision/utils/io/image.py,sha256=2jzeVFMvIRhuTkIrQeLyu0y8GttLp6rWRjO9I2uw-I8,1489
|
|
105
104
|
eva/vision/utils/io/nifti.py,sha256=ph9w8dNNSsJG2wI3NJNPTLyWdz2S0i9jD068nHXVVJs,1510
|
|
106
105
|
eva/vision/utils/io/text.py,sha256=uECChKjeKi4KQ-NqdO7ywAFS_TOEp2DQ5QQcuG8cb-4,472
|
|
107
|
-
kaiko_eva-0.0.
|
|
108
|
-
kaiko_eva-0.0.
|
|
109
|
-
kaiko_eva-0.0.
|
|
110
|
-
kaiko_eva-0.0.
|
|
111
|
-
kaiko_eva-0.0.
|
|
106
|
+
kaiko_eva-0.0.1.dist-info/METADATA,sha256=ftjXJlWbHwUT3YNSBxtaMClK_iUHh95oHl0POcZVNCA,22362
|
|
107
|
+
kaiko_eva-0.0.1.dist-info/WHEEL,sha256=N2J68yzZqJh3mI_Wg92rwhw0rtJDFpZj9bwQIMJgaVg,90
|
|
108
|
+
kaiko_eva-0.0.1.dist-info/entry_points.txt,sha256=oqtS2Yt5EBY4saLyCBC3Zev3huCORKTKWyPovX7QR8g,73
|
|
109
|
+
kaiko_eva-0.0.1.dist-info/licenses/LICENSE,sha256=e6AEzr7j_R-PYr2qLO-JwLn8y70jbVD3U2mxbRmwcI4,11338
|
|
110
|
+
kaiko_eva-0.0.1.dist-info/RECORD,,
|
eva/.DS_Store
DELETED
|
Binary file
|
|
File without changes
|
|
File without changes
|
|
File without changes
|