kaiko-eva 0.0.0.dev6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of kaiko-eva might be problematic. Click here for more details.

Files changed (111) hide show
  1. eva/.DS_Store +0 -0
  2. eva/__init__.py +33 -0
  3. eva/__main__.py +18 -0
  4. eva/__version__.py +25 -0
  5. eva/core/__init__.py +19 -0
  6. eva/core/callbacks/__init__.py +5 -0
  7. eva/core/callbacks/writers/__init__.py +5 -0
  8. eva/core/callbacks/writers/embeddings.py +169 -0
  9. eva/core/callbacks/writers/typings.py +23 -0
  10. eva/core/cli/__init__.py +5 -0
  11. eva/core/cli/cli.py +19 -0
  12. eva/core/cli/logo.py +38 -0
  13. eva/core/cli/setup.py +89 -0
  14. eva/core/data/__init__.py +14 -0
  15. eva/core/data/dataloaders/__init__.py +5 -0
  16. eva/core/data/dataloaders/dataloader.py +80 -0
  17. eva/core/data/datamodules/__init__.py +6 -0
  18. eva/core/data/datamodules/call.py +33 -0
  19. eva/core/data/datamodules/datamodule.py +108 -0
  20. eva/core/data/datamodules/schemas.py +62 -0
  21. eva/core/data/datasets/__init__.py +7 -0
  22. eva/core/data/datasets/base.py +53 -0
  23. eva/core/data/datasets/classification/__init__.py +5 -0
  24. eva/core/data/datasets/classification/embeddings.py +154 -0
  25. eva/core/data/datasets/dataset.py +6 -0
  26. eva/core/data/samplers/__init__.py +5 -0
  27. eva/core/data/samplers/sampler.py +6 -0
  28. eva/core/data/transforms/__init__.py +5 -0
  29. eva/core/data/transforms/dtype/__init__.py +5 -0
  30. eva/core/data/transforms/dtype/array.py +28 -0
  31. eva/core/interface/__init__.py +5 -0
  32. eva/core/interface/interface.py +79 -0
  33. eva/core/metrics/__init__.py +17 -0
  34. eva/core/metrics/average_loss.py +47 -0
  35. eva/core/metrics/binary_balanced_accuracy.py +22 -0
  36. eva/core/metrics/defaults/__init__.py +6 -0
  37. eva/core/metrics/defaults/classification/__init__.py +6 -0
  38. eva/core/metrics/defaults/classification/binary.py +76 -0
  39. eva/core/metrics/defaults/classification/multiclass.py +80 -0
  40. eva/core/metrics/structs/__init__.py +9 -0
  41. eva/core/metrics/structs/collection.py +6 -0
  42. eva/core/metrics/structs/metric.py +6 -0
  43. eva/core/metrics/structs/module.py +115 -0
  44. eva/core/metrics/structs/schemas.py +47 -0
  45. eva/core/metrics/structs/typings.py +15 -0
  46. eva/core/models/__init__.py +13 -0
  47. eva/core/models/modules/__init__.py +7 -0
  48. eva/core/models/modules/head.py +113 -0
  49. eva/core/models/modules/inference.py +37 -0
  50. eva/core/models/modules/module.py +190 -0
  51. eva/core/models/modules/typings.py +23 -0
  52. eva/core/models/modules/utils/__init__.py +6 -0
  53. eva/core/models/modules/utils/batch_postprocess.py +57 -0
  54. eva/core/models/modules/utils/grad.py +23 -0
  55. eva/core/models/networks/__init__.py +6 -0
  56. eva/core/models/networks/_utils.py +25 -0
  57. eva/core/models/networks/mlp.py +69 -0
  58. eva/core/models/networks/transforms/__init__.py +5 -0
  59. eva/core/models/networks/transforms/extract_cls_features.py +25 -0
  60. eva/core/models/networks/wrappers/__init__.py +8 -0
  61. eva/core/models/networks/wrappers/base.py +47 -0
  62. eva/core/models/networks/wrappers/from_function.py +58 -0
  63. eva/core/models/networks/wrappers/huggingface.py +37 -0
  64. eva/core/models/networks/wrappers/onnx.py +47 -0
  65. eva/core/trainers/__init__.py +6 -0
  66. eva/core/trainers/_logging.py +81 -0
  67. eva/core/trainers/_recorder.py +149 -0
  68. eva/core/trainers/_utils.py +12 -0
  69. eva/core/trainers/functional.py +113 -0
  70. eva/core/trainers/trainer.py +97 -0
  71. eva/core/utils/__init__.py +1 -0
  72. eva/core/utils/io/__init__.py +5 -0
  73. eva/core/utils/io/dataframe.py +21 -0
  74. eva/core/utils/multiprocessing.py +44 -0
  75. eva/core/utils/workers.py +21 -0
  76. eva/vision/__init__.py +14 -0
  77. eva/vision/data/__init__.py +5 -0
  78. eva/vision/data/datasets/__init__.py +22 -0
  79. eva/vision/data/datasets/_utils.py +50 -0
  80. eva/vision/data/datasets/_validators.py +44 -0
  81. eva/vision/data/datasets/classification/__init__.py +15 -0
  82. eva/vision/data/datasets/classification/bach.py +174 -0
  83. eva/vision/data/datasets/classification/base.py +103 -0
  84. eva/vision/data/datasets/classification/crc.py +176 -0
  85. eva/vision/data/datasets/classification/mhist.py +106 -0
  86. eva/vision/data/datasets/classification/patch_camelyon.py +203 -0
  87. eva/vision/data/datasets/classification/total_segmentator.py +212 -0
  88. eva/vision/data/datasets/segmentation/__init__.py +6 -0
  89. eva/vision/data/datasets/segmentation/base.py +112 -0
  90. eva/vision/data/datasets/segmentation/total_segmentator.py +212 -0
  91. eva/vision/data/datasets/structs.py +17 -0
  92. eva/vision/data/datasets/vision.py +43 -0
  93. eva/vision/data/transforms/__init__.py +5 -0
  94. eva/vision/data/transforms/common/__init__.py +5 -0
  95. eva/vision/data/transforms/common/resize_and_crop.py +44 -0
  96. eva/vision/models/__init__.py +5 -0
  97. eva/vision/models/networks/__init__.py +6 -0
  98. eva/vision/models/networks/abmil.py +176 -0
  99. eva/vision/models/networks/postprocesses/__init__.py +5 -0
  100. eva/vision/models/networks/postprocesses/cls.py +25 -0
  101. eva/vision/utils/__init__.py +5 -0
  102. eva/vision/utils/io/__init__.py +12 -0
  103. eva/vision/utils/io/_utils.py +29 -0
  104. eva/vision/utils/io/image.py +54 -0
  105. eva/vision/utils/io/nifti.py +50 -0
  106. eva/vision/utils/io/text.py +18 -0
  107. kaiko_eva-0.0.0.dev6.dist-info/METADATA +393 -0
  108. kaiko_eva-0.0.0.dev6.dist-info/RECORD +111 -0
  109. kaiko_eva-0.0.0.dev6.dist-info/WHEEL +4 -0
  110. kaiko_eva-0.0.0.dev6.dist-info/entry_points.txt +4 -0
  111. kaiko_eva-0.0.0.dev6.dist-info/licenses/LICENSE +201 -0
@@ -0,0 +1,50 @@
1
+ """NIfTI I/O related functions."""
2
+
3
+ from typing import Any
4
+
5
+ import nibabel as nib
6
+ import numpy.typing as npt
7
+
8
+ from eva.vision.utils.io import _utils
9
+
10
+
11
+ def read_nifti_slice(path: str, slice_index: int) -> npt.NDArray[Any]:
12
+ """Reads and loads a NIfTI image from a file path as `uint8`.
13
+
14
+ Args:
15
+ path: The path to the NIfTI file.
16
+ slice_index: The image slice index to return. If `None`, it will
17
+ return the full 3D image.
18
+
19
+ Returns:
20
+ The image as a numpy array.
21
+
22
+ Raises:
23
+ FileExistsError: If the path does not exist or it is unreachable.
24
+ ValueError: If the input channel is invalid for the image.
25
+ """
26
+ _utils.check_file(path)
27
+ image_data = nib.load(path) # type: ignore
28
+ dtype = image_data.get_data_dtype() # type: ignore
29
+ image_slice = image_data.slicer[:, :, slice_index : slice_index + 1] # type: ignore
30
+ image_array = image_slice.get_fdata()
31
+ return image_array.astype(dtype)
32
+
33
+
34
+ def fetch_total_nifti_slices(path: str) -> int:
35
+ """Fetches the total slides of a NIfTI image file.
36
+
37
+ Args:
38
+ path: The path to the NIfTI file.
39
+
40
+ Returns:
41
+ The number of the total available slides.
42
+
43
+ Raises:
44
+ FileExistsError: If the path does not exist or it is unreachable.
45
+ ValueError: If the input channel is invalid for the image.
46
+ """
47
+ _utils.check_file(path)
48
+ image = nib.load(path) # type: ignore
49
+ image_shape = image.header.get_data_shape() # type: ignore
50
+ return image_shape[-1]
@@ -0,0 +1,18 @@
1
+ """Text I/O related functions."""
2
+
3
+ import csv
4
+ from typing import Dict, List
5
+
6
+
7
+ def read_csv(path: str) -> List[Dict[str, str]]:
8
+ """Reads a CSV file and returns its contents as a list of dictionaries.
9
+
10
+ Args:
11
+ path: The path to the CSV file.
12
+
13
+ Returns:
14
+ A list of dictionaries representing the data in the CSV file.
15
+ """
16
+ with open(path, newline="") as file:
17
+ data = csv.DictReader(file, skipinitialspace=True)
18
+ return list(data)
@@ -0,0 +1,393 @@
1
+ Metadata-Version: 2.1
2
+ Name: kaiko-eva
3
+ Version: 0.0.0.dev6
4
+ Summary: Evaluation Framework for oncology foundation models.
5
+ Keywords: machine-learning evaluation-framework oncology foundation-models
6
+ Author-Email: Ioannis Gatopoulos <ioannis@kaiko.ai>, Nicolas Känzig <nicolas@kaiko.ai>, Roman Moser <roman@kaiko.ai>
7
+ Maintainer-Email: Ioannis Gatopoulos <ioannis@kaiko.ai>, Nicolas Känzig <nicolas@kaiko.ai>, Roman Moser <roman@kaiko.ai>
8
+ License: Apache License
9
+ Version 2.0, January 2004
10
+ http://www.apache.org/licenses/
11
+
12
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
13
+
14
+ 1. Definitions.
15
+
16
+ "License" shall mean the terms and conditions for use, reproduction,
17
+ and distribution as defined by Sections 1 through 9 of this document.
18
+
19
+ "Licensor" shall mean the copyright owner or entity authorized by
20
+ the copyright owner that is granting the License.
21
+
22
+ "Legal Entity" shall mean the union of the acting entity and all
23
+ other entities that control, are controlled by, or are under common
24
+ control with that entity. For the purposes of this definition,
25
+ "control" means (i) the power, direct or indirect, to cause the
26
+ direction or management of such entity, whether by contract or
27
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
28
+ outstanding shares, or (iii) beneficial ownership of such entity.
29
+
30
+ "You" (or "Your") shall mean an individual or Legal Entity
31
+ exercising permissions granted by this License.
32
+
33
+ "Source" form shall mean the preferred form for making modifications,
34
+ including but not limited to software source code, documentation
35
+ source, and configuration files.
36
+
37
+ "Object" form shall mean any form resulting from mechanical
38
+ transformation or translation of a Source form, including but
39
+ not limited to compiled object code, generated documentation,
40
+ and conversions to other media types.
41
+
42
+ "Work" shall mean the work of authorship, whether in Source or
43
+ Object form, made available under the License, as indicated by a
44
+ copyright notice that is included in or attached to the work
45
+ (an example is provided in the Appendix below).
46
+
47
+ "Derivative Works" shall mean any work, whether in Source or Object
48
+ form, that is based on (or derived from) the Work and for which the
49
+ editorial revisions, annotations, elaborations, or other modifications
50
+ represent, as a whole, an original work of authorship. For the purposes
51
+ of this License, Derivative Works shall not include works that remain
52
+ separable from, or merely link (or bind by name) to the interfaces of,
53
+ the Work and Derivative Works thereof.
54
+
55
+ "Contribution" shall mean any work of authorship, including
56
+ the original version of the Work and any modifications or additions
57
+ to that Work or Derivative Works thereof, that is intentionally
58
+ submitted to Licensor for inclusion in the Work by the copyright owner
59
+ or by an individual or Legal Entity authorized to submit on behalf of
60
+ the copyright owner. For the purposes of this definition, "submitted"
61
+ means any form of electronic, verbal, or written communication sent
62
+ to the Licensor or its representatives, including but not limited to
63
+ communication on electronic mailing lists, source code control systems,
64
+ and issue tracking systems that are managed by, or on behalf of, the
65
+ Licensor for the purpose of discussing and improving the Work, but
66
+ excluding communication that is conspicuously marked or otherwise
67
+ designated in writing by the copyright owner as "Not a Contribution."
68
+
69
+ "Contributor" shall mean Licensor and any individual or Legal Entity
70
+ on behalf of whom a Contribution has been received by Licensor and
71
+ subsequently incorporated within the Work.
72
+
73
+ 2. Grant of Copyright License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ copyright license to reproduce, prepare Derivative Works of,
77
+ publicly display, publicly perform, sublicense, and distribute the
78
+ Work and such Derivative Works in Source or Object form.
79
+
80
+ 3. Grant of Patent License. Subject to the terms and conditions of
81
+ this License, each Contributor hereby grants to You a perpetual,
82
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
83
+ (except as stated in this section) patent license to make, have made,
84
+ use, offer to sell, sell, import, and otherwise transfer the Work,
85
+ where such license applies only to those patent claims licensable
86
+ by such Contributor that are necessarily infringed by their
87
+ Contribution(s) alone or by combination of their Contribution(s)
88
+ with the Work to which such Contribution(s) was submitted. If You
89
+ institute patent litigation against any entity (including a
90
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
91
+ or a Contribution incorporated within the Work constitutes direct
92
+ or contributory patent infringement, then any patent licenses
93
+ granted to You under this License for that Work shall terminate
94
+ as of the date such litigation is filed.
95
+
96
+ 4. Redistribution. You may reproduce and distribute copies of the
97
+ Work or Derivative Works thereof in any medium, with or without
98
+ modifications, and in Source or Object form, provided that You
99
+ meet the following conditions:
100
+
101
+ (a) You must give any other recipients of the Work or
102
+ Derivative Works a copy of this License; and
103
+
104
+ (b) You must cause any modified files to carry prominent notices
105
+ stating that You changed the files; and
106
+
107
+ (c) You must retain, in the Source form of any Derivative Works
108
+ that You distribute, all copyright, patent, trademark, and
109
+ attribution notices from the Source form of the Work,
110
+ excluding those notices that do not pertain to any part of
111
+ the Derivative Works; and
112
+
113
+ (d) If the Work includes a "NOTICE" text file as part of its
114
+ distribution, then any Derivative Works that You distribute must
115
+ include a readable copy of the attribution notices contained
116
+ within such NOTICE file, excluding those notices that do not
117
+ pertain to any part of the Derivative Works, in at least one
118
+ of the following places: within a NOTICE text file distributed
119
+ as part of the Derivative Works; within the Source form or
120
+ documentation, if provided along with the Derivative Works; or,
121
+ within a display generated by the Derivative Works, if and
122
+ wherever such third-party notices normally appear. The contents
123
+ of the NOTICE file are for informational purposes only and
124
+ do not modify the License. You may add Your own attribution
125
+ notices within Derivative Works that You distribute, alongside
126
+ or as an addendum to the NOTICE text from the Work, provided
127
+ that such additional attribution notices cannot be construed
128
+ as modifying the License.
129
+
130
+ You may add Your own copyright statement to Your modifications and
131
+ may provide additional or different license terms and conditions
132
+ for use, reproduction, or distribution of Your modifications, or
133
+ for any such Derivative Works as a whole, provided Your use,
134
+ reproduction, and distribution of the Work otherwise complies with
135
+ the conditions stated in this License.
136
+
137
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
138
+ any Contribution intentionally submitted for inclusion in the Work
139
+ by You to the Licensor shall be under the terms and conditions of
140
+ this License, without any additional terms or conditions.
141
+ Notwithstanding the above, nothing herein shall supersede or modify
142
+ the terms of any separate license agreement you may have executed
143
+ with Licensor regarding such Contributions.
144
+
145
+ 6. Trademarks. This License does not grant permission to use the trade
146
+ names, trademarks, service marks, or product names of the Licensor,
147
+ except as required for reasonable and customary use in describing the
148
+ origin of the Work and reproducing the content of the NOTICE file.
149
+
150
+ 7. Disclaimer of Warranty. Unless required by applicable law or
151
+ agreed to in writing, Licensor provides the Work (and each
152
+ Contributor provides its Contributions) on an "AS IS" BASIS,
153
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
154
+ implied, including, without limitation, any warranties or conditions
155
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
156
+ PARTICULAR PURPOSE. You are solely responsible for determining the
157
+ appropriateness of using or redistributing the Work and assume any
158
+ risks associated with Your exercise of permissions under this License.
159
+
160
+ 8. Limitation of Liability. In no event and under no legal theory,
161
+ whether in tort (including negligence), contract, or otherwise,
162
+ unless required by applicable law (such as deliberate and grossly
163
+ negligent acts) or agreed to in writing, shall any Contributor be
164
+ liable to You for damages, including any direct, indirect, special,
165
+ incidental, or consequential damages of any character arising as a
166
+ result of this License or out of the use or inability to use the
167
+ Work (including but not limited to damages for loss of goodwill,
168
+ work stoppage, computer failure or malfunction, or any and all
169
+ other commercial damages or losses), even if such Contributor
170
+ has been advised of the possibility of such damages.
171
+
172
+ 9. Accepting Warranty or Additional Liability. While redistributing
173
+ the Work or Derivative Works thereof, You may choose to offer,
174
+ and charge a fee for, acceptance of support, warranty, indemnity,
175
+ or other liability obligations and/or rights consistent with this
176
+ License. However, in accepting such obligations, You may act only
177
+ on Your own behalf and on Your sole responsibility, not on behalf
178
+ of any other Contributor, and only if You agree to indemnify,
179
+ defend, and hold each Contributor harmless for any liability
180
+ incurred by, or claims asserted against, such Contributor by reason
181
+ of your accepting any such warranty or additional liability.
182
+
183
+ END OF TERMS AND CONDITIONS
184
+
185
+ APPENDIX: How to apply the Apache License to your work.
186
+
187
+ To apply the Apache License to your work, attach the following
188
+ boilerplate notice, with the fields enclosed by brackets "[]"
189
+ replaced with your own identifying information. (Don't include
190
+ the brackets!) The text should be enclosed in the appropriate
191
+ comment syntax for the file format. We also recommend that a
192
+ file or class name and description of purpose be included on the
193
+ same "printed page" as the copyright notice for easier
194
+ identification within third-party archives.
195
+
196
+ Copyright 2024 kaiko.ai
197
+
198
+ Licensed under the Apache License, Version 2.0 (the "License");
199
+ you may not use this file except in compliance with the License.
200
+ You may obtain a copy of the License at
201
+
202
+ http://www.apache.org/licenses/LICENSE-2.0
203
+
204
+ Unless required by applicable law or agreed to in writing, software
205
+ distributed under the License is distributed on an "AS IS" BASIS,
206
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
207
+ See the License for the specific language governing permissions and
208
+ limitations under the License.
209
+ Classifier: Topic :: Software Development :: Build Tools
210
+ Classifier: Programming Language :: Python :: 3
211
+ Classifier: Programming Language :: Python :: 3.10
212
+ Classifier: Programming Language :: Python :: 3.11
213
+ Classifier: Programming Language :: Python :: 3.12
214
+ Project-URL: Homepage, https://kaiko-ai.github.io/eva/dev/
215
+ Project-URL: Repository, https://github.com/kaiko-ai/eva
216
+ Project-URL: Documentation, https://kaiko-ai.github.io/eva/dev/
217
+ Requires-Python: >=3.10
218
+ Requires-Dist: lightning>=2.2.1
219
+ Requires-Dist: jsonargparse[omegaconf]>=4.27.4
220
+ Requires-Dist: tensorboard>=2.16.2
221
+ Requires-Dist: loguru>=0.7.2
222
+ Requires-Dist: pandas>=2.2.0
223
+ Requires-Dist: transformers>=4.38.2
224
+ Requires-Dist: onnxruntime>=1.17.1
225
+ Requires-Dist: onnx>=1.15.0
226
+ Requires-Dist: toolz>=0.12.1
227
+ Requires-Dist: h5py>=3.10.0; extra == "vision"
228
+ Requires-Dist: nibabel>=5.2.0; extra == "vision"
229
+ Requires-Dist: opencv-python-headless>=4.9.0.80; extra == "vision"
230
+ Requires-Dist: timm>=0.9.12; extra == "vision"
231
+ Requires-Dist: torchvision>=0.17.0; extra == "vision"
232
+ Requires-Dist: h5py>=3.10.0; extra == "all"
233
+ Requires-Dist: nibabel>=5.2.0; extra == "all"
234
+ Requires-Dist: opencv-python-headless>=4.9.0.80; extra == "all"
235
+ Requires-Dist: timm>=0.9.12; extra == "all"
236
+ Requires-Dist: torchvision>=0.17.0; extra == "all"
237
+ Provides-Extra: vision
238
+ Provides-Extra: all
239
+ Description-Content-Type: text/markdown
240
+
241
+ <div align="center">
242
+
243
+ <img src="./docs/images/eva-logo.png" width="400">
244
+
245
+ <br />
246
+
247
+ _Oncology FM Evaluation Framework by kaiko.ai_
248
+
249
+ [![PyPI](https://img.shields.io/pypi/v/kaiko-eva.svg?logo=python)](https://pypi.python.org/pypi/kaiko-eva)
250
+ [![CI](https://github.com/kaiko-ai/eva/workflows/CI/badge.svg)](https://github.com/kaiko-ai/eva/actions?query=workflow%3ACI)
251
+ [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg?labelColor=gray)](https://github.com/kaiko-ai/eva#license)
252
+
253
+ <p align="center">
254
+ <a href="#installation">Installation</a> •
255
+ <a href="#how-to-use">How To Use</a> •
256
+ <a href="https://kaiko-ai.github.io/eva/">Documentation</a> •
257
+ <a href="https://kaiko-ai.github.io/eva/dev/datasets/">Datasets</a> •
258
+ <a href="#benchmarks">Benchmarks</a> <br>
259
+ <a href="#contributing">Contribute</a> •
260
+ <a href="#acknowledgements">Acknowledgements</a>
261
+ </p>
262
+
263
+ </div>
264
+
265
+ ### Introduction
266
+
267
+ _`eva`_ is an evaluation framework for oncology foundation models (FMs) by [kaiko.ai](https://kaiko.ai/). Check out the [documentation](https://kaiko-ai.github.io/eva/) for more information.
268
+
269
+ <div align="center">
270
+
271
+ <img src="./docs/images/eva-process.gif" width="800">
272
+
273
+ </div>
274
+
275
+ ### Highlights:
276
+ - Easy and reliable benchmark of Oncology FMs
277
+ - Automatic embedding inference and evaluation of a downstream task
278
+ - Native support of popular medical [datasets](https://kaiko-ai.github.io/eva/dev/datasets/) and models
279
+ - Produce statistics over multiple evaluation fits and multiple metrics
280
+
281
+ ## Installation
282
+
283
+ Simple installation from PyPI:
284
+ ```sh
285
+ # to install the core version only
286
+ pip install kaiko-eva
287
+
288
+ # to install the expanded `vision` version
289
+ pip install 'kaiko-eva[vision]'
290
+
291
+ # to install everything
292
+ pip install 'kaiko-eva[all]'
293
+ ```
294
+
295
+ To install the latest version of the `main` branch:
296
+ ```sh
297
+ pip install "kaiko-eva[vision] @ git+https://github.com/kaiko-ai/eva.git"
298
+ ```
299
+
300
+ You can verify that the installation was successful by executing:
301
+ ```sh
302
+ eva --version
303
+ ```
304
+
305
+ ## How To Use
306
+
307
+ _eva_ can be used directly from the terminal as a CLI tool as follows:
308
+ ```sh
309
+ eva {fit,predict,predict_fit} --config url/or/path/to/the/config.yaml
310
+ ```
311
+
312
+ For example, to perform a downstream evaluation of DINO ViT-S/16 on the BACH dataset with linear probing by first inferring the embeddings and performing 5 sequential fits, execute:
313
+ ```sh
314
+ eva predict_fit --config https://raw.githubusercontent.com/kaiko-ai/eva/main/configs/vision/dino_vit/offline/bach.yaml
315
+ ```
316
+
317
+ > [!NOTE]
318
+ > All the datasets that support automatic download in the repo have by default the option to automatically download set to false. For automatic download you have to manually set download=true.
319
+
320
+
321
+ To view all the possibles, execute:
322
+ ```sh
323
+ eva --help
324
+ ```
325
+
326
+ For more information, please refer to the [documentation](https://kaiko-ai.github.io/eva/dev/user-guide/tutorials/offline_vs_online/) and [tutorials](https://kaiko-ai.github.io/eva/dev/user-guide/advanced/replicate_evaluations/).
327
+
328
+ ## Benchmarks
329
+
330
+ In this section you will find model benchmarks which were generated with _eva_.
331
+
332
+ ### Table I: WSI patch-level benchmark
333
+
334
+ <br />
335
+
336
+ <div align="center">
337
+
338
+ | Model | BACH | CRC | MHIST | PCam/val | PCam/test |
339
+ |--------------------------------------------------|-------|-------|-------|----------|-----------|
340
+ | ViT-S/16 _(random)_ <sup>[1]</sup> | 0.410 | 0.617 | 0.501 | 0.753 | 0.728 |
341
+ | ViT-S/16 _(ImageNet)_ <sup>[1]</sup> | 0.695 | 0.935 | 0.831 | 0.864 | 0.849 |
342
+ | ViT-B/8 _(ImageNet)_ <sup>[1]</sup> | 0.797 | 0.943 | 0.828 | 0.903 | 0.893 |
343
+ | DINO<sub>(p=16)</sub> <sup>[2]</sup> | 0.710 | 0.935 | 0.814 | 0.870 | 0.856 |
344
+ | Phikon <sup>[3]</sup> | 0.725 | 0.935 | 0.777 | 0.912 | 0.915 |
345
+ | ViT-S/16 _(kaiko.ai)_ <sup>[4]</sup> | 0.797 | 0.943 | 0.828 | 0.903 | 0.893 |
346
+ | ViT-S/8 _(kaiko.ai)_ <sup>[4]</sup> | 0.834 | 0.946 | 0.832 | 0.897 | 0.887 |
347
+ | ViT-B/16 _(kaiko.ai)_ <sup>[4]</sup> | 0.810 | 0.960 | 0.826 | 0.900 | 0.898 |
348
+ | ViT-B/8 _(kaiko.ai)_ <sup>[4]</sup> | 0.865 | 0.956 | 0.809 | 0.913 | 0.921 |
349
+ | ViT-L/14 _(kaiko.ai)_ <sup>[4]</sup> | 0.870 | 0.930 | 0.809 | 0.908 | 0.898 |
350
+
351
+ _Table I: Linear probing evaluation of FMs on patch-level downstream datasets.<br> We report averaged balanced accuracy
352
+ over 5 runs_, with an average standard deviation of ±0.003.
353
+
354
+ </div>
355
+
356
+ <br />
357
+
358
+ _References_:
359
+ 1. _"Emerging properties in self-supervised vision transformers”_
360
+ 2. _"Benchmarking self-supervised learning on diverse pathology datasets”_
361
+ 3. _"Scaling self-supervised learning for histopathology with masked image modeling”_
362
+ 4. _"Towards training Large-Scale Medical Foundation Models: from TCGA to hospital-scale pathology FMs”_
363
+
364
+ ## Contributing
365
+
366
+ _eva_ is an open source project and welcomes contributions of all kinds. Please checkout the [developer](./docs/DEVELOPER_GUIDE.md) and [contributing guide](./docs/CONTRIBUTING.md) for help on how to do so.
367
+
368
+ All contributors must follow the [code of conduct](./docs/CODE_OF_CONDUCT.md).
369
+
370
+
371
+ ## Acknowledgements
372
+
373
+ Our codebase is built using multiple opensource contributions
374
+
375
+ <div align="center">
376
+
377
+ [![python](https://img.shields.io/badge/-Python-blue?logo=python&logoColor=white)](https://github.com/pre-commit/pre-commit)
378
+ [![pytorch](https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/get-started/locally/)
379
+ [![lightning](https://img.shields.io/badge/-⚡️_Lightning-792ee5?logo=pytorchlightning&logoColor=white)](https://pytorchlightning.ai/)<br>
380
+ [![black](https://img.shields.io/badge/Code%20Style-Black-black.svg?labelColor=gray)](https://black.readthedocs.io/en/stable/)
381
+ [![isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
382
+ [![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
383
+ [![Checked with pyright](https://microsoft.github.io/pyright/img/pyright_badge.svg)](https://microsoft.github.io/pyright/)<br>
384
+ [![pdm-managed](https://img.shields.io/badge/pdm-managed-blueviolet)](https://pdm-project.org)
385
+ [![Nox](https://img.shields.io/badge/%F0%9F%A6%8A-Nox-D85E00.svg)](https://github.com/wntrblm/nox)
386
+ [![Built with Material for MkDocs](https://img.shields.io/badge/Material_for_MkDocs-526CFE?logo=MaterialForMkDocs&logoColor=white)](https://squidfunk.github.io/mkdocs-material/)
387
+
388
+ </div>
389
+
390
+ ---
391
+ <div align="center">
392
+ <img src="./docs/images/kaiko-logo.png" width="200">
393
+ </div>
@@ -0,0 +1,111 @@
1
+ eva/.DS_Store,sha256=nHFfks7iwDvTdxEQbx3nJ4A8L95xoUm4jl5emHwGusQ,6148
2
+ eva/__init__.py,sha256=bYBwklT7diG8NBIBDbpwjN4RUsvGv0ShWBXPxWgz404,518
3
+ eva/__main__.py,sha256=kM5tQ0egTuBWixNLLx9QU-PpS2Bbs3zE3nYE6b2vWa0,282
4
+ eva/__version__.py,sha256=YFR4oOlvPg0sS4Ni7GJ_vU42VTs5WiWp6odK7yH4TBY,611
5
+ eva/core/__init__.py,sha256=AYlMZcH76B7I1lOa-E67u2o9DxsCwI4JMLCYXLk9oDQ,451
6
+ eva/core/callbacks/__init__.py,sha256=tglEHfVB0NSaXenNLQAlyb2ufXiamxfR0o15W9a9t0k,110
7
+ eva/core/callbacks/writers/__init__.py,sha256=GG8UXkbgNmpN1u_YIw-QysBGTSFm6C-P2XRtfnvVBrY,121
8
+ eva/core/callbacks/writers/embeddings.py,sha256=q8Gd2_aDhhD7-QT5xAJbm8ikNjmHq_2DJosJ6WS5BOo,6752
9
+ eva/core/callbacks/writers/typings.py,sha256=5AVIRAftqPTlLQ8s4ArEcMgLCyPnCZ9FFNk2yFppA1g,616
10
+ eva/core/cli/__init__.py,sha256=1lGiomn4JINI0DKy41_D4cEyyH-hN6cfTZfMPxLxTCA,68
11
+ eva/core/cli/cli.py,sha256=AZ4B4OP3D2af9H2RYBd5nxoy5I9DlaClZaadSWpPEPI,422
12
+ eva/core/cli/logo.py,sha256=x6-vGWI0s9gza-xxQrBDi2wneb2wFU_mQGHgpAiq2MQ,786
13
+ eva/core/cli/setup.py,sha256=kR-7l4X5Hu8kSLoQZGYGIeLXtn9S_EU52dauDy6fm0w,2663
14
+ eva/core/data/__init__.py,sha256=yG3BeOWhp1EjVYMFqx8M_TBWFDyfIwwksQGQmMdSPaI,340
15
+ eva/core/data/dataloaders/__init__.py,sha256=fbNClVZ8J3QoGi4qiPq635ig1j9GdI7six3RhfwDbjY,110
16
+ eva/core/data/dataloaders/dataloader.py,sha256=-mWFFLtem1Ijbi8XGveFSv5XzUU7SyKwiT5Ahikzghw,2368
17
+ eva/core/data/datamodules/__init__.py,sha256=qZchYbgxo9lxYnGoqdk0C6MfS2IbF0WItO0kCdP9Mqc,229
18
+ eva/core/data/datamodules/call.py,sha256=BYihrDdpAhMdRLhr1tA4I-veVe12bX3PNixGokbENQU,940
19
+ eva/core/data/datamodules/datamodule.py,sha256=dclC2YJAXUGEUpV9ZRWQS43-ksFIPgVeFudsyrj9kdc,3878
20
+ eva/core/data/datamodules/schemas.py,sha256=EXnUPNd9Pj3RjnxJIzAcC2qp6TtBSvPDx28fV_ovWAA,1869
21
+ eva/core/data/datasets/__init__.py,sha256=pMU-w6aQoRFgSwPB9GLXNilnsbwd6HqLlgw49e4rlj0,281
22
+ eva/core/data/datasets/base.py,sha256=NLZlxznB4SCYNf070OhfNJztaOpqwQWemwpGkFv_CA0,2005
23
+ eva/core/data/datasets/classification/__init__.py,sha256=nhgeoK0chIvX9kzrp9yz40xha_g78o-R4AV7HbyfQOU,176
24
+ eva/core/data/datasets/classification/embeddings.py,sha256=E2vYX5q0wDueIZwfB252aM4l9i8XNuf2BQ1lOJR32P4,5215
25
+ eva/core/data/datasets/dataset.py,sha256=tA6Wd_7vqOE9GsukSWrgN9zaZKtKCHaE58SqIfWxWdg,124
26
+ eva/core/data/samplers/__init__.py,sha256=WikBo1DemCx6o2vFfNwSwODlmCT2zWUXtCNwiWCVAFE,100
27
+ eva/core/data/samplers/sampler.py,sha256=vrrXERWC67fjmTk_uwD7s9-8-rdhvnx7OlSipHE6sdY,119
28
+ eva/core/data/transforms/__init__.py,sha256=ZdqOER1VMLu5nI1As0IuBPTS8ISw0EO4zeMZoio3G-c,157
29
+ eva/core/data/transforms/dtype/__init__.py,sha256=r_LM_hdh_gTsrgh3shDTdMpu-lgQNHJ1yD6wY3omPyg,174
30
+ eva/core/data/transforms/dtype/array.py,sha256=RDSkXlnSHSYyU_gv7vw33OZ7vhEy62PQGoE3htGGaqc,725
31
+ eva/core/interface/__init__.py,sha256=chdpKXipxe1NP-Fgr_d9r6X1gMna0XiEa38waJ6FzTM,98
32
+ eva/core/interface/interface.py,sha256=GzjneNHhTIEuLbydUG9cSmpHjJ4_IENGM-glN8RaRxY,2741
33
+ eva/core/metrics/__init__.py,sha256=sTpNUbvgpKTd1IifzPVWmXVZ17PSJjcfEAlY_3fZP5U,558
34
+ eva/core/metrics/average_loss.py,sha256=AyFOnCXBD5T62eSYf6eGAAJsqt8x-KaHgc8OLkCHjzE,1267
35
+ eva/core/metrics/binary_balanced_accuracy.py,sha256=MabsXAtVfLqSaSIIpE0HIM6bo8uRszl6obueHI6vJi0,806
36
+ eva/core/metrics/defaults/__init__.py,sha256=l3a3jkxZYV7rAbuxmlV8F0J45IoAWMnR1PyhmHGGGck,301
37
+ eva/core/metrics/defaults/classification/__init__.py,sha256=5YO9mLncfNGuMZLfUWeDmR4UAglpmp2z5y-n8x1lNgQ,316
38
+ eva/core/metrics/defaults/classification/binary.py,sha256=B6m59LHjkapu3vY1rxCqy_0pfeAQeow9PHcR10kIXLc,2520
39
+ eva/core/metrics/defaults/classification/multiclass.py,sha256=ztAuj7G8p5HNT1gbx11ARlYMd1pmn3gKxFm-J-54Oek,2703
40
+ eva/core/metrics/structs/__init__.py,sha256=cvn7E4k5vJmpwJj_zezmtZa_Nl_RddDM1G-MO8TP0po,422
41
+ eva/core/metrics/structs/collection.py,sha256=bNfCekHN8pzD49-YTqVxrmxFtiQfNxnv-RwkxCL6rbc,149
42
+ eva/core/metrics/structs/metric.py,sha256=zdnE0ZVTSYAMl7rW_OL6e1XiZDvLTirYqV0lgJCleXY,109
43
+ eva/core/metrics/structs/module.py,sha256=qAyk9uSGTFdvSg6ukl2c-OC-FdaCCsUf3Lh8UbUD-r8,3619
44
+ eva/core/metrics/structs/schemas.py,sha256=S6dTbz6YjxkNUIqWVd52KgpVx5JqNFqM4Xs7zZCJtAY,1480
45
+ eva/core/metrics/structs/typings.py,sha256=qJd-FiD2IhJgBeo8FyP0vpVUIH4RKb1k6zYvHtjUA04,388
46
+ eva/core/models/__init__.py,sha256=yRLRKYuShhgQBWzV6sjzjThOqqNb9HRS48bMmAxEy-8,305
47
+ eva/core/models/modules/__init__.py,sha256=QJWJ42BceXZBzDGgk5FHBcCaRrB9egTFKVF6gDsBYfM,255
48
+ eva/core/models/modules/head.py,sha256=Rn9bJmSRWqNPnRl-YpvPZgtjbr6UNU83oHXQ1gEpAJE,4138
49
+ eva/core/models/modules/inference.py,sha256=ih-0Rr2oNf2N6maiXPOW7XH5KVwUT1_MOxnJKOhJ1uQ,978
50
+ eva/core/models/modules/module.py,sha256=0KquNWeblYg49S8AoV-Dpc65_ZIWl56ht5R7bKKXj7o,5918
51
+ eva/core/models/modules/typings.py,sha256=fNoGsC_q1d9c2KauUC-f1psKrCFmfoeC8JJ_US_pOW0,521
52
+ eva/core/models/modules/utils/__init__.py,sha256=pnbxlEhT87JimWNr-NSNCv7VNR-IyDi_A9qRWmvlzwQ,227
53
+ eva/core/models/modules/utils/batch_postprocess.py,sha256=q1kC3pwSS7RyI76qunuvFP7RpUhEpUsR6xzjahJkQKQ,1915
54
+ eva/core/models/modules/utils/grad.py,sha256=bl8qb8g4Nhg1KAGfbEV_9HTKkoT0azRwfs9KGX9swGs,706
55
+ eva/core/models/networks/__init__.py,sha256=8jVykvddUnjJg1i6DpAaq8Wq-3UpyblQh4kRyz3yoNc,232
56
+ eva/core/models/networks/_utils.py,sha256=HXUyGcILaa8GK31ViIHCKRU4f9kbjAPYQmhvN2N7jSc,957
57
+ eva/core/models/networks/mlp.py,sha256=E5CkZwShZORFuIaD6B4QYmZEQMjnEKP3BgEr9rYw_B0,2411
58
+ eva/core/models/networks/transforms/__init__.py,sha256=OlH8pZmcCaHZpbYW-dbSm_gBhb-Sx9n539ZvDgTpKEg,159
59
+ eva/core/models/networks/transforms/extract_cls_features.py,sha256=AFRrCjSmKy0n14toKa-G-QVx3dh-H4zSx5myi_P2OFA,822
60
+ eva/core/models/networks/wrappers/__init__.py,sha256=dEUMnWQ750VBJJF-HS_yGlbzN2Kc45pixkIt0Gxzbmo,381
61
+ eva/core/models/networks/wrappers/base.py,sha256=VTpTpRz2AMJxUqAoj9ZWrdFq1pVGWdV8UzBqWm5-04c,1320
62
+ eva/core/models/networks/wrappers/from_function.py,sha256=fuh-UEe3eppTwuSA2gEgCmUiDAVnW52842tmJxVU8eM,2035
63
+ eva/core/models/networks/wrappers/huggingface.py,sha256=81j0pcEx3DW6gR-81Fz6tZkJPBZYiQ-g45igFvkqX1o,1289
64
+ eva/core/models/networks/wrappers/onnx.py,sha256=LZEGOpg1VYrB3wXMAA5IMfiKNTkOXQ50agHjTvYnnsU,1718
65
+ eva/core/trainers/__init__.py,sha256=jhsKJF7HAae7EOiG3gKIAHH_h3dZlTE2JRcCHJmOzJc,208
66
+ eva/core/trainers/_logging.py,sha256=AsYw-6NigCqPWEFCYOpbgFe5-5WxcdqMNiVuDvpqsgk,2550
67
+ eva/core/trainers/_recorder.py,sha256=_Vfp7Njh_9qP-SWbBGYp8solnfFgIUi2Z9pGLXt52WY,5652
68
+ eva/core/trainers/_utils.py,sha256=M3h8lVhUmkeSiEXpX9hRdMvThGFCnTP15gv-hd1CZkc,321
69
+ eva/core/trainers/functional.py,sha256=pIeGXoO63Wh6n1mOYlBo5ACCteGuNV9pZhqxfN4RLSs,3775
70
+ eva/core/trainers/trainer.py,sha256=8TVQb4HXZbvp5SXK1UnU2RIX9OcUbx6cbStRD5V3o3c,3260
71
+ eva/core/utils/__init__.py,sha256=F1C69M9y7W8qh1J2k-X4frRHa7r1mPXewscC94fFYtk,58
72
+ eva/core/utils/io/__init__.py,sha256=SAME0kuSvDE1DKFJwMBmnCkpDAy4ujXuRTSJsHNhwUI,112
73
+ eva/core/utils/io/dataframe.py,sha256=CIHFowljH17waDkJ9YJVEVXAIcxMwoLjUgoBttiNk8w,509
74
+ eva/core/utils/multiprocessing.py,sha256=PxUxMyvI62lghyWF46O5RNL-J7DUR2IrXSwdkbhC0ic,1383
75
+ eva/core/utils/workers.py,sha256=hfx63M82qNg0Dwhre2tl53MnhtRsV7APaDONM9nhVB8,634
76
+ eva/vision/__init__.py,sha256=Pp9FZomuqfbZdKSOmgSGfNYk8ISpXf7tLVBZfoFcybk,432
77
+ eva/vision/data/__init__.py,sha256=aoKPmX8P2Q2k2W3nlq8vFU41FV6Sze-0SDuWtU-ETh4,111
78
+ eva/vision/data/datasets/__init__.py,sha256=aV4qPqtlt0PnaGoxUW_xEwAr8b8ddkl_YE4_fAdavds,497
79
+ eva/vision/data/datasets/_utils.py,sha256=5GAZEHn-VezxTXaW1jVZO5zvdVl1Vz8_5gV2qkoMu4s,1414
80
+ eva/vision/data/datasets/_validators.py,sha256=SewZrhs1bVXqDmdUBYOfyXNgjvGZ50-5pzdbzkelWmg,1595
81
+ eva/vision/data/datasets/classification/__init__.py,sha256=I9vTkETzGnTNNvyRB96ut1YHx9ARmZVO0-0l3ZLWEAs,520
82
+ eva/vision/data/datasets/classification/bach.py,sha256=jJDQSJ4SJ2W-GxbUAvuYkiPTef-g5kdtYez2ewM89KM,5574
83
+ eva/vision/data/datasets/classification/base.py,sha256=zBqn8rQP59j1DEChf3rDXgyMtB_sbug8kPvgFCqZyl4,3060
84
+ eva/vision/data/datasets/classification/crc.py,sha256=ZTSrClCWh-jE4Rpmy_uXaUbQ4zjt4vPkqYTflX6m2SQ,5813
85
+ eva/vision/data/datasets/classification/mhist.py,sha256=kqZivJNje_wZaHt_i6uCXMU486FbArvs0_crX0ryiao,3146
86
+ eva/vision/data/datasets/classification/patch_camelyon.py,sha256=28Lg7umKM3S1TKNCfbpOuQyLlLVZ92BnjMmQNEnSH8I,7194
87
+ eva/vision/data/datasets/classification/total_segmentator.py,sha256=JcRHATXpkB0uMr3XzMp9uTBG-_cQNgPhbkXqGBUMuOE,8010
88
+ eva/vision/data/datasets/segmentation/__init__.py,sha256=byQCBHicM6mQkljHPllUqRvoFaJxHtPMKcyjPmK6dUM,249
89
+ eva/vision/data/datasets/segmentation/base.py,sha256=JogXJ3KiOaUybAcyvoqjR4yjlBfVTt2Rt8OOAz32Jrc,3630
90
+ eva/vision/data/datasets/segmentation/total_segmentator.py,sha256=NUh-NlrsTcUsbe3qLd_d481mok970bNF7zIdpAS7eks,8075
91
+ eva/vision/data/datasets/structs.py,sha256=RaTDW-B36PumcR5gymhCiX-r8GiKqIFcjqoEEjjFyUE,389
92
+ eva/vision/data/datasets/vision.py,sha256=hKKFMb65UJQzOyYm8FTGkOGBOinMRu7R8sOFMbCmQX4,1100
93
+ eva/vision/data/transforms/__init__.py,sha256=cHnLwyx6biAjqstD4IDspVtM-_dv7GBrQG6x_0SM8MM,120
94
+ eva/vision/data/transforms/common/__init__.py,sha256=ZHzpdr-THc9CgFFbAVMWUiZrUNUiHnCDM8GYhM7tMfU,138
95
+ eva/vision/data/transforms/common/resize_and_crop.py,sha256=IkAeTOe5TxK_cHzFvS7yW8YUh27C-KjXqekL7pfcT9A,1485
96
+ eva/vision/models/__init__.py,sha256=v9JhyLdy38XUkA0JmNMzSxNYmKi7nWBrp_XYgM7dmTU,89
97
+ eva/vision/models/networks/__init__.py,sha256=IDpFsocWtyfe28vR9yMmXPYzV9X2NSDrTx7ewH8u-XU,170
98
+ eva/vision/models/networks/abmil.py,sha256=N1eH4fn1nXmgXurSQyQIxxonv7nsqeeuPWaQSHeltfs,6796
99
+ eva/vision/models/networks/postprocesses/__init__.py,sha256=nWBuROKE77W9xfyAxmS6L9IgOaXjcB5Qpaw1ihHG64E,148
100
+ eva/vision/models/networks/postprocesses/cls.py,sha256=AFRrCjSmKy0n14toKa-G-QVx3dh-H4zSx5myi_P2OFA,822
101
+ eva/vision/utils/__init__.py,sha256=vaUovprE743SmyFH8l6uk4pYSWpI4zxn7lN0EwePTJI,96
102
+ eva/vision/utils/io/__init__.py,sha256=Aw2UxGO3nbUidroMlS-MMJUALjQVvfsOZ1ZhcENDwRo,310
103
+ eva/vision/utils/io/_utils.py,sha256=JzOt7Frj6ScF_aNjFtfHBn4ROnl6NhUZucmQhLc4Cww,768
104
+ eva/vision/utils/io/image.py,sha256=2jzeVFMvIRhuTkIrQeLyu0y8GttLp6rWRjO9I2uw-I8,1489
105
+ eva/vision/utils/io/nifti.py,sha256=ph9w8dNNSsJG2wI3NJNPTLyWdz2S0i9jD068nHXVVJs,1510
106
+ eva/vision/utils/io/text.py,sha256=uECChKjeKi4KQ-NqdO7ywAFS_TOEp2DQ5QQcuG8cb-4,472
107
+ kaiko_eva-0.0.0.dev6.dist-info/METADATA,sha256=653ZvK1f_JAdJqvhuItMUhdPj_207iutLC6-OGooT2I,21424
108
+ kaiko_eva-0.0.0.dev6.dist-info/WHEEL,sha256=N2J68yzZqJh3mI_Wg92rwhw0rtJDFpZj9bwQIMJgaVg,90
109
+ kaiko_eva-0.0.0.dev6.dist-info/entry_points.txt,sha256=oqtS2Yt5EBY4saLyCBC3Zev3huCORKTKWyPovX7QR8g,73
110
+ kaiko_eva-0.0.0.dev6.dist-info/licenses/LICENSE,sha256=e6AEzr7j_R-PYr2qLO-JwLn8y70jbVD3U2mxbRmwcI4,11338
111
+ kaiko_eva-0.0.0.dev6.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: pdm-backend (2.1.8)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
@@ -0,0 +1,4 @@
1
+ [console_scripts]
2
+ eva = eva.__main__:main
3
+ kaiko-eva = eva.__main__:main
4
+