kaggle 1.8.3__py3-none-any.whl → 1.8.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -21,7 +21,7 @@ import re # noqa: F401
21
21
 
22
22
  import six
23
23
 
24
- from kaggle.models.dataset_column import DatasetColumn # noqa: F401,E501
24
+ from kagglesdk.datasets.types.dataset_api_service import ApiDatasetColumn
25
25
 
26
26
 
27
27
  class UploadFile(object):
@@ -33,7 +33,7 @@ class UploadFile(object):
33
33
  and the value is json key in definition.
34
34
  """
35
35
 
36
- column_types = {"token": "str", "description": "str", "columns": "list[DatasetColumn]"}
36
+ column_types = {"token": "str", "description": "str", "columns": "list[ApiDatasetColumn]"}
37
37
 
38
38
  attribute_map = {"token": "token", "description": "description", "columns": "columns"}
39
39
 
@@ -107,7 +107,7 @@ class UploadFile(object):
107
107
  A list of dataset column metadata # noqa: E501
108
108
 
109
109
  :return: The columns of this UploadFile. # noqa: E501
110
- :rtype: list[DatasetColumn]
110
+ :rtype: list[ApiDatasetColumn]
111
111
  """
112
112
  return self._columns
113
113
 
@@ -118,7 +118,7 @@ class UploadFile(object):
118
118
  A list of dataset column metadata # noqa: E501
119
119
 
120
120
  :param columns: The columns of this UploadFile. # noqa: E501
121
- :type: list[DatasetColumn]
121
+ :type: list[ApiDatasetColumn]
122
122
  """
123
123
 
124
124
  self._columns = columns
@@ -1,9 +1,9 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kaggle
3
- Version: 1.8.3
3
+ Version: 1.8.4
4
4
  Summary: Access Kaggle resources anywhere
5
- Project-URL: Homepage, https://github.com/Kaggle/kaggle-api
6
- Project-URL: Issues, https://github.com/Kaggle/kaggle-api/issues
5
+ Project-URL: Homepage, https://github.com/Kaggle/kaggle-cli
6
+ Project-URL: Issues, https://github.com/Kaggle/kaggle-cli/issues
7
7
  Author-email: Kaggle <support@kaggle.com>
8
8
  License: Apache License
9
9
  Version 2.0, January 2004
@@ -212,46 +212,57 @@ Classifier: License :: OSI Approved :: Apache Software License
212
212
  Classifier: Operating System :: OS Independent
213
213
  Classifier: Programming Language :: Python :: 3
214
214
  Requires-Python: >=3.11
215
- Requires-Dist: black>=24.10.0
216
215
  Requires-Dist: bleach
217
- Requires-Dist: kagglesdk<1.0,>=0.1.14
218
- Requires-Dist: mypy>=1.15.0
216
+ Requires-Dist: kagglesdk<1.0,>=0.1.15
219
217
  Requires-Dist: packaging
220
218
  Requires-Dist: protobuf
221
219
  Requires-Dist: python-dateutil
222
220
  Requires-Dist: python-slugify
223
221
  Requires-Dist: requests
224
- Requires-Dist: six>=1.10
225
222
  Requires-Dist: tqdm
226
- Requires-Dist: types-requests
227
- Requires-Dist: types-tqdm
228
223
  Requires-Dist: urllib3>=1.15.1
229
224
  Description-Content-Type: text/markdown
230
225
 
231
- # Kaggle API
226
+ # Kaggle CLI
232
227
 
233
- Official API for https://www.kaggle.com, accessible using a command line tool implemented in Python 3.
228
+ The official CLI to interact with [Kaggle](https://www.kaggle.com).
229
+
230
+ ---
234
231
 
235
232
  [User documentation](docs/README.md)
236
233
 
237
- ## Installation
234
+ ---
238
235
 
239
- Ensure you have Python 3 and the package manager `pip` installed.
236
+ ## Key Features
240
237
 
241
- Run the following command to access the Kaggle API using the command line:
238
+ Some of the key features are:
239
+
240
+ * List competitions, download competition data, submit to a competition.
241
+ * List, create, update, download or delete datasets.
242
+ * List, create, update, download or delete models & model variations.
243
+ * List, update & run, download code & output or delete kernels (notebooks).
244
+
245
+ ## Installation
246
+
247
+ Install the `kaggle` package with [pip](https://pypi.org/project/pip/):
242
248
 
243
249
  ```sh
244
250
  pip install kaggle
245
251
  ```
246
252
 
247
- ## Development
253
+ Additional installation instructions can be found [here](docs/README.md#installation).
248
254
 
249
- ### Kaggle Internal
255
+ ## Quick start
250
256
 
251
- Obviously, this depends on Kaggle services. When you're extending the API and modifying
252
- or adding to those services, you should be working in your Kaggle mid-tier development
253
- environment. You'll run Kaggle locally, in the container, and test the Python code by
254
- running it in the container so it can connect to your local testing environment.
257
+ Explore the available commands by running:
258
+
259
+ ```sh
260
+ kaggle --help
261
+ ```
262
+
263
+ See the [User documentation](docs/README.md) for more examples & tutorials.
264
+
265
+ ## Development
255
266
 
256
267
  ### Prerequisites
257
268
 
@@ -259,87 +270,67 @@ We use [hatch](https://hatch.pypa.io) to manage this project.
259
270
 
260
271
  Follow these [instructions](https://hatch.pypa.io/latest/install/) to install it.
261
272
 
262
- If you are working in a managed environment, you may want to use `pipx`. If it isn't already installed
263
- try `sudo apt install pipx`. Then you should be able to proceed with `pipx install hatch`.
273
+ ### Run `kaggle` from source
264
274
 
265
- ### Dependencies
275
+ #### Option 1: Execute a one-liner of code from the command line
266
276
 
267
277
  ```sh
268
- hatch run install-deps
278
+ hatch run kaggle datasets list
269
279
  ```
270
280
 
271
- ### Compile
281
+ #### Option 2: Run many commands in a shell
272
282
 
273
283
  ```sh
274
- hatch run compile
284
+ hatch shell
285
+
286
+ # Inside the shell, you can run many commands
287
+ kaggle datasets list
288
+ kaggle competitions list
289
+ ...
275
290
  ```
276
291
 
277
- The compiled files are generated in the `kaggle/` directory from the `src/` directory.
292
+ ### Lint / Format
278
293
 
279
- All the changes must be done in the `src/` directory.
294
+ ```sh
295
+ # Lint check
296
+ hatch run lint:style
297
+ hatch run lint:typing
298
+ hatch run lint:all # for both
280
299
 
281
- ### Run
300
+ # Format
301
+ hatch run lint:fmt
302
+ ```
282
303
 
283
- Use `hatch run install` to compile the program and install it in the default `hatch` environment.
284
- To run that version locally for testing, use hatch: `hatch run kaggle -v`. If you'd rather not
285
- type `hatch run` every time, launch a new shell in the hatch environment: `hatch shell`.
304
+ ### Tests
286
305
 
287
- You can also run the code in python directly:
306
+ Note: These tests are not true unit tests and are calling the Kaggle web server.
288
307
 
289
308
  ```sh
290
- hatch run python
291
- ```
292
-
293
- ```python
294
- import kaggle
295
- from kaggle.api.kaggle_api_extended import KaggleApi
296
- api = KaggleApi()
297
- api.authenticate()
298
- api.model_list_cli()
299
-
300
- Next Page Token = [...]
301
- [...]
309
+ # Run against kaggle.com
310
+ hatch run test:prod
302
311
 
312
+ # Run against a local web server (Kaggle engineers only)
313
+ hatch run test:local
303
314
  ```
304
315
 
305
- Or in a single command:
306
-
307
- ```sh
308
- hatch run python -c "import kaggle; from kaggle.api.kaggle_api_extended import KaggleApi; api = KaggleApi(); api.authenticate(); api.model_list_cli()"
309
- ```
316
+ ### Integration Tests
310
317
 
311
- ### Example
318
+ To run integration tests on your local machine, you need to set up your Kaggle credentials. You can do this by following the [authentication instructions](docs/README.md#authentication).
312
319
 
313
- Let's change the `model_list_cli` method in the source file:
320
+ After setting up your credentials, you can run the integration tests as follows:
314
321
 
315
322
  ```sh
316
- git diff src/kaggle/api/kaggle_api_extended.py
317
- [...]
318
- + print('hello Kaggle CLI update')^M
319
- models = self.model_list(sort_by, search, owner, page_size, page_token)
320
- [...]
321
-
322
- ❯ hatch run compile
323
- [...]
324
-
325
- ❯ hatch run python -c "import kaggle; from kaggle.api.kaggle_api_extended import KaggleApi; api = KaggleApi(); api.authenticate(); api.model_list_cli()"
326
- hello Kaggle CLI update
327
- Next Page Token = [...]
323
+ hatch run test:integration
328
324
  ```
329
325
 
330
- ### Integration Tests
326
+ ## Changelog
331
327
 
332
- To run integration tests on your local machine, you need to set up your Kaggle API credentials. You can do this in one of these two ways described [this doc](docs/README.md). Refer to the sections:
333
- - Using environment variables
334
- - Using credentials file
328
+ See [CHANGELOG](CHANGELOG.md).
335
329
 
336
- After setting up your credentials by any of these methods, you can run the integration tests as follows:
330
+ ## Contributing
337
331
 
338
- ```sh
339
- # Run all tests
340
- hatch run integration-test
341
- ```
332
+ See [CONTRIBUTING.md](CONTRIBUTING.md).
342
333
 
343
334
  ## License
344
335
 
345
- The Kaggle API is released under the [Apache 2.0 license](LICENSE).
336
+ The Kaggle CLI is released under the [Apache 2.0 license](LICENSE.txt).
@@ -0,0 +1,15 @@
1
+ kaggle/LICENSE,sha256=PN5H3cwV3xW9nvUXKcB_XOH60cWqne6qK3SAE8NI74s,11340
2
+ kaggle/__init__.py,sha256=fUks8_ewdXRldJ0jq82KRKgsyUae8DtxU6QFrGtaxeE,280
3
+ kaggle/cli.py,sha256=f6RX_XZJNwMkbj5ftDSHcHGrV_czqwWrfRqK63y-Lx0,69820
4
+ kaggle/api/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ kaggle/api/kaggle_api.py,sha256=k_Fm5TxiUM6O19dMy43XTdYyBNIWWGWDE9QRf6otwUE,25521
6
+ kaggle/api/kaggle_api_extended.py,sha256=H50hT_jbQcD0DirfX89jT3HvqGiX6Eko3LyAx_gulFI,228320
7
+ kaggle/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
+ kaggle/models/kaggle_models_extended.py,sha256=w-IEn0AQvIZRj3ialSoOMOJm8vu48whqte36IdggI7Q,7997
9
+ kaggle/models/upload_file.py,sha256=i_8CfypwOToCoxAvG96Gle3IgNkrVnc38Y4oMHKqNjg,5081
10
+ kaggle/test/test_authenticate.py,sha256=6HvLhQ4noCXs3hVJpQP-tlSYv1_I9kKfAT2Nu3PeC7Q,1185
11
+ kaggle-1.8.4.dist-info/METADATA,sha256=KD5dM79V1y57b-X76cdRuWi0pvmn45oMYOkR1y0fpTA,15925
12
+ kaggle-1.8.4.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
13
+ kaggle-1.8.4.dist-info/entry_points.txt,sha256=hl3dQAS4qpVkC5FWiqfnU6qKJU924OEN6PsHEiw-FGg,43
14
+ kaggle-1.8.4.dist-info/licenses/LICENSE.txt,sha256=IzhfWrxIlFAci3lzZCg5WWHZJBI1QSzsHxO0plI63vk,11541
15
+ kaggle-1.8.4.dist-info/RECORD,,
@@ -1,4 +0,0 @@
1
- class ApiBlobType(object):
2
- DATASET = "dataset"
3
- MODEL = "model"
4
- INBOX = "inbox"
@@ -1,228 +0,0 @@
1
- #!/usr/bin/python
2
- #
3
- # Copyright 2024 Kaggle Inc
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
-
17
- # coding: utf-8
18
-
19
- import pprint
20
- import re # noqa: F401
21
-
22
- import six
23
-
24
-
25
- class DatasetColumn(object):
26
- """
27
- Attributes:
28
- column_types (dict): The key is attribute name
29
- and the value is attribute type.
30
- attribute_map (dict): The key is attribute name
31
- and the value is json key in definition.
32
- """
33
-
34
- column_types = {"order": "float", "name": "str", "type": "str", "original_type": "str", "description": "str"}
35
-
36
- attribute_map = {
37
- "order": "order",
38
- "name": "name",
39
- "type": "type",
40
- "original_type": "originalType",
41
- "description": "description",
42
- }
43
-
44
- def __init__(self, order=None, name=None, type=None, original_type=None, description=None): # noqa: E501
45
- """DatasetColumn - a model defined in Swagger""" # noqa: E501
46
-
47
- self._order = None
48
- self._name = None
49
- self._type = None
50
- self._original_type = None
51
- self._description = None
52
- self.discriminator = None
53
-
54
- if order is not None:
55
- self.order = order
56
- if name is not None:
57
- self.name = name
58
- if type is not None:
59
- self.type = type
60
- if original_type is not None:
61
- self.original_type = original_type
62
- if description is not None:
63
- self.description = description
64
-
65
- @property
66
- def order(self):
67
- """Gets the order of this DatasetColumn. # noqa: E501.
68
-
69
- The order that the column comes in, 0-based. (The first column is 0,
70
- second is 1, etc.) # noqa: E501
71
-
72
- :return: The order of this DatasetColumn. # noqa: E501
73
- :rtype: float
74
- """
75
- return self._order
76
-
77
- @order.setter
78
- def order(self, order):
79
- """Sets the order of this DatasetColumn.
80
-
81
- The order that the column comes in, 0-based. (The first column is 0,
82
- second is 1, etc.) # noqa: E501
83
-
84
- :param order: The order of this DatasetColumn. # noqa: E501
85
- :type: float
86
- """
87
-
88
- self._order = order
89
-
90
- @property
91
- def name(self):
92
- """Gets the name of this DatasetColumn. # noqa: E501.
93
-
94
- The column name # noqa: E501
95
-
96
- :return: The name of this DatasetColumn. # noqa: E501
97
- :rtype: str
98
- """
99
- return self._name
100
-
101
- @name.setter
102
- def name(self, name):
103
- """Sets the name of this DatasetColumn.
104
-
105
- The column name # noqa: E501
106
-
107
- :param name: The name of this DatasetColumn. # noqa: E501
108
- :type: str
109
- """
110
-
111
- self._name = name
112
-
113
- @property
114
- def type(self):
115
- """Gets the type of this DatasetColumn. # noqa: E501.
116
-
117
- The type of all of the fields in the column. Please see the data
118
- types on
119
- https://github.com/Kaggle/kaggle-api/wiki/Dataset-Metadata
120
- # noqa: E501
121
-
122
- :return: The type of this DatasetColumn. # noqa: E501
123
- :rtype: str
124
- """
125
- return self._type
126
-
127
- @type.setter
128
- def type(self, type):
129
- """Sets the type of this DatasetColumn.
130
-
131
- The type of all of the fields in the column. Please see the data
132
- types on
133
- https://github.com/Kaggle/kaggle-api/wiki/Dataset-Metadata
134
- # noqa: E501
135
-
136
- :param type: The type of this DatasetColumn. # noqa: E501
137
- :type: str
138
- """
139
-
140
- self._type = type
141
-
142
- @property
143
- def original_type(self):
144
- """Gets the original_type of this DatasetColumn. # noqa: E501.
145
-
146
- Used to store the original type of the column, which will be converted to Kaggle's types. For example, an `originalType` of `\"integer\"` would convert to a `type` of `\"numeric\"` # noqa: E501
147
-
148
- :return: The original_type of this DatasetColumn. # noqa: E501
149
- :rtype: str
150
- """
151
- return self._original_type
152
-
153
- @original_type.setter
154
- def original_type(self, original_type):
155
- """Sets the original_type of this DatasetColumn.
156
-
157
- Used to store the original type of the column, which will be converted to Kaggle's types. For example, an `originalType` of `\"integer\"` would convert to a `type` of `\"numeric\"` # noqa: E501
158
-
159
- :param original_type: The original_type of this DatasetColumn. # noqa: E501
160
- :type: str
161
- """
162
-
163
- self._original_type = original_type
164
-
165
- @property
166
- def description(self):
167
- """Gets the description of this DatasetColumn. # noqa: E501.
168
-
169
- The description of the column # noqa: E501
170
-
171
- :return: The description of this DatasetColumn. # noqa: E501
172
- :rtype: str
173
- """
174
- return self._description
175
-
176
- @description.setter
177
- def description(self, description):
178
- """Sets the description of this DatasetColumn.
179
-
180
- The description of the column # noqa: E501
181
-
182
- :param description: The description of this DatasetColumn. # noqa:
183
- E501
184
- :type: str
185
- """
186
-
187
- self._description = description
188
-
189
- def to_dict(self):
190
- """Returns the model properties as a dict."""
191
- result = {}
192
-
193
- for attr, _ in six.iteritems(self.column_types):
194
- value = getattr(self, attr)
195
- if isinstance(value, list):
196
- result[attr] = list(map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value))
197
- elif hasattr(value, "to_dict"):
198
- result[attr] = value.to_dict()
199
- elif isinstance(value, dict):
200
- result[attr] = dict(
201
- map(
202
- lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item,
203
- value.items(),
204
- )
205
- )
206
- else:
207
- result[attr] = value
208
-
209
- return result
210
-
211
- def to_str(self):
212
- """Returns the string representation of the model."""
213
- return pprint.pformat(self.to_dict())
214
-
215
- def __repr__(self):
216
- """For `print` and `pprint`"""
217
- return self.to_str()
218
-
219
- def __eq__(self, other):
220
- """Returns true if both objects are equal."""
221
- if not isinstance(other, DatasetColumn):
222
- return False
223
-
224
- return self.__dict__ == other.__dict__
225
-
226
- def __ne__(self, other):
227
- """Returns true if both objects are not equal."""
228
- return not self == other