kaggle-environments 0.2.1__py3-none-any.whl → 1.20.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kaggle-environments might be problematic. Click here for more details.
- kaggle_environments/__init__.py +49 -13
- kaggle_environments/agent.py +177 -124
- kaggle_environments/api.py +31 -0
- kaggle_environments/core.py +295 -170
- kaggle_environments/envs/cabt/cabt.js +164 -0
- kaggle_environments/envs/cabt/cabt.json +28 -0
- kaggle_environments/envs/cabt/cabt.py +186 -0
- kaggle_environments/envs/cabt/cg/__init__.py +0 -0
- kaggle_environments/envs/cabt/cg/cg.dll +0 -0
- kaggle_environments/envs/cabt/cg/game.py +75 -0
- kaggle_environments/envs/cabt/cg/libcg.so +0 -0
- kaggle_environments/envs/cabt/cg/sim.py +48 -0
- kaggle_environments/envs/cabt/test_cabt.py +120 -0
- kaggle_environments/envs/chess/chess.js +4289 -0
- kaggle_environments/envs/chess/chess.json +60 -0
- kaggle_environments/envs/chess/chess.py +4241 -0
- kaggle_environments/envs/chess/test_chess.py +60 -0
- kaggle_environments/envs/connectx/connectx.ipynb +3186 -0
- kaggle_environments/envs/connectx/connectx.js +1 -1
- kaggle_environments/envs/connectx/connectx.json +15 -1
- kaggle_environments/envs/connectx/connectx.py +6 -23
- kaggle_environments/envs/connectx/test_connectx.py +70 -24
- kaggle_environments/envs/football/football.ipynb +75 -0
- kaggle_environments/envs/football/football.json +91 -0
- kaggle_environments/envs/football/football.py +277 -0
- kaggle_environments/envs/football/helpers.py +95 -0
- kaggle_environments/envs/football/test_football.py +360 -0
- kaggle_environments/envs/halite/__init__.py +0 -0
- kaggle_environments/envs/halite/halite.ipynb +44741 -0
- kaggle_environments/envs/halite/halite.js +199 -83
- kaggle_environments/envs/halite/halite.json +31 -18
- kaggle_environments/envs/halite/halite.py +164 -303
- kaggle_environments/envs/halite/helpers.py +720 -0
- kaggle_environments/envs/halite/test_halite.py +190 -0
- kaggle_environments/envs/hungry_geese/__init__.py +0 -0
- kaggle_environments/envs/{battlegeese/battlegeese.js → hungry_geese/hungry_geese.js} +38 -22
- kaggle_environments/envs/{battlegeese/battlegeese.json → hungry_geese/hungry_geese.json} +21 -14
- kaggle_environments/envs/hungry_geese/hungry_geese.py +316 -0
- kaggle_environments/envs/hungry_geese/test_hungry_geese.py +0 -0
- kaggle_environments/envs/identity/identity.json +6 -5
- kaggle_environments/envs/identity/identity.py +15 -2
- kaggle_environments/envs/kore_fleets/__init__.py +0 -0
- kaggle_environments/envs/kore_fleets/helpers.py +1005 -0
- kaggle_environments/envs/kore_fleets/kore_fleets.ipynb +114 -0
- kaggle_environments/envs/kore_fleets/kore_fleets.js +658 -0
- kaggle_environments/envs/kore_fleets/kore_fleets.json +164 -0
- kaggle_environments/envs/kore_fleets/kore_fleets.py +555 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/Bot.java +54 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/README.md +26 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/jars/hamcrest-core-1.3.jar +0 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/jars/junit-4.13.2.jar +0 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/Board.java +518 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/Cell.java +61 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/Configuration.java +24 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/Direction.java +166 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/Fleet.java +72 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/KoreJson.java +97 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/Observation.java +72 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/Pair.java +13 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/Player.java +68 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/Point.java +65 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/Shipyard.java +70 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/kore/ShipyardAction.java +59 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/main.py +73 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/test/BoardTest.java +567 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/test/ConfigurationTest.java +25 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/test/KoreJsonTest.java +62 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/test/ObservationTest.java +46 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/test/PointTest.java +21 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/test/ShipyardTest.java +22 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/test/configuration.json +1 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/test/fullob.json +1 -0
- kaggle_environments/envs/kore_fleets/starter_bots/java/test/observation.json +1 -0
- kaggle_environments/envs/kore_fleets/starter_bots/python/__init__.py +0 -0
- kaggle_environments/envs/kore_fleets/starter_bots/python/main.py +27 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/Bot.ts +34 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/DoNothingBot.ts +12 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/MinerBot.ts +62 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/README.md +55 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/interpreter.ts +402 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/Board.ts +514 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/Cell.ts +63 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/Configuration.ts +25 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/Direction.ts +169 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/Fleet.ts +76 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/KoreIO.ts +70 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/Observation.ts +45 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/Pair.ts +11 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/Player.ts +68 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/Point.ts +65 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/Shipyard.ts +72 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/kore/ShipyardAction.ts +58 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/main.py +73 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/miner.py +73 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/package.json +23 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/test/BoardTest.ts +551 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/test/ConfigurationTest.ts +16 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/test/ObservationTest.ts +33 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/test/PointTest.ts +17 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/test/ShipyardTest.ts +18 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/test/configuration.json +1 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/test/fullob.json +1 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/test/observation.json +1 -0
- kaggle_environments/envs/kore_fleets/starter_bots/ts/tsconfig.json +22 -0
- kaggle_environments/envs/kore_fleets/test_kore_fleets.py +331 -0
- kaggle_environments/envs/lux_ai_2021/README.md +3 -0
- kaggle_environments/envs/lux_ai_2021/__init__.py +0 -0
- kaggle_environments/envs/lux_ai_2021/agents.py +11 -0
- kaggle_environments/envs/lux_ai_2021/dimensions/754.js +2 -0
- kaggle_environments/envs/lux_ai_2021/dimensions/754.js.LICENSE.txt +296 -0
- kaggle_environments/envs/lux_ai_2021/dimensions/main.js +1 -0
- kaggle_environments/envs/lux_ai_2021/index.html +43 -0
- kaggle_environments/envs/lux_ai_2021/lux_ai_2021.json +100 -0
- kaggle_environments/envs/lux_ai_2021/lux_ai_2021.py +231 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/__init__.py +0 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/js_simple/lux/game_constants.js +6 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/js_simple/lux/game_constants.json +59 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/js_simple/lux/game_objects.js +145 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/js_simple/lux/io.js +14 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/js_simple/lux/kit.js +209 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/js_simple/lux/map.js +107 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/js_simple/lux/parser.js +79 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/js_simple/main.js +88 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/js_simple/main.py +75 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/js_simple/simple.tar.gz +0 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/python/lux/__init__.py +0 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/python/lux/annotate.py +20 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/python/lux/constants.py +25 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/python/lux/game.py +86 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/python/lux/game_constants.json +59 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/python/lux/game_constants.py +7 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/python/lux/game_map.py +106 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/python/lux/game_objects.py +154 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/python/random_agent.py +38 -0
- kaggle_environments/envs/lux_ai_2021/test_agents/python/simple_agent.py +82 -0
- kaggle_environments/envs/lux_ai_2021/test_lux.py +19 -0
- kaggle_environments/envs/lux_ai_2021/testing.md +23 -0
- kaggle_environments/envs/lux_ai_2021/todo.md.og +18 -0
- kaggle_environments/envs/lux_ai_s3/README.md +21 -0
- kaggle_environments/envs/lux_ai_s3/agents.py +5 -0
- kaggle_environments/envs/lux_ai_s3/index.html +42 -0
- kaggle_environments/envs/lux_ai_s3/lux_ai_s3.json +47 -0
- kaggle_environments/envs/lux_ai_s3/lux_ai_s3.py +178 -0
- kaggle_environments/envs/lux_ai_s3/luxai_s3/__init__.py +1 -0
- kaggle_environments/envs/lux_ai_s3/luxai_s3/env.py +819 -0
- kaggle_environments/envs/lux_ai_s3/luxai_s3/globals.py +9 -0
- kaggle_environments/envs/lux_ai_s3/luxai_s3/params.py +101 -0
- kaggle_environments/envs/lux_ai_s3/luxai_s3/profiler.py +141 -0
- kaggle_environments/envs/lux_ai_s3/luxai_s3/pygame_render.py +222 -0
- kaggle_environments/envs/lux_ai_s3/luxai_s3/spaces.py +27 -0
- kaggle_environments/envs/lux_ai_s3/luxai_s3/state.py +464 -0
- kaggle_environments/envs/lux_ai_s3/luxai_s3/utils.py +12 -0
- kaggle_environments/envs/lux_ai_s3/luxai_s3/wrappers.py +156 -0
- kaggle_environments/envs/lux_ai_s3/test_agents/python/agent.py +78 -0
- kaggle_environments/envs/lux_ai_s3/test_agents/python/lux/__init__.py +0 -0
- kaggle_environments/envs/lux_ai_s3/test_agents/python/lux/kit.py +31 -0
- kaggle_environments/envs/lux_ai_s3/test_agents/python/lux/utils.py +17 -0
- kaggle_environments/envs/lux_ai_s3/test_agents/python/main.py +66 -0
- kaggle_environments/envs/lux_ai_s3/test_lux.py +9 -0
- kaggle_environments/envs/mab/__init__.py +0 -0
- kaggle_environments/envs/mab/agents.py +12 -0
- kaggle_environments/envs/mab/mab.js +100 -0
- kaggle_environments/envs/mab/mab.json +74 -0
- kaggle_environments/envs/mab/mab.py +146 -0
- kaggle_environments/envs/open_spiel/__init__.py +0 -0
- kaggle_environments/envs/open_spiel/games/__init__.py +0 -0
- kaggle_environments/envs/open_spiel/games/chess/chess.js +441 -0
- kaggle_environments/envs/open_spiel/games/chess/image_config.jsonl +20 -0
- kaggle_environments/envs/open_spiel/games/chess/openings.jsonl +20 -0
- kaggle_environments/envs/open_spiel/games/connect_four/__init__.py +0 -0
- kaggle_environments/envs/open_spiel/games/connect_four/connect_four.js +284 -0
- kaggle_environments/envs/open_spiel/games/connect_four/connect_four_proxy.py +86 -0
- kaggle_environments/envs/open_spiel/games/go/__init__.py +0 -0
- kaggle_environments/envs/open_spiel/games/go/go.js +481 -0
- kaggle_environments/envs/open_spiel/games/go/go_proxy.py +99 -0
- kaggle_environments/envs/open_spiel/games/tic_tac_toe/__init__.py +0 -0
- kaggle_environments/envs/open_spiel/games/tic_tac_toe/tic_tac_toe.js +345 -0
- kaggle_environments/envs/open_spiel/games/tic_tac_toe/tic_tac_toe_proxy.py +98 -0
- kaggle_environments/envs/open_spiel/games/universal_poker/__init__.py +0 -0
- kaggle_environments/envs/open_spiel/games/universal_poker/universal_poker.js +431 -0
- kaggle_environments/envs/open_spiel/games/universal_poker/universal_poker_proxy.py +159 -0
- kaggle_environments/envs/open_spiel/html_playthrough_generator.py +31 -0
- kaggle_environments/envs/open_spiel/observation.py +128 -0
- kaggle_environments/envs/open_spiel/open_spiel.py +565 -0
- kaggle_environments/envs/open_spiel/proxy.py +138 -0
- kaggle_environments/envs/open_spiel/test_open_spiel.py +191 -0
- kaggle_environments/envs/rps/__init__.py +0 -0
- kaggle_environments/envs/rps/agents.py +84 -0
- kaggle_environments/envs/rps/helpers.py +25 -0
- kaggle_environments/envs/rps/rps.js +117 -0
- kaggle_environments/envs/rps/rps.json +63 -0
- kaggle_environments/envs/rps/rps.py +90 -0
- kaggle_environments/envs/rps/test_rps.py +110 -0
- kaggle_environments/envs/rps/utils.py +7 -0
- kaggle_environments/envs/tictactoe/test_tictactoe.py +43 -77
- kaggle_environments/envs/tictactoe/tictactoe.ipynb +1397 -0
- kaggle_environments/envs/tictactoe/tictactoe.json +10 -2
- kaggle_environments/envs/tictactoe/tictactoe.py +1 -1
- kaggle_environments/errors.py +2 -4
- kaggle_environments/helpers.py +377 -0
- kaggle_environments/main.py +340 -0
- kaggle_environments/schemas.json +23 -18
- kaggle_environments/static/player.html +206 -74
- kaggle_environments/utils.py +46 -73
- kaggle_environments-1.20.0.dist-info/METADATA +25 -0
- kaggle_environments-1.20.0.dist-info/RECORD +211 -0
- {kaggle_environments-0.2.1.dist-info → kaggle_environments-1.20.0.dist-info}/WHEEL +1 -2
- kaggle_environments-1.20.0.dist-info/entry_points.txt +3 -0
- kaggle_environments/envs/battlegeese/battlegeese.py +0 -223
- kaggle_environments/temp.py +0 -14
- kaggle_environments-0.2.1.dist-info/METADATA +0 -393
- kaggle_environments-0.2.1.dist-info/RECORD +0 -32
- kaggle_environments-0.2.1.dist-info/entry_points.txt +0 -3
- kaggle_environments-0.2.1.dist-info/top_level.txt +0 -1
- {kaggle_environments-0.2.1.dist-info → kaggle_environments-1.20.0.dist-info/licenses}/LICENSE +0 -0
|
@@ -1,223 +0,0 @@
|
|
|
1
|
-
# Copyright 2020 Kaggle Inc
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
|
|
15
|
-
import json
|
|
16
|
-
from os import path
|
|
17
|
-
from random import choice, sample
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
def get_pos(from_pos, direction, columns, rows):
|
|
21
|
-
if direction == "N":
|
|
22
|
-
if from_pos - columns < 0:
|
|
23
|
-
return -1
|
|
24
|
-
return from_pos - columns
|
|
25
|
-
if direction == "S":
|
|
26
|
-
if from_pos + columns >= columns * rows:
|
|
27
|
-
return -1
|
|
28
|
-
return from_pos + columns
|
|
29
|
-
if direction == "E":
|
|
30
|
-
if from_pos // columns != (from_pos + 1) // columns:
|
|
31
|
-
return -1
|
|
32
|
-
return from_pos + 1
|
|
33
|
-
if direction == "W":
|
|
34
|
-
if from_pos // columns != (from_pos - 1) // columns:
|
|
35
|
-
return -1
|
|
36
|
-
return from_pos - 1
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
def min_distance(pos, food, config):
|
|
40
|
-
cols = config.columns
|
|
41
|
-
return min([abs(pos % cols - fpos % cols) + abs(pos // cols - fpos // cols) for fpos in food])
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
def random_agent():
|
|
45
|
-
return choice(["N", "S", "E", "W"])
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
def shortest_path_agent(obs, config):
|
|
49
|
-
columns = config.columns
|
|
50
|
-
rows = config.rows
|
|
51
|
-
goose = obs.geese[obs.index]
|
|
52
|
-
head = goose[0]
|
|
53
|
-
max_value = columns * rows
|
|
54
|
-
directions = ["N", "S", "E", "W"]
|
|
55
|
-
|
|
56
|
-
geese = [g for g in obs.geese if len(g) > 0]
|
|
57
|
-
heads = [g[0] for g in geese]
|
|
58
|
-
tails = [g[-1] for g in geese]
|
|
59
|
-
bodies = [p for g in geese for p in g[:-1]]
|
|
60
|
-
|
|
61
|
-
actions = {}
|
|
62
|
-
for d in directions:
|
|
63
|
-
# Get new position - or -1 if run into wall.
|
|
64
|
-
pos = get_pos(head, d, columns, rows)
|
|
65
|
-
if (
|
|
66
|
-
pos in bodies or # Hit a body.
|
|
67
|
-
(len(goose) > 1 and goose[1] == pos) or # Backwards.
|
|
68
|
-
# Hit a tail when head over food.
|
|
69
|
-
(pos in tails and heads[tails.index(pos)] in obs.food)
|
|
70
|
-
):
|
|
71
|
-
pos = -1
|
|
72
|
-
actions[d] = max_value if pos == - \
|
|
73
|
-
1 else min_distance(pos, obs.food, config)
|
|
74
|
-
# Possibility of a collision, devalue a valid action.
|
|
75
|
-
for h in heads:
|
|
76
|
-
if h == head:
|
|
77
|
-
continue
|
|
78
|
-
for dh in directions:
|
|
79
|
-
posh = get_pos(h, dh, columns, rows)
|
|
80
|
-
if posh == pos:
|
|
81
|
-
actions[d] += 1
|
|
82
|
-
|
|
83
|
-
return min(actions, key=actions.get)
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
agents = {"random": random_agent, "shortest": shortest_path_agent}
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
def interpreter(state, env):
|
|
90
|
-
config = env.configuration
|
|
91
|
-
columns = config.columns
|
|
92
|
-
rows = config.rows
|
|
93
|
-
hunger_rate = config.hunger_rate
|
|
94
|
-
min_food = config.min_food
|
|
95
|
-
num_agents = len(state)
|
|
96
|
-
|
|
97
|
-
# Clone the geese and food observation between all the agents.
|
|
98
|
-
geese = state[0].observation.geese
|
|
99
|
-
food = state[0].observation.food
|
|
100
|
-
for agent in state:
|
|
101
|
-
agent.observation.geese = geese
|
|
102
|
-
agent.observation.food = food
|
|
103
|
-
|
|
104
|
-
# Reset the environment.
|
|
105
|
-
if env.done:
|
|
106
|
-
# Distribute food and geese randomly.
|
|
107
|
-
starting_positions = sample(range(columns * rows), num_agents * 2)
|
|
108
|
-
for index in range(num_agents):
|
|
109
|
-
geese.append([starting_positions[index]])
|
|
110
|
-
food.append(starting_positions[index + num_agents])
|
|
111
|
-
return state
|
|
112
|
-
|
|
113
|
-
# Update active agents rewards.
|
|
114
|
-
for index, agent in enumerate(state):
|
|
115
|
-
if agent.status == "ACTIVE":
|
|
116
|
-
agent.reward = len(env.steps) + len(geese[index])
|
|
117
|
-
|
|
118
|
-
# Apply the actions from active agents.
|
|
119
|
-
for index, agent in enumerate(state):
|
|
120
|
-
if agent.status != "ACTIVE":
|
|
121
|
-
continue
|
|
122
|
-
action = agent.action
|
|
123
|
-
goose = geese[index]
|
|
124
|
-
head = goose[0]
|
|
125
|
-
new_head = get_pos(head, action, columns, rows)
|
|
126
|
-
|
|
127
|
-
# Wall Hit.
|
|
128
|
-
if new_head == -1:
|
|
129
|
-
env.debug_print(f"Wall Hit: {action}")
|
|
130
|
-
agent.status = "INACTIVE"
|
|
131
|
-
geese[index] = []
|
|
132
|
-
continue
|
|
133
|
-
|
|
134
|
-
# Last Body Hit.
|
|
135
|
-
if len(goose) > 1 and goose[1] == new_head:
|
|
136
|
-
env.debug_print(f"Body Hit: {action}")
|
|
137
|
-
agent.status = "INACTIVE"
|
|
138
|
-
geese[index] = []
|
|
139
|
-
continue
|
|
140
|
-
|
|
141
|
-
# Add New Head to the Goose.
|
|
142
|
-
goose.insert(0, new_head)
|
|
143
|
-
|
|
144
|
-
# Check Food.
|
|
145
|
-
if head in food:
|
|
146
|
-
food.remove(head)
|
|
147
|
-
else:
|
|
148
|
-
goose.pop()
|
|
149
|
-
|
|
150
|
-
# If hunger strikes remove from the tail.
|
|
151
|
-
if len(env.steps) % hunger_rate == 0:
|
|
152
|
-
goose.pop()
|
|
153
|
-
if len(goose) == 0:
|
|
154
|
-
env.debug_print(f"Goose Starved: {action}")
|
|
155
|
-
agent.status = "INACTIVE"
|
|
156
|
-
geese[index] = []
|
|
157
|
-
continue
|
|
158
|
-
|
|
159
|
-
# Check for collisions.
|
|
160
|
-
collisions = {}
|
|
161
|
-
for goose in geese:
|
|
162
|
-
for pos in goose:
|
|
163
|
-
collisions[pos] = collisions.get(pos, 0) + 1
|
|
164
|
-
for index, agent in enumerate(state):
|
|
165
|
-
for pos in geese[index]:
|
|
166
|
-
if collisions[pos] > 1:
|
|
167
|
-
env.debug_print(f"Goose Collision: {agent.action}")
|
|
168
|
-
agent.status = "INACTIVE"
|
|
169
|
-
geese[index] = []
|
|
170
|
-
continue
|
|
171
|
-
|
|
172
|
-
# Add food if min_food threshold reached.
|
|
173
|
-
if len(food) < min_food:
|
|
174
|
-
available_positions = list(range(rows * columns))
|
|
175
|
-
for goose in geese:
|
|
176
|
-
for pos in goose:
|
|
177
|
-
available_positions.remove(pos)
|
|
178
|
-
food.extend(sample(available_positions, min_food - len(food)))
|
|
179
|
-
|
|
180
|
-
# If only one ACTIVE agent left, set it to INACTIVE.
|
|
181
|
-
active_agents = [a for a in state if a.status == "ACTIVE"]
|
|
182
|
-
if len(active_agents) == 1:
|
|
183
|
-
active_agents[0].status = "INACTIVE"
|
|
184
|
-
|
|
185
|
-
return state
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
def renderer(state, env):
|
|
189
|
-
config = env.configuration
|
|
190
|
-
columns = config.columns
|
|
191
|
-
rows = config.rows
|
|
192
|
-
|
|
193
|
-
foodSymbol = "F"
|
|
194
|
-
colDivider = "|"
|
|
195
|
-
rowDivider = "+" + "+".join(["---"] * columns) + "+\n"
|
|
196
|
-
|
|
197
|
-
board = [" "] * (rows * columns)
|
|
198
|
-
for pos in state[0].observation.food:
|
|
199
|
-
board[pos] = foodSymbol
|
|
200
|
-
|
|
201
|
-
for index, goose in enumerate(state[0].observation.geese):
|
|
202
|
-
for pos in goose:
|
|
203
|
-
board[pos] = index
|
|
204
|
-
|
|
205
|
-
out = rowDivider
|
|
206
|
-
for row in range(rows):
|
|
207
|
-
for col in range(columns):
|
|
208
|
-
out += colDivider + f" {board[(row * columns) + col]} "
|
|
209
|
-
out += colDivider + "\n" + rowDivider
|
|
210
|
-
|
|
211
|
-
return out
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
dirpath = path.dirname(__file__)
|
|
215
|
-
jsonpath = path.abspath(path.join(dirpath, "battlegeese.json"))
|
|
216
|
-
with open(jsonpath) as f:
|
|
217
|
-
specification = json.load(f)
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
def html_renderer():
|
|
221
|
-
jspath = path.abspath(path.join(dirpath, "battlegeese.js"))
|
|
222
|
-
with open(jspath) as f:
|
|
223
|
-
return f.read()
|
kaggle_environments/temp.py
DELETED
|
@@ -1,393 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: kaggle-environments
|
|
3
|
-
Version: 0.2.1
|
|
4
|
-
Summary: Kaggle Environments
|
|
5
|
-
Home-page: https://github.com/Kaggle/kaggle-environments
|
|
6
|
-
Author: Kaggle
|
|
7
|
-
Author-email: support@kaggle.com
|
|
8
|
-
License: Apache 2.0
|
|
9
|
-
Keywords: Kaggle
|
|
10
|
-
Platform: UNKNOWN
|
|
11
|
-
Requires-Python: >=3.6
|
|
12
|
-
Description-Content-Type: text/markdown
|
|
13
|
-
Requires-Dist: jsonschema (>=3.0.1)
|
|
14
|
-
|
|
15
|
-
# [<img src="https://kaggle.com/static/images/site-logo.png" height="50" style="margin-bottom:-15px" />](https://kaggle.com) Environments
|
|
16
|
-
|
|
17
|
-
```bash
|
|
18
|
-
pip install kaggle-environments
|
|
19
|
-
```
|
|
20
|
-
|
|
21
|
-
# TLDR;
|
|
22
|
-
|
|
23
|
-
```python
|
|
24
|
-
from kaggle_environments import make
|
|
25
|
-
|
|
26
|
-
# Setup a tictactoe environment.
|
|
27
|
-
env = make("tictactoe")
|
|
28
|
-
|
|
29
|
-
# Basic agent which marks the first available cell.
|
|
30
|
-
def my_agent(obs):
|
|
31
|
-
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
|
|
32
|
-
|
|
33
|
-
# Run the basic agent against a default agent which chooses a "random" move.
|
|
34
|
-
env.run([my_agent, "random"])
|
|
35
|
-
|
|
36
|
-
# Render an html ipython replay of the tictactoe game.
|
|
37
|
-
env.render(mode="ipython")
|
|
38
|
-
```
|
|
39
|
-
|
|
40
|
-
# Overview
|
|
41
|
-
|
|
42
|
-
Kaggle Environments was created to evaluate episodes. While other libraries have set interface precedents (such as Open.ai Gym), the emphasis of this library focuses on:
|
|
43
|
-
|
|
44
|
-
1. Episode evaluation (compared to training agents).
|
|
45
|
-
2. Configurable environment/agent lifecycles.
|
|
46
|
-
3. Simplified agent and environment creation.
|
|
47
|
-
4. Cross language compatible/transpilable syntax/interfaces.
|
|
48
|
-
|
|
49
|
-
## Help Documentation
|
|
50
|
-
|
|
51
|
-
```python
|
|
52
|
-
# Additional documentation (especially interfaces) can be found on all public functions:
|
|
53
|
-
from kaggle_environments import make
|
|
54
|
-
help(make)
|
|
55
|
-
env = make("tictactoe")
|
|
56
|
-
dir(env)
|
|
57
|
-
help(env.reset)
|
|
58
|
-
```
|
|
59
|
-
|
|
60
|
-
# Agents
|
|
61
|
-
|
|
62
|
-
> A function which given an observation generates an action.
|
|
63
|
-
|
|
64
|
-
## Writing
|
|
65
|
-
|
|
66
|
-
Agent functions can have observation and configuration parameters and must return a valid action. Details about the observation, configuration, and actions can seen by viewing the specification.
|
|
67
|
-
|
|
68
|
-
```python
|
|
69
|
-
from kaggle_simulations import make
|
|
70
|
-
env = make("connectx", {rows: 10, columns: 8, inarow: 5})
|
|
71
|
-
|
|
72
|
-
def agent(observation, configration):
|
|
73
|
-
print(observation) # {board: [...], mark: 1}
|
|
74
|
-
print(configuration) # {rows: 10, columns: 8, inarow: 5}
|
|
75
|
-
return 3 # Action: always place a mark in the 3rd column.
|
|
76
|
-
|
|
77
|
-
# Run an episode using the agent above vs the default random agent.
|
|
78
|
-
env.run([agent, "random"])
|
|
79
|
-
|
|
80
|
-
# Print schemas from the specification.
|
|
81
|
-
print(env.specification.observation)
|
|
82
|
-
print(env.specification.configuration)
|
|
83
|
-
print(env.specification.action)
|
|
84
|
-
```
|
|
85
|
-
|
|
86
|
-
## Loading Agents
|
|
87
|
-
|
|
88
|
-
Agents are always functions, however there are some shorthand syntax options to make generating/using them easier.
|
|
89
|
-
|
|
90
|
-
```python
|
|
91
|
-
# Agent def accepting an observation and returning an action.
|
|
92
|
-
def agent1(obs):
|
|
93
|
-
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
|
|
94
|
-
|
|
95
|
-
# Load a default agent called "random".
|
|
96
|
-
agent2 = "random"
|
|
97
|
-
|
|
98
|
-
# Load an agent from source.
|
|
99
|
-
agent3 = """
|
|
100
|
-
def act(obs):
|
|
101
|
-
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
|
|
102
|
-
"""
|
|
103
|
-
|
|
104
|
-
# Load an agent from a file.
|
|
105
|
-
agent4 = "C:\path\file.py"
|
|
106
|
-
|
|
107
|
-
# Return a fixed action.
|
|
108
|
-
agent5 = 3
|
|
109
|
-
|
|
110
|
-
# Return an action from a url.
|
|
111
|
-
agent6 = "http://localhost:8000/run/agent"
|
|
112
|
-
```
|
|
113
|
-
|
|
114
|
-
## Default Agents
|
|
115
|
-
|
|
116
|
-
Most environments contain default agents to play against. To see the list of available agents for a specific environment run:
|
|
117
|
-
|
|
118
|
-
```python
|
|
119
|
-
from kaggle_simulations import make
|
|
120
|
-
env = make("tictactoe")
|
|
121
|
-
|
|
122
|
-
# The list of available default agents.
|
|
123
|
-
print(*env.agents)
|
|
124
|
-
|
|
125
|
-
# Run random agent vs reaction agent.
|
|
126
|
-
env.run(["random", "reaction"])
|
|
127
|
-
```
|
|
128
|
-
|
|
129
|
-
## Training
|
|
130
|
-
|
|
131
|
-
Open AI Gym interface is used to assist with training agents. The `None` keyword is used below to denote which agent to train (i.e. train as first or second player of connectx).
|
|
132
|
-
|
|
133
|
-
```python
|
|
134
|
-
from kaggle_environments import make
|
|
135
|
-
|
|
136
|
-
env = make("connectx", debug=True)
|
|
137
|
-
|
|
138
|
-
# Training agent in first position (player 1) against the default random agent.
|
|
139
|
-
trainer = env.train([None, "random"])
|
|
140
|
-
|
|
141
|
-
obs = trainer.reset()
|
|
142
|
-
for _ in range(100):
|
|
143
|
-
env.render()
|
|
144
|
-
action = 0 # Action for the agent being trained.
|
|
145
|
-
obs, reward, done, info = trainer.step(action)
|
|
146
|
-
if done:
|
|
147
|
-
obs = trainer.reset()
|
|
148
|
-
```
|
|
149
|
-
|
|
150
|
-
## Debugging
|
|
151
|
-
|
|
152
|
-
There are 3 types of errors which can occur from agent execution:
|
|
153
|
-
|
|
154
|
-
1. **Timeout** - the agent runtime exceeded the allowed limit. There are 2 timeouts:
|
|
155
|
-
1. `agentTimeout` - Used for initialization of an agent on first "act".
|
|
156
|
-
2. `actTimeout` - Used for obtaining an action.
|
|
157
|
-
2. **Error** - the agent raised and error during execution.
|
|
158
|
-
3. **Invalid** - the agent action response didn't match the action specification or the environment deemed it invalid (i.e. playing twice in the same cell in tictactoe).
|
|
159
|
-
|
|
160
|
-
To help debug your agent and why it threw the errors above, add the `debug` flag when setting up the environment.
|
|
161
|
-
|
|
162
|
-
```python
|
|
163
|
-
from kaggle_simulations import make
|
|
164
|
-
|
|
165
|
-
def agent():
|
|
166
|
-
return "Something Bad"
|
|
167
|
-
|
|
168
|
-
env = make("tictactoe", debug=True)
|
|
169
|
-
|
|
170
|
-
env.run([agent, "random"])
|
|
171
|
-
# Prints: "Invalid Action: Something Bad"
|
|
172
|
-
```
|
|
173
|
-
|
|
174
|
-
# Environments
|
|
175
|
-
|
|
176
|
-
> A function which given a state and agent actions generates a new state.
|
|
177
|
-
|
|
178
|
-
| Name | Description | Make |
|
|
179
|
-
| --------- | ------------------------------------ | ------------------------- |
|
|
180
|
-
| connectx | Connect 4 in a row but configurable. | `env = make("connectx")` |
|
|
181
|
-
| tictactoe | Classic Tic Tac Toe | `env = make("tictactoe")` |
|
|
182
|
-
| identity | For debugging, action is the reward. | `env = make("identity")` |
|
|
183
|
-
|
|
184
|
-
## Making
|
|
185
|
-
|
|
186
|
-
An environment instance can be made from an existing specification (such as those listed above).
|
|
187
|
-
|
|
188
|
-
```python
|
|
189
|
-
from kaggle_environments import make
|
|
190
|
-
|
|
191
|
-
# Create an environment instance.
|
|
192
|
-
env = make(
|
|
193
|
-
# Specification or name to registered specification.
|
|
194
|
-
"connectx",
|
|
195
|
-
|
|
196
|
-
# Override default and environment configuration.
|
|
197
|
-
configuration={"rows": 9, "columns": 10},
|
|
198
|
-
|
|
199
|
-
# Initialize the environment from a prior state (episode resume).
|
|
200
|
-
steps=[],
|
|
201
|
-
|
|
202
|
-
# Enable verbose logging.
|
|
203
|
-
debug=True
|
|
204
|
-
)
|
|
205
|
-
```
|
|
206
|
-
|
|
207
|
-
## Configuration
|
|
208
|
-
|
|
209
|
-
There are two types of configuration: Defaults applying to every environment and those specific to the environment. The following is a list of the default configuration:
|
|
210
|
-
|
|
211
|
-
| Name | Description |
|
|
212
|
-
| ------------ | --------------------------------------------------------------- |
|
|
213
|
-
| episodeSteps | Maximum number of steps in the episode. |
|
|
214
|
-
| agentExec | How the agent is executed alongside the envionment. |
|
|
215
|
-
| agentTimeout | Maximum runtime (seconds) to initialize an agent. |
|
|
216
|
-
| actTimeout | Maximum runtime (seconds) to obtain an action from an agent. |
|
|
217
|
-
| runTimeout | Maximum runtime (seconds) of an episode (not necessarily DONE). |
|
|
218
|
-
|
|
219
|
-
```python
|
|
220
|
-
env = make("connectx", configuration={
|
|
221
|
-
"columns": 19, # Specific to ConnectX.
|
|
222
|
-
"actTimeout": 10,
|
|
223
|
-
"agentExec": "LOCAL"
|
|
224
|
-
})
|
|
225
|
-
```
|
|
226
|
-
|
|
227
|
-
## Resetting
|
|
228
|
-
|
|
229
|
-
Environments are reset by default after "make" (unless starting steps are passed in) as well as when calling "run". Reset can be called at anytime to clear the environment.
|
|
230
|
-
|
|
231
|
-
```python
|
|
232
|
-
num_agents = 2
|
|
233
|
-
reset_state = env.reset(num_agents)
|
|
234
|
-
```
|
|
235
|
-
|
|
236
|
-
## Running
|
|
237
|
-
|
|
238
|
-
Execute an episode against the environment using the passed in agents until they are no longer running (i.e. status != ACTIVE).
|
|
239
|
-
|
|
240
|
-
```python
|
|
241
|
-
steps = env.run([agent1, agent2])
|
|
242
|
-
print(steps)
|
|
243
|
-
```
|
|
244
|
-
|
|
245
|
-
## Evaluating
|
|
246
|
-
|
|
247
|
-
Evaluation is used to run an episode (environment + agents) multiple times and just return the rewards.
|
|
248
|
-
|
|
249
|
-
```python
|
|
250
|
-
from kaggle_simulations import evaluate
|
|
251
|
-
|
|
252
|
-
# Same definitions as "make" above.
|
|
253
|
-
envrionment = "connectx"
|
|
254
|
-
configuration = {rows: 10, columns: 8, inarow: 5}
|
|
255
|
-
steps = []
|
|
256
|
-
debug = False
|
|
257
|
-
|
|
258
|
-
# Which agents to run repeatedly. Same as env.run(agents)
|
|
259
|
-
agents = ["random", agent1]
|
|
260
|
-
|
|
261
|
-
# How many times to run them.
|
|
262
|
-
num_episodes = 10
|
|
263
|
-
|
|
264
|
-
rewards = evaluate(environment, agents, configuration, steps, num_episodes, debug)
|
|
265
|
-
```
|
|
266
|
-
|
|
267
|
-
## Stepping
|
|
268
|
-
|
|
269
|
-
Running above essentially just steps until no agent is still active. To execute a singular game loop, pass in actions directly for each agent. Note that this is normally used for training agents (most useful in a single agent setup such as using the gym interface).
|
|
270
|
-
|
|
271
|
-
```python
|
|
272
|
-
agent1_action = agent1(env.state[0].observation)
|
|
273
|
-
agent2_action = agent2(env.state[1].observation)
|
|
274
|
-
state = env.step(agent1_action, agent2_action)
|
|
275
|
-
```
|
|
276
|
-
|
|
277
|
-
## Playing
|
|
278
|
-
|
|
279
|
-
A few environments offer an interactive play against agents within jupyter notebooks. An example of this is using connectx:
|
|
280
|
-
|
|
281
|
-
```python
|
|
282
|
-
from kaggle_simulations import make
|
|
283
|
-
|
|
284
|
-
env = make("connectx")
|
|
285
|
-
# None indicates which agent will be manually played.
|
|
286
|
-
env.play([None, "random"])
|
|
287
|
-
```
|
|
288
|
-
|
|
289
|
-
## Rendering
|
|
290
|
-
|
|
291
|
-
The following rendering modes are supported:
|
|
292
|
-
|
|
293
|
-
- json - Same as doing a json dump of `env.toJSON()`
|
|
294
|
-
- ansi - Ascii character representation of the environment.
|
|
295
|
-
- human - ansi just printed to stdout
|
|
296
|
-
- html - HTML player representation of the environment.
|
|
297
|
-
- ipython - html just printed to the output of a ipython notebook.
|
|
298
|
-
|
|
299
|
-
```python
|
|
300
|
-
out = env.render(mode="ansi")
|
|
301
|
-
print(out)
|
|
302
|
-
```
|
|
303
|
-
|
|
304
|
-
# Command Line
|
|
305
|
-
|
|
306
|
-
```sh
|
|
307
|
-
> python main.py -h
|
|
308
|
-
```
|
|
309
|
-
|
|
310
|
-
## List Registered Environments
|
|
311
|
-
|
|
312
|
-
```sh
|
|
313
|
-
> python main.py list
|
|
314
|
-
```
|
|
315
|
-
|
|
316
|
-
## Evaluate Episode Rewards
|
|
317
|
-
|
|
318
|
-
```sh
|
|
319
|
-
python main.py evaluate --environment tictactoe --agents random random --episodes 10
|
|
320
|
-
```
|
|
321
|
-
|
|
322
|
-
## Run an Episode
|
|
323
|
-
|
|
324
|
-
```sh
|
|
325
|
-
> python main.py run --environment tictactoe --agents random /pathtomy/agent.py --debug True
|
|
326
|
-
```
|
|
327
|
-
|
|
328
|
-
## Load an Episode
|
|
329
|
-
|
|
330
|
-
This is useful when converting an episode json output into html.
|
|
331
|
-
|
|
332
|
-
```sh
|
|
333
|
-
python main.py load --environment tictactoe --steps [...] --render '{"mode": "html"}'
|
|
334
|
-
```
|
|
335
|
-
|
|
336
|
-
# HTTP Server
|
|
337
|
-
|
|
338
|
-
The HTTP server contains the same interface/actions as the CLI above merging both POST body and GET params.
|
|
339
|
-
|
|
340
|
-
## Setup
|
|
341
|
-
|
|
342
|
-
```bash
|
|
343
|
-
python main.py http-server --port=8012 --host=0.0.0.0
|
|
344
|
-
```
|
|
345
|
-
|
|
346
|
-
## Adding Middleware
|
|
347
|
-
|
|
348
|
-
```python
|
|
349
|
-
# middleware.py
|
|
350
|
-
import time
|
|
351
|
-
|
|
352
|
-
def request(req):
|
|
353
|
-
time.sleep(30)
|
|
354
|
-
req.agents = ["random", "random"]
|
|
355
|
-
return req
|
|
356
|
-
|
|
357
|
-
def response(req, resp):
|
|
358
|
-
time.sleep(10)
|
|
359
|
-
return resp
|
|
360
|
-
```
|
|
361
|
-
|
|
362
|
-
```bash
|
|
363
|
-
python3 main.py http-server --middleware=/path/to/middleware.py
|
|
364
|
-
```
|
|
365
|
-
|
|
366
|
-
### Running Agents on Separate Servers
|
|
367
|
-
|
|
368
|
-
```python
|
|
369
|
-
# How to run agent on a separate server.
|
|
370
|
-
import requests
|
|
371
|
-
import json
|
|
372
|
-
|
|
373
|
-
path_to_agent1 = "/home/ajeffries/git/playground/agent1.py"
|
|
374
|
-
path_to_agent2 = "/home/ajeffries/git/playground/agent2.py"
|
|
375
|
-
|
|
376
|
-
agent1_url = f"http://localhost:5001?agents[]={path_to_agent1}"
|
|
377
|
-
agent2_url = f"http://localhost:5002?agents[]={path_to_agent2}"
|
|
378
|
-
|
|
379
|
-
body = {
|
|
380
|
-
"action": "run",
|
|
381
|
-
"environment": "tictactoe",
|
|
382
|
-
"agents": [agent1_url, agent2_url]
|
|
383
|
-
}
|
|
384
|
-
resp = requests.post(url="http://localhost:5000", data=json.dumps(body)).json()
|
|
385
|
-
|
|
386
|
-
# Inflate the response replay to visualize.
|
|
387
|
-
from kaggle_environments import make
|
|
388
|
-
env = make("tictactoe", steps=resp["steps"], debug=True)
|
|
389
|
-
env.render(mode="ipython")
|
|
390
|
-
print(resp)
|
|
391
|
-
```
|
|
392
|
-
|
|
393
|
-
|
|
@@ -1,32 +0,0 @@
|
|
|
1
|
-
kaggle_environments/__init__.py,sha256=MFh91QZuhBPHN7F2heuRQUihrei4oxptbOpGJqg0NwA,1329
|
|
2
|
-
kaggle_environments/agent.py,sha256=Me52NjPueXq4e8dFcdiLlACRnJX5ppDOoOr1Ec2yTSs,5139
|
|
3
|
-
kaggle_environments/core.py,sha256=-UTM7CgyPX1GGI5bgcqBpm68l88d3ZPyDh3jMy0IbDM,22863
|
|
4
|
-
kaggle_environments/errors.py,sha256=gKgOb2_JcOuBMLw3Ol_NZ4arlsvzBm3xV9fqZN3jeeY,3336
|
|
5
|
-
kaggle_environments/schemas.json,sha256=YSHnIhrJ60GjWLminloebVsxQXXINm_Z3Nbew7Wkusc,3070
|
|
6
|
-
kaggle_environments/status_codes.json,sha256=6a8HuS_Vth95W0f2fov21QLdRfA3KbizUvjKmJhYtBc,995
|
|
7
|
-
kaggle_environments/temp.py,sha256=65fHiopG3pvFMhzh2xukJFqj-1O949m_2LrMow5kFng,208
|
|
8
|
-
kaggle_environments/utils.py,sha256=wfeJ4ZZNSA4bOLI0nR383yrcvp2bGvtQPsTfU5jbp5E,6307
|
|
9
|
-
kaggle_environments/envs/battlegeese/battlegeese.js,sha256=ZiuDhbn7EXVfrN-rMl3u5TFw9EdujezAVv21ASS5lYc,35551
|
|
10
|
-
kaggle_environments/envs/battlegeese/battlegeese.json,sha256=4NAvQMp6jtNsF5oIh084w0gohI31E8jCqNBjBcNfOog,2087
|
|
11
|
-
kaggle_environments/envs/battlegeese/battlegeese.py,sha256=4Ot8AOiXz_MdcvE8x6p6OFr7aPY3cyPx8aQE_d9mNzI,6825
|
|
12
|
-
kaggle_environments/envs/connectx/connectx.js,sha256=u3zaqpiBfnAaC-fiT3hrNABXRIVTc4mKS3qOjCgNvvc,9227
|
|
13
|
-
kaggle_environments/envs/connectx/connectx.json,sha256=mdOj-ED1ld3iIcmK3uAs00xFMbxTdGnHkNhyB1XoJUI,1309
|
|
14
|
-
kaggle_environments/envs/connectx/connectx.py,sha256=PeQsALGBUJrUnCvYmc6AE8nIdFFKM5GHs24RrL0-xAU,6928
|
|
15
|
-
kaggle_environments/envs/connectx/test_connectx.py,sha256=WzXjuzEUXPRlOd5m_DxpaEqbMZNimjBNOJGsYDYEjHM,6267
|
|
16
|
-
kaggle_environments/envs/halite/halite.js,sha256=VQdl4Llro4Mp0bWQwIb6Aj887Yuou9nW1qSfqK136ek,14672
|
|
17
|
-
kaggle_environments/envs/halite/halite.json,sha256=Pd2WPtmEpS7UMYVI-FtIddHrDPTFV9L1R603ViXowaA,3795
|
|
18
|
-
kaggle_environments/envs/halite/halite.py,sha256=GtXAV0le5uSaWSh7LqVlROoL8qJqVba6wcUUuOY46sg,15943
|
|
19
|
-
kaggle_environments/envs/halite/test_halite.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
20
|
-
kaggle_environments/envs/identity/identity.json,sha256=l5M7GnhhEyeOphXU0nS5VoZuIOrzrL9H6rz3lsR3fFk,947
|
|
21
|
-
kaggle_environments/envs/identity/identity.py,sha256=SEeei1cDG-brC29cLwlOPWYFTWUzmr7uVWLQsqPuiR4,1829
|
|
22
|
-
kaggle_environments/envs/tictactoe/test_tictactoe.py,sha256=PMd6lT1ETNgf4f23teZ6QJ2mJpH9kL1nKyiE8lH-3i8,7770
|
|
23
|
-
kaggle_environments/envs/tictactoe/tictactoe.js,sha256=NZDT-oSG0a6a-rso9Ldh9qkJwVrxrAsjKUC3_tJu3tw,8002
|
|
24
|
-
kaggle_environments/envs/tictactoe/tictactoe.json,sha256=7OAnLZuLfGzQJa_ZWomAh151KS0qwax4XtU6lFQc0rA,859
|
|
25
|
-
kaggle_environments/envs/tictactoe/tictactoe.py,sha256=iLNU5V-lz7Xab-d1vpPMfU5jDM3QtgBUH63Y_SU7I9Y,3639
|
|
26
|
-
kaggle_environments/static/player.html,sha256=Hs_SacmEIkXdcuz8eCnZr-UHkjMqvPHcNTJtg0ESRkU,21633
|
|
27
|
-
kaggle_environments-0.2.1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
28
|
-
kaggle_environments-0.2.1.dist-info/METADATA,sha256=BjEQf7p6isqwZ0_hfa70vELjoGkwlc7g1PqUUZv5amY,10685
|
|
29
|
-
kaggle_environments-0.2.1.dist-info/WHEEL,sha256=p46_5Uhzqz6AzeSosiOnxK-zmFja1i22CrQCjmYe8ec,92
|
|
30
|
-
kaggle_environments-0.2.1.dist-info/entry_points.txt,sha256=SblqSc9cehdfGIc8QMCJU9vE4oxe7rBctjpm8f9rONw,71
|
|
31
|
-
kaggle_environments-0.2.1.dist-info/top_level.txt,sha256=v3MMWIPMQFcI-WuF_dJngHWe9Bb2yH_6p4wat1x4gAc,20
|
|
32
|
-
kaggle_environments-0.2.1.dist-info/RECORD,,
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
kaggle_environments
|
{kaggle_environments-0.2.1.dist-info → kaggle_environments-1.20.0.dist-info/licenses}/LICENSE
RENAMED
|
File without changes
|