kagent-adk 0.7.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kagent/adk/__init__.py +8 -0
- kagent/adk/_a2a.py +178 -0
- kagent/adk/_agent_executor.py +335 -0
- kagent/adk/_lifespan.py +36 -0
- kagent/adk/_session_service.py +178 -0
- kagent/adk/_token.py +80 -0
- kagent/adk/artifacts/__init__.py +13 -0
- kagent/adk/artifacts/artifacts_toolset.py +56 -0
- kagent/adk/artifacts/return_artifacts_tool.py +160 -0
- kagent/adk/artifacts/session_path.py +106 -0
- kagent/adk/artifacts/stage_artifacts_tool.py +170 -0
- kagent/adk/cli.py +249 -0
- kagent/adk/converters/__init__.py +0 -0
- kagent/adk/converters/error_mappings.py +60 -0
- kagent/adk/converters/event_converter.py +322 -0
- kagent/adk/converters/part_converter.py +206 -0
- kagent/adk/converters/request_converter.py +35 -0
- kagent/adk/models/__init__.py +3 -0
- kagent/adk/models/_openai.py +564 -0
- kagent/adk/models/_ssl.py +245 -0
- kagent/adk/sandbox_code_executer.py +77 -0
- kagent/adk/skill_fetcher.py +103 -0
- kagent/adk/tools/README.md +217 -0
- kagent/adk/tools/__init__.py +15 -0
- kagent/adk/tools/bash_tool.py +74 -0
- kagent/adk/tools/file_tools.py +192 -0
- kagent/adk/tools/skill_tool.py +104 -0
- kagent/adk/tools/skills_plugin.py +49 -0
- kagent/adk/tools/skills_toolset.py +68 -0
- kagent/adk/types.py +268 -0
- kagent_adk-0.7.11.dist-info/METADATA +35 -0
- kagent_adk-0.7.11.dist-info/RECORD +34 -0
- kagent_adk-0.7.11.dist-info/WHEEL +4 -0
- kagent_adk-0.7.11.dist-info/entry_points.txt +2 -0
|
@@ -0,0 +1,564 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import base64
|
|
4
|
+
import json
|
|
5
|
+
import os
|
|
6
|
+
from functools import cached_property
|
|
7
|
+
from typing import TYPE_CHECKING, Any, AsyncGenerator, Iterable, Literal, Optional
|
|
8
|
+
|
|
9
|
+
import httpx
|
|
10
|
+
from google.adk.models import BaseLlm
|
|
11
|
+
from google.adk.models.llm_response import LlmResponse
|
|
12
|
+
from google.genai import types
|
|
13
|
+
from google.genai.types import FunctionCall, FunctionResponse
|
|
14
|
+
from openai import AsyncAzureOpenAI, AsyncOpenAI, DefaultAsyncHttpxClient
|
|
15
|
+
from openai.types.chat import (
|
|
16
|
+
ChatCompletion,
|
|
17
|
+
ChatCompletionAssistantMessageParam,
|
|
18
|
+
ChatCompletionContentPartImageParam,
|
|
19
|
+
ChatCompletionContentPartTextParam,
|
|
20
|
+
ChatCompletionMessageParam,
|
|
21
|
+
ChatCompletionSystemMessageParam,
|
|
22
|
+
ChatCompletionToolMessageParam,
|
|
23
|
+
ChatCompletionToolParam,
|
|
24
|
+
ChatCompletionUserMessageParam,
|
|
25
|
+
)
|
|
26
|
+
from openai.types.chat.chat_completion_message_tool_call_param import (
|
|
27
|
+
ChatCompletionMessageToolCallParam,
|
|
28
|
+
)
|
|
29
|
+
from openai.types.chat.chat_completion_message_tool_call_param import (
|
|
30
|
+
Function as ToolCallFunction,
|
|
31
|
+
)
|
|
32
|
+
from openai.types.shared_params import FunctionDefinition, FunctionParameters
|
|
33
|
+
from pydantic import Field
|
|
34
|
+
|
|
35
|
+
from ._ssl import create_ssl_context
|
|
36
|
+
|
|
37
|
+
if TYPE_CHECKING:
|
|
38
|
+
from google.adk.models.llm_request import LlmRequest
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def _convert_role_to_openai(role: Optional[str]) -> str:
|
|
42
|
+
"""Convert google.genai role to OpenAI role."""
|
|
43
|
+
if role in ["model", "assistant"]:
|
|
44
|
+
return "assistant"
|
|
45
|
+
elif role == "system":
|
|
46
|
+
return "system"
|
|
47
|
+
else:
|
|
48
|
+
return "user"
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def _convert_content_to_openai_messages(
|
|
52
|
+
contents: list[types.Content], system_instruction: Optional[str] = None
|
|
53
|
+
) -> list[ChatCompletionMessageParam]:
|
|
54
|
+
"""Convert google.genai Content list to OpenAI messages format."""
|
|
55
|
+
messages: list[ChatCompletionMessageParam] = []
|
|
56
|
+
|
|
57
|
+
# Add system message if provided
|
|
58
|
+
if system_instruction:
|
|
59
|
+
system_message: ChatCompletionSystemMessageParam = {"role": "system", "content": system_instruction}
|
|
60
|
+
messages.append(system_message)
|
|
61
|
+
|
|
62
|
+
# First pass: collect all function responses to match with tool calls
|
|
63
|
+
all_function_responses: dict[str, FunctionResponse] = {}
|
|
64
|
+
for content in contents:
|
|
65
|
+
for part in content.parts or []:
|
|
66
|
+
if part.function_response:
|
|
67
|
+
tool_call_id = part.function_response.id or "call_1"
|
|
68
|
+
all_function_responses[tool_call_id] = part.function_response
|
|
69
|
+
|
|
70
|
+
for content in contents:
|
|
71
|
+
role = _convert_role_to_openai(content.role)
|
|
72
|
+
|
|
73
|
+
# Separate different types of parts
|
|
74
|
+
text_parts: list[str] = []
|
|
75
|
+
function_calls: list[FunctionCall] = []
|
|
76
|
+
function_responses: list[FunctionResponse] = []
|
|
77
|
+
image_parts = []
|
|
78
|
+
|
|
79
|
+
for part in content.parts or []:
|
|
80
|
+
if part.text:
|
|
81
|
+
text_parts.append(part.text)
|
|
82
|
+
elif part.function_call:
|
|
83
|
+
function_calls.append(part.function_call)
|
|
84
|
+
elif part.function_response:
|
|
85
|
+
function_responses.append(part.function_response)
|
|
86
|
+
elif part.inline_data and part.inline_data.mime_type and part.inline_data.mime_type.startswith("image"):
|
|
87
|
+
if part.inline_data.data:
|
|
88
|
+
image_data = base64.b64encode(part.inline_data.data).decode()
|
|
89
|
+
image_part: ChatCompletionContentPartImageParam = {
|
|
90
|
+
"type": "image_url",
|
|
91
|
+
"image_url": {"url": f"data:{part.inline_data.mime_type};base64,{image_data}"},
|
|
92
|
+
}
|
|
93
|
+
image_parts.append(image_part)
|
|
94
|
+
|
|
95
|
+
# Function responses are now handled together with function calls
|
|
96
|
+
# This ensures proper pairing and prevents orphaned tool messages
|
|
97
|
+
|
|
98
|
+
# Handle function calls (assistant messages with tool_calls)
|
|
99
|
+
if function_calls:
|
|
100
|
+
tool_calls = []
|
|
101
|
+
tool_response_messages = []
|
|
102
|
+
|
|
103
|
+
for func_call in function_calls:
|
|
104
|
+
tool_call_function: ToolCallFunction = {
|
|
105
|
+
"name": func_call.name or "",
|
|
106
|
+
"arguments": json.dumps(func_call.args) if func_call.args else "{}",
|
|
107
|
+
}
|
|
108
|
+
tool_call_id = func_call.id or "call_1"
|
|
109
|
+
tool_call = ChatCompletionMessageToolCallParam(
|
|
110
|
+
id=tool_call_id,
|
|
111
|
+
type="function",
|
|
112
|
+
function=tool_call_function,
|
|
113
|
+
)
|
|
114
|
+
tool_calls.append(tool_call)
|
|
115
|
+
|
|
116
|
+
# Check if we have a response for this tool call
|
|
117
|
+
if tool_call_id in all_function_responses:
|
|
118
|
+
func_response = all_function_responses[tool_call_id]
|
|
119
|
+
content = ""
|
|
120
|
+
if isinstance(func_response.response, str):
|
|
121
|
+
content = func_response.response
|
|
122
|
+
elif func_response.response and "content" in func_response.response:
|
|
123
|
+
content_list = func_response.response["content"]
|
|
124
|
+
if len(content_list) > 0:
|
|
125
|
+
content = content_list[0]["text"]
|
|
126
|
+
elif func_response.response and "result" in func_response.response:
|
|
127
|
+
content = func_response.response["result"]
|
|
128
|
+
|
|
129
|
+
tool_message = ChatCompletionToolMessageParam(
|
|
130
|
+
role="tool",
|
|
131
|
+
tool_call_id=tool_call_id,
|
|
132
|
+
content=content,
|
|
133
|
+
)
|
|
134
|
+
tool_response_messages.append(tool_message)
|
|
135
|
+
else:
|
|
136
|
+
# If no response is available, create a placeholder response
|
|
137
|
+
# This prevents the OpenAI API error
|
|
138
|
+
tool_message = ChatCompletionToolMessageParam(
|
|
139
|
+
role="tool",
|
|
140
|
+
tool_call_id=tool_call_id,
|
|
141
|
+
content="No response available for this function call.",
|
|
142
|
+
)
|
|
143
|
+
tool_response_messages.append(tool_message)
|
|
144
|
+
|
|
145
|
+
# Create assistant message with tool calls
|
|
146
|
+
text_content = "\n".join(text_parts) if text_parts else None
|
|
147
|
+
assistant_message = ChatCompletionAssistantMessageParam(
|
|
148
|
+
role="assistant",
|
|
149
|
+
content=text_content,
|
|
150
|
+
tool_calls=tool_calls,
|
|
151
|
+
)
|
|
152
|
+
messages.append(assistant_message)
|
|
153
|
+
|
|
154
|
+
# Add all tool response messages immediately after the assistant message
|
|
155
|
+
messages.extend(tool_response_messages)
|
|
156
|
+
|
|
157
|
+
# Handle regular text/image messages (only if no function calls)
|
|
158
|
+
elif text_parts or image_parts:
|
|
159
|
+
if role == "user":
|
|
160
|
+
if image_parts and text_parts:
|
|
161
|
+
# Multi-modal content
|
|
162
|
+
text_part = ChatCompletionContentPartTextParam(type="text", text="\n".join(text_parts))
|
|
163
|
+
content_parts = [text_part] + image_parts
|
|
164
|
+
user_message = ChatCompletionUserMessageParam(role="user", content=content_parts)
|
|
165
|
+
elif image_parts:
|
|
166
|
+
# Image only
|
|
167
|
+
user_message = ChatCompletionUserMessageParam(role="user", content=image_parts)
|
|
168
|
+
else:
|
|
169
|
+
# Text only
|
|
170
|
+
user_message = ChatCompletionUserMessageParam(role="user", content="\n".join(text_parts))
|
|
171
|
+
messages.append(user_message)
|
|
172
|
+
elif role == "assistant":
|
|
173
|
+
# Assistant messages with text (no tool calls)
|
|
174
|
+
assistant_message = ChatCompletionAssistantMessageParam(
|
|
175
|
+
role="assistant",
|
|
176
|
+
content="\n".join(text_parts),
|
|
177
|
+
)
|
|
178
|
+
messages.append(assistant_message)
|
|
179
|
+
|
|
180
|
+
return messages
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
def _update_type_string(value_dict: dict[str, Any]):
|
|
184
|
+
"""Updates 'type' field to expected JSON schema format."""
|
|
185
|
+
if "type" in value_dict:
|
|
186
|
+
value_dict["type"] = value_dict["type"].lower()
|
|
187
|
+
|
|
188
|
+
if "items" in value_dict:
|
|
189
|
+
# 'type' field could exist for items as well, this would be the case if
|
|
190
|
+
# items represent primitive types.
|
|
191
|
+
_update_type_string(value_dict["items"])
|
|
192
|
+
|
|
193
|
+
if "properties" in value_dict["items"]:
|
|
194
|
+
# There could be properties as well on the items, especially if the items
|
|
195
|
+
# are complex object themselves. We recursively traverse each individual
|
|
196
|
+
# property as well and fix the "type" value.
|
|
197
|
+
for _, value in value_dict["items"]["properties"].items():
|
|
198
|
+
_update_type_string(value)
|
|
199
|
+
|
|
200
|
+
if "properties" in value_dict:
|
|
201
|
+
# Handle nested properties
|
|
202
|
+
for _, value in value_dict["properties"].items():
|
|
203
|
+
_update_type_string(value)
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
def _convert_tools_to_openai(tools: list[types.Tool]) -> list[ChatCompletionToolParam]:
|
|
207
|
+
"""Convert google.genai Tools to OpenAI tools format."""
|
|
208
|
+
openai_tools: list[ChatCompletionToolParam] = []
|
|
209
|
+
|
|
210
|
+
for tool in tools:
|
|
211
|
+
if tool.function_declarations:
|
|
212
|
+
for func_decl in tool.function_declarations:
|
|
213
|
+
# Build function definition
|
|
214
|
+
function_def = FunctionDefinition(
|
|
215
|
+
name=func_decl.name or "",
|
|
216
|
+
description=func_decl.description or "",
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
# Always include parameters field, even if empty
|
|
220
|
+
properties = {}
|
|
221
|
+
required = []
|
|
222
|
+
|
|
223
|
+
if func_decl.parameters:
|
|
224
|
+
if func_decl.parameters.properties:
|
|
225
|
+
for prop_name, prop_schema in func_decl.parameters.properties.items():
|
|
226
|
+
value_dict = prop_schema.model_dump(exclude_none=True)
|
|
227
|
+
_update_type_string(value_dict)
|
|
228
|
+
properties[prop_name] = value_dict
|
|
229
|
+
|
|
230
|
+
if func_decl.parameters.required:
|
|
231
|
+
required = func_decl.parameters.required
|
|
232
|
+
|
|
233
|
+
function_def["parameters"] = {"type": "object", "properties": properties, "required": required}
|
|
234
|
+
|
|
235
|
+
# Create the tool param
|
|
236
|
+
openai_tool = ChatCompletionToolParam(type="function", function=function_def)
|
|
237
|
+
openai_tools.append(openai_tool)
|
|
238
|
+
|
|
239
|
+
return openai_tools
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
def _convert_openai_response_to_llm_response(response: ChatCompletion) -> LlmResponse:
|
|
243
|
+
"""Convert OpenAI response to LlmResponse."""
|
|
244
|
+
choice = response.choices[0]
|
|
245
|
+
message = choice.message
|
|
246
|
+
|
|
247
|
+
parts = []
|
|
248
|
+
|
|
249
|
+
# Handle text content
|
|
250
|
+
if message.content:
|
|
251
|
+
parts.append(types.Part.from_text(text=message.content))
|
|
252
|
+
|
|
253
|
+
# Handle function calls
|
|
254
|
+
if hasattr(message, "tool_calls") and message.tool_calls:
|
|
255
|
+
for tool_call in message.tool_calls:
|
|
256
|
+
if tool_call.type == "function":
|
|
257
|
+
try:
|
|
258
|
+
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
|
|
259
|
+
except json.JSONDecodeError:
|
|
260
|
+
args = {}
|
|
261
|
+
|
|
262
|
+
part = types.Part.from_function_call(name=tool_call.function.name, args=args)
|
|
263
|
+
if part.function_call:
|
|
264
|
+
part.function_call.id = tool_call.id
|
|
265
|
+
parts.append(part)
|
|
266
|
+
|
|
267
|
+
content = types.Content(role="model", parts=parts)
|
|
268
|
+
|
|
269
|
+
# Handle usage metadata
|
|
270
|
+
usage_metadata = None
|
|
271
|
+
if hasattr(response, "usage") and response.usage:
|
|
272
|
+
usage_metadata = types.GenerateContentResponseUsageMetadata(
|
|
273
|
+
prompt_token_count=response.usage.prompt_tokens,
|
|
274
|
+
candidates_token_count=response.usage.completion_tokens,
|
|
275
|
+
total_token_count=response.usage.total_tokens,
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
# Handle finish reason
|
|
279
|
+
finish_reason = types.FinishReason.STOP
|
|
280
|
+
if choice.finish_reason == "length":
|
|
281
|
+
finish_reason = types.FinishReason.MAX_TOKENS
|
|
282
|
+
elif choice.finish_reason == "content_filter":
|
|
283
|
+
finish_reason = types.FinishReason.SAFETY
|
|
284
|
+
|
|
285
|
+
return LlmResponse(content=content, usage_metadata=usage_metadata, finish_reason=finish_reason)
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
class BaseOpenAI(BaseLlm):
|
|
289
|
+
"""Base class for OpenAI-compatible models."""
|
|
290
|
+
|
|
291
|
+
model: str
|
|
292
|
+
api_key: Optional[str] = Field(default=None, exclude=True)
|
|
293
|
+
base_url: Optional[str] = None
|
|
294
|
+
frequency_penalty: Optional[float] = None
|
|
295
|
+
default_headers: Optional[dict[str, str]] = None
|
|
296
|
+
max_tokens: Optional[int] = None
|
|
297
|
+
n: Optional[int] = None
|
|
298
|
+
presence_penalty: Optional[float] = None
|
|
299
|
+
reasoning_effort: Optional[str] = None
|
|
300
|
+
seed: Optional[int] = None
|
|
301
|
+
temperature: Optional[float] = None
|
|
302
|
+
timeout: Optional[int] = None
|
|
303
|
+
top_p: Optional[float] = None
|
|
304
|
+
|
|
305
|
+
# TLS/SSL configuration fields
|
|
306
|
+
tls_disable_verify: Optional[bool] = None
|
|
307
|
+
tls_ca_cert_path: Optional[str] = None
|
|
308
|
+
tls_disable_system_cas: Optional[bool] = None
|
|
309
|
+
|
|
310
|
+
@classmethod
|
|
311
|
+
def supported_models(cls) -> list[str]:
|
|
312
|
+
"""Returns a list of supported models in regex for LlmRegistry."""
|
|
313
|
+
return [r"gpt-.*", r"o1-.*"]
|
|
314
|
+
|
|
315
|
+
def _get_tls_config(self) -> tuple[bool, Optional[str], bool]:
|
|
316
|
+
"""Read TLS configuration from instance fields.
|
|
317
|
+
|
|
318
|
+
Returns:
|
|
319
|
+
Tuple of (disable_verify, ca_cert_path, disable_system_cas)
|
|
320
|
+
"""
|
|
321
|
+
# Read from instance fields only (config-based approach)
|
|
322
|
+
# Environment variables are no longer supported for TLS configuration
|
|
323
|
+
disable_verify = self.tls_disable_verify or False
|
|
324
|
+
ca_cert_path = self.tls_ca_cert_path
|
|
325
|
+
disable_system_cas = self.tls_disable_system_cas or False
|
|
326
|
+
|
|
327
|
+
return disable_verify, ca_cert_path, disable_system_cas
|
|
328
|
+
|
|
329
|
+
def _create_http_client(self) -> Optional[httpx.AsyncClient]:
|
|
330
|
+
"""Create HTTP client with custom SSL context using OpenAI SDK defaults.
|
|
331
|
+
|
|
332
|
+
Uses DefaultAsyncHttpxClient to preserve OpenAI's default settings for
|
|
333
|
+
timeout, connection pooling, and redirect behavior while applying custom
|
|
334
|
+
SSL configuration.
|
|
335
|
+
|
|
336
|
+
Returns:
|
|
337
|
+
DefaultAsyncHttpxClient with SSL configuration, or None if no TLS config
|
|
338
|
+
"""
|
|
339
|
+
disable_verify, ca_cert_path, disable_system_cas = self._get_tls_config()
|
|
340
|
+
|
|
341
|
+
# Only create custom http client if TLS configuration is present
|
|
342
|
+
if disable_verify or ca_cert_path or disable_system_cas:
|
|
343
|
+
ssl_context = create_ssl_context(
|
|
344
|
+
disable_verify=disable_verify,
|
|
345
|
+
ca_cert_path=ca_cert_path,
|
|
346
|
+
disable_system_cas=disable_system_cas,
|
|
347
|
+
)
|
|
348
|
+
|
|
349
|
+
# ssl_context is either False (verification disabled) or SSLContext
|
|
350
|
+
# Use DefaultAsyncHttpxClient to preserve OpenAI's defaults
|
|
351
|
+
return DefaultAsyncHttpxClient(verify=ssl_context)
|
|
352
|
+
|
|
353
|
+
# No TLS configuration, return None to use OpenAI SDK default
|
|
354
|
+
return None
|
|
355
|
+
|
|
356
|
+
@cached_property
|
|
357
|
+
def _client(self) -> AsyncOpenAI:
|
|
358
|
+
"""Get the OpenAI client with optional custom SSL configuration."""
|
|
359
|
+
http_client = self._create_http_client()
|
|
360
|
+
|
|
361
|
+
return AsyncOpenAI(
|
|
362
|
+
api_key=self.api_key,
|
|
363
|
+
base_url=self.base_url or None,
|
|
364
|
+
default_headers=self.default_headers,
|
|
365
|
+
timeout=self.timeout,
|
|
366
|
+
http_client=http_client,
|
|
367
|
+
)
|
|
368
|
+
|
|
369
|
+
async def generate_content_async(
|
|
370
|
+
self, llm_request: LlmRequest, stream: bool = False
|
|
371
|
+
) -> AsyncGenerator[LlmResponse, None]:
|
|
372
|
+
"""Generate content using OpenAI API."""
|
|
373
|
+
|
|
374
|
+
# Convert messages
|
|
375
|
+
system_instruction = None
|
|
376
|
+
if llm_request.config and llm_request.config.system_instruction:
|
|
377
|
+
if isinstance(llm_request.config.system_instruction, str):
|
|
378
|
+
system_instruction = llm_request.config.system_instruction
|
|
379
|
+
elif hasattr(llm_request.config.system_instruction, "parts"):
|
|
380
|
+
# Handle Content type system instruction
|
|
381
|
+
text_parts = []
|
|
382
|
+
parts = getattr(llm_request.config.system_instruction, "parts", [])
|
|
383
|
+
if parts:
|
|
384
|
+
for part in parts:
|
|
385
|
+
if hasattr(part, "text") and part.text:
|
|
386
|
+
text_parts.append(part.text)
|
|
387
|
+
system_instruction = "\n".join(text_parts)
|
|
388
|
+
|
|
389
|
+
messages = _convert_content_to_openai_messages(llm_request.contents, system_instruction)
|
|
390
|
+
|
|
391
|
+
# Prepare request parameters
|
|
392
|
+
kwargs = {
|
|
393
|
+
"model": llm_request.model or self.model,
|
|
394
|
+
"messages": messages,
|
|
395
|
+
}
|
|
396
|
+
|
|
397
|
+
if self.frequency_penalty is not None:
|
|
398
|
+
kwargs["frequency_penalty"] = self.frequency_penalty
|
|
399
|
+
if self.max_tokens:
|
|
400
|
+
kwargs["max_tokens"] = self.max_tokens
|
|
401
|
+
if self.n is not None:
|
|
402
|
+
kwargs["n"] = self.n
|
|
403
|
+
if self.presence_penalty is not None:
|
|
404
|
+
kwargs["presence_penalty"] = self.presence_penalty
|
|
405
|
+
if self.reasoning_effort is not None:
|
|
406
|
+
kwargs["reasoning_effort"] = self.reasoning_effort
|
|
407
|
+
if self.seed is not None:
|
|
408
|
+
kwargs["seed"] = self.seed
|
|
409
|
+
if self.temperature is not None:
|
|
410
|
+
kwargs["temperature"] = self.temperature
|
|
411
|
+
if self.top_p is not None:
|
|
412
|
+
kwargs["top_p"] = self.top_p
|
|
413
|
+
|
|
414
|
+
# Handle tools
|
|
415
|
+
if llm_request.config and llm_request.config.tools:
|
|
416
|
+
# Filter to only google.genai.types.Tool objects
|
|
417
|
+
genai_tools = []
|
|
418
|
+
for tool in llm_request.config.tools:
|
|
419
|
+
if hasattr(tool, "function_declarations"):
|
|
420
|
+
genai_tools.append(tool)
|
|
421
|
+
|
|
422
|
+
if genai_tools:
|
|
423
|
+
openai_tools = _convert_tools_to_openai(genai_tools)
|
|
424
|
+
if openai_tools:
|
|
425
|
+
kwargs["tools"] = openai_tools
|
|
426
|
+
kwargs["tool_choice"] = "auto"
|
|
427
|
+
|
|
428
|
+
try:
|
|
429
|
+
if stream:
|
|
430
|
+
# Handle streaming
|
|
431
|
+
aggregated_text = ""
|
|
432
|
+
finish_reason = None
|
|
433
|
+
usage_metadata = None
|
|
434
|
+
# Accumulate tool calls - keyed by index since they arrive in chunks
|
|
435
|
+
tool_calls_acc: dict[int, dict[str, Any]] = {}
|
|
436
|
+
|
|
437
|
+
async for chunk in await self._client.chat.completions.create(stream=True, **kwargs):
|
|
438
|
+
if chunk.choices and chunk.choices[0].delta:
|
|
439
|
+
delta = chunk.choices[0].delta
|
|
440
|
+
|
|
441
|
+
# Handle text content streaming
|
|
442
|
+
if delta.content:
|
|
443
|
+
aggregated_text += delta.content
|
|
444
|
+
content = types.Content(role="model", parts=[types.Part.from_text(text=delta.content)])
|
|
445
|
+
yield LlmResponse(
|
|
446
|
+
content=content, partial=True, turn_complete=chunk.choices[0].finish_reason is not None
|
|
447
|
+
)
|
|
448
|
+
|
|
449
|
+
# Handle tool call chunks - accumulate them
|
|
450
|
+
if hasattr(delta, "tool_calls") and delta.tool_calls:
|
|
451
|
+
for tool_call_chunk in delta.tool_calls:
|
|
452
|
+
idx = tool_call_chunk.index
|
|
453
|
+
if idx not in tool_calls_acc:
|
|
454
|
+
tool_calls_acc[idx] = {
|
|
455
|
+
"id": "",
|
|
456
|
+
"name": "",
|
|
457
|
+
"arguments": "",
|
|
458
|
+
}
|
|
459
|
+
# Accumulate the chunks
|
|
460
|
+
if tool_call_chunk.id:
|
|
461
|
+
tool_calls_acc[idx]["id"] = tool_call_chunk.id
|
|
462
|
+
if tool_call_chunk.function:
|
|
463
|
+
if tool_call_chunk.function.name:
|
|
464
|
+
tool_calls_acc[idx]["name"] = tool_call_chunk.function.name
|
|
465
|
+
if tool_call_chunk.function.arguments:
|
|
466
|
+
tool_calls_acc[idx]["arguments"] += tool_call_chunk.function.arguments
|
|
467
|
+
|
|
468
|
+
if chunk.choices[0].finish_reason:
|
|
469
|
+
finish_reason = chunk.choices[0].finish_reason
|
|
470
|
+
|
|
471
|
+
if hasattr(chunk, "usage") and chunk.usage:
|
|
472
|
+
usage_metadata = types.GenerateContentResponseUsageMetadata(
|
|
473
|
+
prompt_token_count=chunk.usage.prompt_tokens,
|
|
474
|
+
candidates_token_count=chunk.usage.completion_tokens,
|
|
475
|
+
total_token_count=chunk.usage.total_tokens,
|
|
476
|
+
)
|
|
477
|
+
|
|
478
|
+
# Yield final aggregated response with partial=False
|
|
479
|
+
final_parts = []
|
|
480
|
+
|
|
481
|
+
# Add aggregated text if any
|
|
482
|
+
if aggregated_text:
|
|
483
|
+
final_parts.append(types.Part.from_text(text=aggregated_text))
|
|
484
|
+
|
|
485
|
+
# Add accumulated tool calls
|
|
486
|
+
for idx in sorted(tool_calls_acc.keys()):
|
|
487
|
+
tc = tool_calls_acc[idx]
|
|
488
|
+
try:
|
|
489
|
+
args = json.loads(tc["arguments"]) if tc["arguments"] else {}
|
|
490
|
+
except json.JSONDecodeError:
|
|
491
|
+
args = {}
|
|
492
|
+
|
|
493
|
+
part = types.Part.from_function_call(name=tc["name"], args=args)
|
|
494
|
+
if part.function_call:
|
|
495
|
+
part.function_call.id = tc["id"]
|
|
496
|
+
final_parts.append(part)
|
|
497
|
+
|
|
498
|
+
# Map finish reason
|
|
499
|
+
final_reason = types.FinishReason.STOP
|
|
500
|
+
if finish_reason == "length":
|
|
501
|
+
final_reason = types.FinishReason.MAX_TOKENS
|
|
502
|
+
elif finish_reason == "content_filter":
|
|
503
|
+
final_reason = types.FinishReason.SAFETY
|
|
504
|
+
elif finish_reason == "tool_calls":
|
|
505
|
+
final_reason = types.FinishReason.STOP # Tool calls is a normal completion
|
|
506
|
+
|
|
507
|
+
# Always yield final response to signal completion and valid metadata
|
|
508
|
+
final_content = types.Content(role="model", parts=final_parts)
|
|
509
|
+
yield LlmResponse(
|
|
510
|
+
content=final_content,
|
|
511
|
+
partial=False,
|
|
512
|
+
finish_reason=final_reason,
|
|
513
|
+
usage_metadata=usage_metadata,
|
|
514
|
+
turn_complete=True,
|
|
515
|
+
)
|
|
516
|
+
else:
|
|
517
|
+
# Handle non-streaming
|
|
518
|
+
response = await self._client.chat.completions.create(stream=False, **kwargs)
|
|
519
|
+
yield _convert_openai_response_to_llm_response(response)
|
|
520
|
+
|
|
521
|
+
except Exception as e:
|
|
522
|
+
yield LlmResponse(error_code="API_ERROR", error_message=str(e))
|
|
523
|
+
|
|
524
|
+
|
|
525
|
+
class OpenAI(BaseOpenAI):
|
|
526
|
+
"""OpenAI model implementation."""
|
|
527
|
+
|
|
528
|
+
type: Literal["openai"]
|
|
529
|
+
|
|
530
|
+
|
|
531
|
+
class AzureOpenAI(BaseOpenAI):
|
|
532
|
+
"""Azure OpenAI model implementation."""
|
|
533
|
+
|
|
534
|
+
type: Literal["azure_openai"]
|
|
535
|
+
api_version: Optional[str] = None
|
|
536
|
+
azure_endpoint: Optional[str] = None
|
|
537
|
+
azure_deployment: Optional[str] = None
|
|
538
|
+
|
|
539
|
+
@cached_property
|
|
540
|
+
def _client(self) -> AsyncAzureOpenAI:
|
|
541
|
+
"""Get the Azure OpenAI client with optional custom SSL configuration."""
|
|
542
|
+
api_version = self.api_version or os.environ.get("OPENAI_API_VERSION", "2024-02-15-preview")
|
|
543
|
+
azure_endpoint = self.azure_endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT")
|
|
544
|
+
api_key = self.api_key or os.environ.get("AZURE_OPENAI_API_KEY")
|
|
545
|
+
|
|
546
|
+
if not azure_endpoint:
|
|
547
|
+
raise ValueError(
|
|
548
|
+
"Azure endpoint must be provided either via azure_endpoint parameter or AZURE_OPENAI_ENDPOINT environment variable"
|
|
549
|
+
)
|
|
550
|
+
|
|
551
|
+
if not api_key:
|
|
552
|
+
raise ValueError(
|
|
553
|
+
"API key must be provided either via api_key parameter or AZURE_OPENAI_API_KEY environment variable"
|
|
554
|
+
)
|
|
555
|
+
|
|
556
|
+
http_client = self._create_http_client()
|
|
557
|
+
|
|
558
|
+
return AsyncAzureOpenAI(
|
|
559
|
+
api_key=api_key,
|
|
560
|
+
api_version=api_version,
|
|
561
|
+
azure_endpoint=azure_endpoint,
|
|
562
|
+
default_headers=self.default_headers,
|
|
563
|
+
http_client=http_client,
|
|
564
|
+
)
|