kagent-adk 0.6.7__py3-none-any.whl → 0.6.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kagent-adk might be problematic. Click here for more details.
- {kagent_adk → kagent/adk}/__init__.py +2 -2
- kagent_adk/a2a.py → kagent/adk/_a2a.py +6 -51
- {kagent_adk → kagent/adk}/_agent_executor.py +10 -8
- {kagent_adk → kagent/adk}/_token.py +3 -1
- kagent/adk/cli.py +111 -0
- kagent/adk/converters/__init__.py +0 -0
- kagent/adk/converters/event_converter.py +315 -0
- kagent/adk/converters/part_converter.py +206 -0
- kagent/adk/converters/request_converter.py +33 -0
- kagent/adk/models/__init__.py +3 -0
- kagent/adk/models/_openai.py +393 -0
- kagent_adk/models.py → kagent/adk/types.py +12 -12
- {kagent_adk-0.6.7.dist-info → kagent_adk-0.6.9.dist-info}/METADATA +2 -7
- kagent_adk-0.6.9.dist-info/RECORD +17 -0
- kagent_adk-0.6.9.dist-info/entry_points.txt +2 -0
- kagent_adk/_task_store.py +0 -30
- kagent_adk/cli.py +0 -202
- kagent_adk-0.6.7.dist-info/RECORD +0 -12
- kagent_adk-0.6.7.dist-info/entry_points.txt +0 -2
- {kagent_adk → kagent/adk}/_session_service.py +0 -0
- {kagent_adk-0.6.7.dist-info → kagent_adk-0.6.9.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,206 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
"""
|
|
16
|
+
module containing utilities for conversion betwen A2A Part and Google GenAI Part
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
from __future__ import annotations
|
|
20
|
+
|
|
21
|
+
import base64
|
|
22
|
+
import json
|
|
23
|
+
import logging
|
|
24
|
+
from typing import Optional
|
|
25
|
+
|
|
26
|
+
from a2a import types as a2a_types
|
|
27
|
+
from google.genai import types as genai_types
|
|
28
|
+
|
|
29
|
+
from kagent.core.a2a import (
|
|
30
|
+
A2A_DATA_PART_METADATA_TYPE_CODE_EXECUTION_RESULT,
|
|
31
|
+
A2A_DATA_PART_METADATA_TYPE_EXECUTABLE_CODE,
|
|
32
|
+
A2A_DATA_PART_METADATA_TYPE_FUNCTION_CALL,
|
|
33
|
+
A2A_DATA_PART_METADATA_TYPE_FUNCTION_RESPONSE,
|
|
34
|
+
A2A_DATA_PART_METADATA_TYPE_KEY,
|
|
35
|
+
get_kagent_metadata_key,
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
logger = logging.getLogger("kagent_adk." + __name__)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def convert_a2a_part_to_genai_part(
|
|
42
|
+
a2a_part: a2a_types.Part,
|
|
43
|
+
) -> Optional[genai_types.Part]:
|
|
44
|
+
"""Convert an A2A Part to a Google GenAI Part."""
|
|
45
|
+
part = a2a_part.root
|
|
46
|
+
if isinstance(part, a2a_types.TextPart):
|
|
47
|
+
return genai_types.Part(text=part.text)
|
|
48
|
+
|
|
49
|
+
if isinstance(part, a2a_types.FilePart):
|
|
50
|
+
if isinstance(part.file, a2a_types.FileWithUri):
|
|
51
|
+
return genai_types.Part(
|
|
52
|
+
file_data=genai_types.FileData(file_uri=part.file.uri, mime_type=part.file.mime_type)
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
elif isinstance(part.file, a2a_types.FileWithBytes):
|
|
56
|
+
return genai_types.Part(
|
|
57
|
+
inline_data=genai_types.Blob(
|
|
58
|
+
data=base64.b64decode(part.file.bytes),
|
|
59
|
+
mime_type=part.file.mime_type,
|
|
60
|
+
)
|
|
61
|
+
)
|
|
62
|
+
else:
|
|
63
|
+
logger.warning(
|
|
64
|
+
"Cannot convert unsupported file type: %s for A2A part: %s",
|
|
65
|
+
type(part.file),
|
|
66
|
+
a2a_part,
|
|
67
|
+
)
|
|
68
|
+
return None
|
|
69
|
+
|
|
70
|
+
if isinstance(part, a2a_types.DataPart):
|
|
71
|
+
# Conver the Data Part to funcall and function reponse.
|
|
72
|
+
# This is mainly for converting human in the loop and auth request and
|
|
73
|
+
# response.
|
|
74
|
+
# TODO once A2A defined how to suervice such information, migrate below
|
|
75
|
+
# logic accordinlgy
|
|
76
|
+
if part.metadata and get_kagent_metadata_key(A2A_DATA_PART_METADATA_TYPE_KEY) in part.metadata:
|
|
77
|
+
if (
|
|
78
|
+
part.metadata[get_kagent_metadata_key(A2A_DATA_PART_METADATA_TYPE_KEY)]
|
|
79
|
+
== A2A_DATA_PART_METADATA_TYPE_FUNCTION_CALL
|
|
80
|
+
):
|
|
81
|
+
return genai_types.Part(function_call=genai_types.FunctionCall.model_validate(part.data, by_alias=True))
|
|
82
|
+
if (
|
|
83
|
+
part.metadata[get_kagent_metadata_key(A2A_DATA_PART_METADATA_TYPE_KEY)]
|
|
84
|
+
== A2A_DATA_PART_METADATA_TYPE_FUNCTION_RESPONSE
|
|
85
|
+
):
|
|
86
|
+
return genai_types.Part(
|
|
87
|
+
function_response=genai_types.FunctionResponse.model_validate(part.data, by_alias=True)
|
|
88
|
+
)
|
|
89
|
+
if (
|
|
90
|
+
part.metadata[get_kagent_metadata_key(A2A_DATA_PART_METADATA_TYPE_KEY)]
|
|
91
|
+
== A2A_DATA_PART_METADATA_TYPE_CODE_EXECUTION_RESULT
|
|
92
|
+
):
|
|
93
|
+
return genai_types.Part(
|
|
94
|
+
code_execution_result=genai_types.CodeExecutionResult.model_validate(part.data, by_alias=True)
|
|
95
|
+
)
|
|
96
|
+
if (
|
|
97
|
+
part.metadata[get_kagent_metadata_key(A2A_DATA_PART_METADATA_TYPE_KEY)]
|
|
98
|
+
== A2A_DATA_PART_METADATA_TYPE_EXECUTABLE_CODE
|
|
99
|
+
):
|
|
100
|
+
return genai_types.Part(
|
|
101
|
+
executable_code=genai_types.ExecutableCode.model_validate(part.data, by_alias=True)
|
|
102
|
+
)
|
|
103
|
+
return genai_types.Part(text=json.dumps(part.data))
|
|
104
|
+
|
|
105
|
+
logger.warning(
|
|
106
|
+
"Cannot convert unsupported part type: %s for A2A part: %s",
|
|
107
|
+
type(part),
|
|
108
|
+
a2a_part,
|
|
109
|
+
)
|
|
110
|
+
return None
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def convert_genai_part_to_a2a_part(
|
|
114
|
+
part: genai_types.Part,
|
|
115
|
+
) -> Optional[a2a_types.Part]:
|
|
116
|
+
"""Convert a Google GenAI Part to an A2A Part."""
|
|
117
|
+
|
|
118
|
+
if part.text:
|
|
119
|
+
a2a_part = a2a_types.TextPart(text=part.text)
|
|
120
|
+
if part.thought is not None:
|
|
121
|
+
a2a_part.metadata = {get_kagent_metadata_key("thought"): part.thought}
|
|
122
|
+
return a2a_types.Part(root=a2a_part)
|
|
123
|
+
|
|
124
|
+
if part.file_data:
|
|
125
|
+
return a2a_types.Part(
|
|
126
|
+
root=a2a_types.FilePart(
|
|
127
|
+
file=a2a_types.FileWithUri(
|
|
128
|
+
uri=part.file_data.file_uri,
|
|
129
|
+
mime_type=part.file_data.mime_type,
|
|
130
|
+
)
|
|
131
|
+
)
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
if part.inline_data:
|
|
135
|
+
a2a_part = a2a_types.FilePart(
|
|
136
|
+
file=a2a_types.FileWithBytes(
|
|
137
|
+
bytes=base64.b64encode(part.inline_data.data).decode("utf-8"),
|
|
138
|
+
mime_type=part.inline_data.mime_type,
|
|
139
|
+
)
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
if part.video_metadata:
|
|
143
|
+
a2a_part.metadata = {
|
|
144
|
+
get_kagent_metadata_key("video_metadata"): part.video_metadata.model_dump(
|
|
145
|
+
by_alias=True, exclude_none=True
|
|
146
|
+
)
|
|
147
|
+
}
|
|
148
|
+
|
|
149
|
+
return a2a_types.Part(root=a2a_part)
|
|
150
|
+
|
|
151
|
+
# Conver the funcall and function reponse to A2A DataPart.
|
|
152
|
+
# This is mainly for converting human in the loop and auth request and
|
|
153
|
+
# response.
|
|
154
|
+
# TODO once A2A defined how to suervice such information, migrate below
|
|
155
|
+
# logic accordinlgy
|
|
156
|
+
if part.function_call:
|
|
157
|
+
return a2a_types.Part(
|
|
158
|
+
root=a2a_types.DataPart(
|
|
159
|
+
data=part.function_call.model_dump(by_alias=True, exclude_none=True),
|
|
160
|
+
metadata={
|
|
161
|
+
get_kagent_metadata_key(A2A_DATA_PART_METADATA_TYPE_KEY): A2A_DATA_PART_METADATA_TYPE_FUNCTION_CALL
|
|
162
|
+
},
|
|
163
|
+
)
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
if part.function_response:
|
|
167
|
+
return a2a_types.Part(
|
|
168
|
+
root=a2a_types.DataPart(
|
|
169
|
+
data=part.function_response.model_dump(by_alias=True, exclude_none=True),
|
|
170
|
+
metadata={
|
|
171
|
+
get_kagent_metadata_key(
|
|
172
|
+
A2A_DATA_PART_METADATA_TYPE_KEY
|
|
173
|
+
): A2A_DATA_PART_METADATA_TYPE_FUNCTION_RESPONSE
|
|
174
|
+
},
|
|
175
|
+
)
|
|
176
|
+
)
|
|
177
|
+
|
|
178
|
+
if part.code_execution_result:
|
|
179
|
+
return a2a_types.Part(
|
|
180
|
+
root=a2a_types.DataPart(
|
|
181
|
+
data=part.code_execution_result.model_dump(by_alias=True, exclude_none=True),
|
|
182
|
+
metadata={
|
|
183
|
+
get_kagent_metadata_key(
|
|
184
|
+
A2A_DATA_PART_METADATA_TYPE_KEY
|
|
185
|
+
): A2A_DATA_PART_METADATA_TYPE_CODE_EXECUTION_RESULT
|
|
186
|
+
},
|
|
187
|
+
)
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
if part.executable_code:
|
|
191
|
+
return a2a_types.Part(
|
|
192
|
+
root=a2a_types.DataPart(
|
|
193
|
+
data=part.executable_code.model_dump(by_alias=True, exclude_none=True),
|
|
194
|
+
metadata={
|
|
195
|
+
get_kagent_metadata_key(
|
|
196
|
+
A2A_DATA_PART_METADATA_TYPE_KEY
|
|
197
|
+
): A2A_DATA_PART_METADATA_TYPE_EXECUTABLE_CODE
|
|
198
|
+
},
|
|
199
|
+
)
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
logger.warning(
|
|
203
|
+
"Cannot convert unsupported part for Google GenAI part: %s",
|
|
204
|
+
part,
|
|
205
|
+
)
|
|
206
|
+
return None
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
from typing import Any
|
|
2
|
+
|
|
3
|
+
from a2a.server.agent_execution import RequestContext
|
|
4
|
+
from google.adk.runners import RunConfig
|
|
5
|
+
from google.genai import types as genai_types
|
|
6
|
+
|
|
7
|
+
from .part_converter import convert_a2a_part_to_genai_part
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def _get_user_id(request: RequestContext) -> str:
|
|
11
|
+
# Get user from call context if available (auth is enabled on a2a server)
|
|
12
|
+
if request.call_context and request.call_context.user and request.call_context.user.user_name:
|
|
13
|
+
return request.call_context.user.user_name
|
|
14
|
+
|
|
15
|
+
# Get user from context id
|
|
16
|
+
return f"A2A_USER_{request.context_id}"
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def convert_a2a_request_to_adk_run_args(
|
|
20
|
+
request: RequestContext,
|
|
21
|
+
) -> dict[str, Any]:
|
|
22
|
+
if not request.message:
|
|
23
|
+
raise ValueError("Request message cannot be None")
|
|
24
|
+
|
|
25
|
+
return {
|
|
26
|
+
"user_id": _get_user_id(request),
|
|
27
|
+
"session_id": request.context_id,
|
|
28
|
+
"new_message": genai_types.Content(
|
|
29
|
+
role="user",
|
|
30
|
+
parts=[convert_a2a_part_to_genai_part(part) for part in request.message.parts],
|
|
31
|
+
),
|
|
32
|
+
"run_config": RunConfig(),
|
|
33
|
+
}
|
|
@@ -0,0 +1,393 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import base64
|
|
4
|
+
import json
|
|
5
|
+
import os
|
|
6
|
+
from functools import cached_property
|
|
7
|
+
from typing import TYPE_CHECKING, Any, AsyncGenerator, Iterable, Literal, Optional
|
|
8
|
+
|
|
9
|
+
from google.adk.models import BaseLlm
|
|
10
|
+
from google.adk.models.llm_response import LlmResponse
|
|
11
|
+
from google.genai import types
|
|
12
|
+
from openai import AsyncAzureOpenAI, AsyncOpenAI
|
|
13
|
+
from openai.types.chat import (
|
|
14
|
+
ChatCompletion,
|
|
15
|
+
ChatCompletionAssistantMessageParam,
|
|
16
|
+
ChatCompletionContentPartImageParam,
|
|
17
|
+
ChatCompletionContentPartTextParam,
|
|
18
|
+
ChatCompletionMessageParam,
|
|
19
|
+
ChatCompletionSystemMessageParam,
|
|
20
|
+
ChatCompletionToolMessageParam,
|
|
21
|
+
ChatCompletionToolParam,
|
|
22
|
+
ChatCompletionUserMessageParam,
|
|
23
|
+
)
|
|
24
|
+
from openai.types.chat.chat_completion_message_tool_call_param import (
|
|
25
|
+
ChatCompletionMessageToolCallParam,
|
|
26
|
+
)
|
|
27
|
+
from openai.types.chat.chat_completion_message_tool_call_param import (
|
|
28
|
+
Function as ToolCallFunction,
|
|
29
|
+
)
|
|
30
|
+
from openai.types.shared_params import FunctionDefinition
|
|
31
|
+
from pydantic import Field
|
|
32
|
+
|
|
33
|
+
if TYPE_CHECKING:
|
|
34
|
+
from google.adk.models.llm_request import LlmRequest
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def _convert_role_to_openai(role: Optional[str]) -> str:
|
|
38
|
+
"""Convert google.genai role to OpenAI role."""
|
|
39
|
+
if role in ["model", "assistant"]:
|
|
40
|
+
return "assistant"
|
|
41
|
+
elif role == "system":
|
|
42
|
+
return "system"
|
|
43
|
+
else:
|
|
44
|
+
return "user"
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def _convert_content_to_openai_messages(
|
|
48
|
+
contents: list[types.Content], system_instruction: Optional[str] = None
|
|
49
|
+
) -> list[ChatCompletionMessageParam]:
|
|
50
|
+
"""Convert google.genai Content list to OpenAI messages format."""
|
|
51
|
+
messages: list[ChatCompletionMessageParam] = []
|
|
52
|
+
|
|
53
|
+
# Add system message if provided
|
|
54
|
+
if system_instruction:
|
|
55
|
+
system_message: ChatCompletionSystemMessageParam = {"role": "system", "content": system_instruction}
|
|
56
|
+
messages.append(system_message)
|
|
57
|
+
|
|
58
|
+
# Track tool calls to ensure proper flow
|
|
59
|
+
pending_tool_calls = set()
|
|
60
|
+
|
|
61
|
+
for content in contents:
|
|
62
|
+
role = _convert_role_to_openai(content.role)
|
|
63
|
+
|
|
64
|
+
# Separate different types of parts
|
|
65
|
+
text_parts = []
|
|
66
|
+
function_calls = []
|
|
67
|
+
function_responses = []
|
|
68
|
+
image_parts = []
|
|
69
|
+
|
|
70
|
+
for part in content.parts or []:
|
|
71
|
+
if part.text:
|
|
72
|
+
text_parts.append(part.text)
|
|
73
|
+
elif part.function_call:
|
|
74
|
+
function_calls.append(part)
|
|
75
|
+
elif part.function_response:
|
|
76
|
+
function_responses.append(part)
|
|
77
|
+
elif part.inline_data and part.inline_data.mime_type and part.inline_data.mime_type.startswith("image"):
|
|
78
|
+
if part.inline_data.data:
|
|
79
|
+
image_data = base64.b64encode(part.inline_data.data).decode()
|
|
80
|
+
image_part: ChatCompletionContentPartImageParam = {
|
|
81
|
+
"type": "image_url",
|
|
82
|
+
"image_url": {"url": f"data:{part.inline_data.mime_type};base64,{image_data}"},
|
|
83
|
+
}
|
|
84
|
+
image_parts.append(image_part)
|
|
85
|
+
|
|
86
|
+
# Handle function responses first (they should be tool messages)
|
|
87
|
+
for func_response in function_responses:
|
|
88
|
+
tool_call_id = func_response.function_response.id or "call_1"
|
|
89
|
+
if tool_call_id in pending_tool_calls:
|
|
90
|
+
tool_message: ChatCompletionToolMessageParam = {
|
|
91
|
+
"role": "tool",
|
|
92
|
+
"tool_call_id": tool_call_id,
|
|
93
|
+
"content": str(func_response.function_response.response.get("result", ""))
|
|
94
|
+
if func_response.function_response.response
|
|
95
|
+
else "",
|
|
96
|
+
}
|
|
97
|
+
messages.append(tool_message)
|
|
98
|
+
pending_tool_calls.discard(tool_call_id)
|
|
99
|
+
|
|
100
|
+
# Handle function calls (assistant messages with tool_calls)
|
|
101
|
+
if function_calls:
|
|
102
|
+
tool_calls = []
|
|
103
|
+
for func_call in function_calls:
|
|
104
|
+
tool_call_function: ToolCallFunction = {
|
|
105
|
+
"name": func_call.function_call.name or "",
|
|
106
|
+
"arguments": str(func_call.function_call.args) if func_call.function_call.args else "{}",
|
|
107
|
+
}
|
|
108
|
+
tool_call_id = func_call.function_call.id or "call_1"
|
|
109
|
+
tool_call: ChatCompletionMessageToolCallParam = {
|
|
110
|
+
"id": tool_call_id,
|
|
111
|
+
"type": "function",
|
|
112
|
+
"function": tool_call_function,
|
|
113
|
+
}
|
|
114
|
+
tool_calls.append(tool_call)
|
|
115
|
+
pending_tool_calls.add(tool_call_id)
|
|
116
|
+
|
|
117
|
+
# Create assistant message with tool calls
|
|
118
|
+
text_content = "\n".join(text_parts) if text_parts else None
|
|
119
|
+
assistant_message: ChatCompletionAssistantMessageParam = {
|
|
120
|
+
"role": "assistant",
|
|
121
|
+
"content": text_content,
|
|
122
|
+
"tool_calls": tool_calls,
|
|
123
|
+
}
|
|
124
|
+
messages.append(assistant_message)
|
|
125
|
+
|
|
126
|
+
# Handle regular text/image messages (only if no function calls)
|
|
127
|
+
elif text_parts or image_parts:
|
|
128
|
+
if role == "user":
|
|
129
|
+
if image_parts and text_parts:
|
|
130
|
+
# Multi-modal content
|
|
131
|
+
text_part: ChatCompletionContentPartTextParam = {"type": "text", "text": "\n".join(text_parts)}
|
|
132
|
+
content_parts = [text_part] + image_parts
|
|
133
|
+
user_message: ChatCompletionUserMessageParam = {"role": "user", "content": content_parts}
|
|
134
|
+
elif image_parts:
|
|
135
|
+
# Image only
|
|
136
|
+
user_message: ChatCompletionUserMessageParam = {"role": "user", "content": image_parts}
|
|
137
|
+
else:
|
|
138
|
+
# Text only
|
|
139
|
+
user_message: ChatCompletionUserMessageParam = {"role": "user", "content": "\n".join(text_parts)}
|
|
140
|
+
messages.append(user_message)
|
|
141
|
+
elif role == "assistant":
|
|
142
|
+
# Assistant messages with text (no tool calls)
|
|
143
|
+
assistant_message: ChatCompletionAssistantMessageParam = {
|
|
144
|
+
"role": "assistant",
|
|
145
|
+
"content": "\n".join(text_parts),
|
|
146
|
+
}
|
|
147
|
+
messages.append(assistant_message)
|
|
148
|
+
|
|
149
|
+
return messages
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
def _update_type_string(value_dict: dict[str, Any]):
|
|
153
|
+
"""Updates 'type' field to expected JSON schema format."""
|
|
154
|
+
if "type" in value_dict:
|
|
155
|
+
value_dict["type"] = value_dict["type"].lower()
|
|
156
|
+
|
|
157
|
+
if "items" in value_dict:
|
|
158
|
+
# 'type' field could exist for items as well, this would be the case if
|
|
159
|
+
# items represent primitive types.
|
|
160
|
+
_update_type_string(value_dict["items"])
|
|
161
|
+
|
|
162
|
+
if "properties" in value_dict["items"]:
|
|
163
|
+
# There could be properties as well on the items, especially if the items
|
|
164
|
+
# are complex object themselves. We recursively traverse each individual
|
|
165
|
+
# property as well and fix the "type" value.
|
|
166
|
+
for _, value in value_dict["items"]["properties"].items():
|
|
167
|
+
_update_type_string(value)
|
|
168
|
+
|
|
169
|
+
if "properties" in value_dict:
|
|
170
|
+
# Handle nested properties
|
|
171
|
+
for _, value in value_dict["properties"].items():
|
|
172
|
+
_update_type_string(value)
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
def _convert_tools_to_openai(tools: list[types.Tool]) -> list[ChatCompletionToolParam]:
|
|
176
|
+
"""Convert google.genai Tools to OpenAI tools format."""
|
|
177
|
+
openai_tools: list[ChatCompletionToolParam] = []
|
|
178
|
+
|
|
179
|
+
for tool in tools:
|
|
180
|
+
if tool.function_declarations:
|
|
181
|
+
for func_decl in tool.function_declarations:
|
|
182
|
+
# Build function definition
|
|
183
|
+
function_def: FunctionDefinition = {
|
|
184
|
+
"name": func_decl.name or "",
|
|
185
|
+
"description": func_decl.description or "",
|
|
186
|
+
}
|
|
187
|
+
|
|
188
|
+
# Always include parameters field, even if empty
|
|
189
|
+
properties = {}
|
|
190
|
+
required = []
|
|
191
|
+
|
|
192
|
+
if func_decl.parameters:
|
|
193
|
+
if func_decl.parameters.properties:
|
|
194
|
+
for prop_name, prop_schema in func_decl.parameters.properties.items():
|
|
195
|
+
value_dict = prop_schema.model_dump(exclude_none=True)
|
|
196
|
+
_update_type_string(value_dict)
|
|
197
|
+
properties[prop_name] = value_dict
|
|
198
|
+
|
|
199
|
+
if func_decl.parameters.required:
|
|
200
|
+
required = func_decl.parameters.required
|
|
201
|
+
|
|
202
|
+
function_def["parameters"] = {"type": "object", "properties": properties, "required": required}
|
|
203
|
+
|
|
204
|
+
# Create the tool param
|
|
205
|
+
openai_tool: ChatCompletionToolParam = {"type": "function", "function": function_def}
|
|
206
|
+
openai_tools.append(openai_tool)
|
|
207
|
+
|
|
208
|
+
return openai_tools
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
def _convert_openai_response_to_llm_response(response: ChatCompletion) -> LlmResponse:
|
|
212
|
+
"""Convert OpenAI response to LlmResponse."""
|
|
213
|
+
choice = response.choices[0]
|
|
214
|
+
message = choice.message
|
|
215
|
+
|
|
216
|
+
parts = []
|
|
217
|
+
|
|
218
|
+
# Handle text content
|
|
219
|
+
if message.content:
|
|
220
|
+
parts.append(types.Part.from_text(text=message.content))
|
|
221
|
+
|
|
222
|
+
# Handle function calls
|
|
223
|
+
if hasattr(message, "tool_calls") and message.tool_calls:
|
|
224
|
+
for tool_call in message.tool_calls:
|
|
225
|
+
if tool_call.type == "function":
|
|
226
|
+
try:
|
|
227
|
+
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
|
|
228
|
+
except json.JSONDecodeError:
|
|
229
|
+
args = {}
|
|
230
|
+
|
|
231
|
+
part = types.Part.from_function_call(name=tool_call.function.name, args=args)
|
|
232
|
+
if part.function_call:
|
|
233
|
+
part.function_call.id = tool_call.id
|
|
234
|
+
parts.append(part)
|
|
235
|
+
|
|
236
|
+
content = types.Content(role="model", parts=parts)
|
|
237
|
+
|
|
238
|
+
# Handle usage metadata
|
|
239
|
+
usage_metadata = None
|
|
240
|
+
if hasattr(response, "usage") and response.usage:
|
|
241
|
+
usage_metadata = types.GenerateContentResponseUsageMetadata(
|
|
242
|
+
prompt_token_count=response.usage.prompt_tokens,
|
|
243
|
+
candidates_token_count=response.usage.completion_tokens,
|
|
244
|
+
total_token_count=response.usage.total_tokens,
|
|
245
|
+
)
|
|
246
|
+
|
|
247
|
+
# Handle finish reason
|
|
248
|
+
finish_reason = types.FinishReason.STOP
|
|
249
|
+
if choice.finish_reason == "length":
|
|
250
|
+
finish_reason = types.FinishReason.MAX_TOKENS
|
|
251
|
+
elif choice.finish_reason == "content_filter":
|
|
252
|
+
finish_reason = types.FinishReason.SAFETY
|
|
253
|
+
|
|
254
|
+
return LlmResponse(content=content, usage_metadata=usage_metadata, finish_reason=finish_reason)
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
class BaseOpenAI(BaseLlm):
|
|
258
|
+
"""Base class for OpenAI-compatible models."""
|
|
259
|
+
|
|
260
|
+
model: str
|
|
261
|
+
base_url: Optional[str] = None
|
|
262
|
+
api_key: Optional[str] = Field(default=None, exclude=True)
|
|
263
|
+
max_tokens: Optional[int] = None
|
|
264
|
+
temperature: Optional[float] = None
|
|
265
|
+
|
|
266
|
+
@classmethod
|
|
267
|
+
def supported_models(cls) -> list[str]:
|
|
268
|
+
"""Returns a list of supported models in regex for LlmRegistry."""
|
|
269
|
+
return [r"gpt-.*", r"o1-.*"]
|
|
270
|
+
|
|
271
|
+
@cached_property
|
|
272
|
+
def _client(self) -> AsyncOpenAI:
|
|
273
|
+
"""Get the OpenAI client."""
|
|
274
|
+
kwargs = {}
|
|
275
|
+
if self.base_url:
|
|
276
|
+
kwargs["base_url"] = self.base_url
|
|
277
|
+
if self.api_key:
|
|
278
|
+
kwargs["api_key"] = self.api_key
|
|
279
|
+
|
|
280
|
+
return AsyncOpenAI(**kwargs)
|
|
281
|
+
|
|
282
|
+
async def generate_content_async(
|
|
283
|
+
self, llm_request: LlmRequest, stream: bool = False
|
|
284
|
+
) -> AsyncGenerator[LlmResponse, None]:
|
|
285
|
+
"""Generate content using OpenAI API."""
|
|
286
|
+
|
|
287
|
+
# Convert messages
|
|
288
|
+
system_instruction = None
|
|
289
|
+
if llm_request.config and llm_request.config.system_instruction:
|
|
290
|
+
if isinstance(llm_request.config.system_instruction, str):
|
|
291
|
+
system_instruction = llm_request.config.system_instruction
|
|
292
|
+
elif hasattr(llm_request.config.system_instruction, "parts"):
|
|
293
|
+
# Handle Content type system instruction
|
|
294
|
+
text_parts = []
|
|
295
|
+
parts = getattr(llm_request.config.system_instruction, "parts", [])
|
|
296
|
+
if parts:
|
|
297
|
+
for part in parts:
|
|
298
|
+
if hasattr(part, "text") and part.text:
|
|
299
|
+
text_parts.append(part.text)
|
|
300
|
+
system_instruction = "\n".join(text_parts)
|
|
301
|
+
|
|
302
|
+
messages = _convert_content_to_openai_messages(llm_request.contents, system_instruction)
|
|
303
|
+
|
|
304
|
+
# Prepare request parameters
|
|
305
|
+
kwargs = {
|
|
306
|
+
"model": llm_request.model or self.model,
|
|
307
|
+
"messages": messages,
|
|
308
|
+
}
|
|
309
|
+
|
|
310
|
+
if self.max_tokens:
|
|
311
|
+
kwargs["max_tokens"] = self.max_tokens
|
|
312
|
+
if self.temperature is not None:
|
|
313
|
+
kwargs["temperature"] = self.temperature
|
|
314
|
+
|
|
315
|
+
# Handle tools
|
|
316
|
+
if llm_request.config and llm_request.config.tools:
|
|
317
|
+
# Filter to only google.genai.types.Tool objects
|
|
318
|
+
genai_tools = []
|
|
319
|
+
for tool in llm_request.config.tools:
|
|
320
|
+
if hasattr(tool, "function_declarations"):
|
|
321
|
+
genai_tools.append(tool)
|
|
322
|
+
|
|
323
|
+
if genai_tools:
|
|
324
|
+
openai_tools = _convert_tools_to_openai(genai_tools)
|
|
325
|
+
if openai_tools:
|
|
326
|
+
kwargs["tools"] = openai_tools
|
|
327
|
+
kwargs["tool_choice"] = "auto"
|
|
328
|
+
|
|
329
|
+
try:
|
|
330
|
+
if stream:
|
|
331
|
+
# Handle streaming
|
|
332
|
+
async for chunk in await self._client.chat.completions.create(stream=True, **kwargs):
|
|
333
|
+
if chunk.choices and chunk.choices[0].delta:
|
|
334
|
+
delta = chunk.choices[0].delta
|
|
335
|
+
if delta.content:
|
|
336
|
+
content = types.Content(role="model", parts=[types.Part.from_text(text=delta.content)])
|
|
337
|
+
yield LlmResponse(
|
|
338
|
+
content=content, partial=True, turn_complete=chunk.choices[0].finish_reason is not None
|
|
339
|
+
)
|
|
340
|
+
else:
|
|
341
|
+
# Handle non-streaming
|
|
342
|
+
response = await self._client.chat.completions.create(stream=False, **kwargs)
|
|
343
|
+
yield _convert_openai_response_to_llm_response(response)
|
|
344
|
+
|
|
345
|
+
except Exception as e:
|
|
346
|
+
yield LlmResponse(error_code="API_ERROR", error_message=str(e))
|
|
347
|
+
|
|
348
|
+
|
|
349
|
+
class OpenAI(BaseOpenAI):
|
|
350
|
+
"""OpenAI model implementation."""
|
|
351
|
+
|
|
352
|
+
type: Literal["openai"]
|
|
353
|
+
|
|
354
|
+
@cached_property
|
|
355
|
+
def _client(self) -> AsyncOpenAI:
|
|
356
|
+
"""Get the OpenAI client."""
|
|
357
|
+
kwargs = {}
|
|
358
|
+
if self.base_url:
|
|
359
|
+
kwargs["base_url"] = self.base_url
|
|
360
|
+
if self.api_key:
|
|
361
|
+
kwargs["api_key"] = self.api_key
|
|
362
|
+
elif "OPENAI_API_KEY" in os.environ:
|
|
363
|
+
kwargs["api_key"] = os.environ["OPENAI_API_KEY"]
|
|
364
|
+
|
|
365
|
+
return AsyncOpenAI(**kwargs)
|
|
366
|
+
|
|
367
|
+
|
|
368
|
+
class AzureOpenAI(BaseOpenAI):
|
|
369
|
+
"""Azure OpenAI model implementation."""
|
|
370
|
+
|
|
371
|
+
type: Literal["azure_openai"]
|
|
372
|
+
api_version: Optional[str] = None
|
|
373
|
+
azure_endpoint: Optional[str] = None
|
|
374
|
+
azure_deployment: Optional[str] = None
|
|
375
|
+
|
|
376
|
+
@cached_property
|
|
377
|
+
def _client(self) -> AsyncAzureOpenAI:
|
|
378
|
+
"""Get the Azure OpenAI client."""
|
|
379
|
+
api_version = self.api_version or os.environ.get("AZURE_OPENAI_API_VERSION", "2024-02-15-preview")
|
|
380
|
+
azure_endpoint = self.azure_endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT")
|
|
381
|
+
api_key = self.api_key or os.environ.get("AZURE_OPENAI_API_KEY")
|
|
382
|
+
|
|
383
|
+
if not azure_endpoint:
|
|
384
|
+
raise ValueError(
|
|
385
|
+
"Azure endpoint must be provided either via azure_endpoint parameter or AZURE_OPENAI_ENDPOINT environment variable"
|
|
386
|
+
)
|
|
387
|
+
|
|
388
|
+
if not api_key:
|
|
389
|
+
raise ValueError(
|
|
390
|
+
"API key must be provided either via api_key parameter or AZURE_OPENAI_API_KEY environment variable"
|
|
391
|
+
)
|
|
392
|
+
|
|
393
|
+
return AsyncAzureOpenAI(api_version=api_version, azure_endpoint=azure_endpoint, api_key=api_key)
|