kabukit 0.5.2__py3-none-any.whl → 0.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kabukit/core/prices.py +181 -12
- kabukit/core/statements.py +1 -2
- {kabukit-0.5.2.dist-info → kabukit-0.5.3.dist-info}/METADATA +1 -1
- {kabukit-0.5.2.dist-info → kabukit-0.5.3.dist-info}/RECORD +6 -6
- {kabukit-0.5.2.dist-info → kabukit-0.5.3.dist-info}/WHEEL +0 -0
- {kabukit-0.5.2.dist-info → kabukit-0.5.3.dist-info}/entry_points.txt +0 -0
kabukit/core/prices.py
CHANGED
@@ -17,6 +17,26 @@ if TYPE_CHECKING:
|
|
17
17
|
|
18
18
|
class Prices(Base):
|
19
19
|
def truncate(self, every: str | timedelta | Expr) -> Self:
|
20
|
+
"""時系列データを指定された頻度で集計し、切り詰める。
|
21
|
+
|
22
|
+
このメソッドは、日次などの時系列データを指定された頻度(例: 月次、週次)で
|
23
|
+
集計し、新しい時間軸に切り詰めます。集計方法は以下の通りです。
|
24
|
+
|
25
|
+
* `Open`: 各期間の最初の`Open`値
|
26
|
+
* `High`: 各期間の最大`High`値
|
27
|
+
* `Low`: 各期間の最小`Low`値
|
28
|
+
* `Close`: 各期間の最後の`Close`値
|
29
|
+
* `Volume`: 各期間の`Volume`の合計
|
30
|
+
* `TurnoverValue`: 各期間の`TurnoverValue`の合計
|
31
|
+
|
32
|
+
Args:
|
33
|
+
every (str | timedelta | Expr): 切り詰める頻度を指定します。
|
34
|
+
例: "1d" (日次), "1mo" (月次), `timedelta`オブジェクト,
|
35
|
+
または Polars の `Expr` オブジェクト。
|
36
|
+
|
37
|
+
Returns:
|
38
|
+
Self: 指定された頻度で切り詰められた新しいPricesオブジェクト。
|
39
|
+
"""
|
20
40
|
data = (
|
21
41
|
self.data.group_by(pl.col("Date").dt.truncate(every), "Code")
|
22
42
|
.agg(
|
@@ -29,6 +49,7 @@ class Prices(Base):
|
|
29
49
|
)
|
30
50
|
.sort("Code", "Date")
|
31
51
|
)
|
52
|
+
|
32
53
|
return self.__class__(data)
|
33
54
|
|
34
55
|
def with_adjusted_shares(self, statements: Statements) -> Self:
|
@@ -47,19 +68,22 @@ class Prices(Base):
|
|
47
68
|
新しい列(`AdjustedIssuedShares`, `AdjustedTreasuryShares`)として
|
48
69
|
追加されます。
|
49
70
|
|
50
|
-
.. note::
|
51
|
-
この計算は、決算発表間の株式数の変動が、株式分割・併合
|
52
|
-
(`AdjustmentFactor`)にのみ起因すると仮定しています。
|
53
|
-
期中に行われる増資や自己株式取得など、`AdjustmentFactor`に
|
54
|
-
反映されないイベントによる株式数の変動は考慮されません。
|
55
|
-
|
56
71
|
Args:
|
57
72
|
statements (Statements): 財務データを提供する`Statements`オブジェクト。
|
58
73
|
|
59
74
|
Returns:
|
60
75
|
Self: `AdjustedIssuedShares`および`AdjustedTreasuryShares`列が
|
61
76
|
追加された、新しいPricesオブジェクト。
|
77
|
+
|
78
|
+
Note:
|
79
|
+
この計算は、決算発表間の株式数の変動が、株式分割・併合
|
80
|
+
(`AdjustmentFactor`)にのみ起因すると仮定しています。
|
81
|
+
期中に行われる増資や自己株式取得など、`AdjustmentFactor`に
|
82
|
+
反映されないイベントによる株式数の変動は考慮されません。
|
62
83
|
"""
|
84
|
+
if "AdjustedIssuedShares" in self.data.columns:
|
85
|
+
return self
|
86
|
+
|
63
87
|
shares = statements.shares().rename({"Date": "ReportDate"})
|
64
88
|
|
65
89
|
adjusted = (
|
@@ -89,6 +113,23 @@ class Prices(Base):
|
|
89
113
|
|
90
114
|
return self.__class__(data)
|
91
115
|
|
116
|
+
@property
|
117
|
+
def _outstanding_shares_expr(self) -> pl.Expr:
|
118
|
+
"""調整済み発行済株式数を計算する Polars 式を返す。
|
119
|
+
|
120
|
+
Raises:
|
121
|
+
KeyError: 必要な列が存在しない場合は KeyError を送出する。
|
122
|
+
"""
|
123
|
+
required_cols = {"AdjustedIssuedShares", "AdjustedTreasuryShares"}
|
124
|
+
|
125
|
+
if not required_cols.issubset(self.data.columns):
|
126
|
+
missing = required_cols - set(self.data.columns)
|
127
|
+
msg = f"必要な列が存在しません: {missing}。"
|
128
|
+
msg += "事前に .with_adjusted_shares() を呼び出してください。"
|
129
|
+
raise KeyError(msg)
|
130
|
+
|
131
|
+
return pl.col("AdjustedIssuedShares") - pl.col("AdjustedTreasuryShares")
|
132
|
+
|
92
133
|
def with_market_cap(self) -> Self:
|
93
134
|
"""時価総額を計算し、列として追加する。
|
94
135
|
|
@@ -99,17 +140,18 @@ class Prices(Base):
|
|
99
140
|
計算式:
|
100
141
|
時価総額 = 調整前終値 * (調整済み発行済株式数 - 調整済み自己株式数)
|
101
142
|
|
102
|
-
Note:
|
103
|
-
このメソッドを呼び出す前に、`with_adjusted_shares()` を
|
104
|
-
実行して、調整済みの株式数列を事前に計算しておく必要があります。
|
105
|
-
|
106
143
|
Returns:
|
107
144
|
Self: `MarketCap` 列が追加された、新しいPricesオブジェクト。
|
145
|
+
|
146
|
+
Note:
|
147
|
+
このメソッドを呼び出す前に、`with_adjusted_shares()` あるいは
|
148
|
+
`with_yields()` を実行して、調整済みの株式数列を事前に計算して
|
149
|
+
おく必要があります。
|
108
150
|
"""
|
109
|
-
shares = pl.col("AdjustedIssuedShares") - pl.col("AdjustedTreasuryShares")
|
110
151
|
data = self.data.with_columns(
|
111
|
-
(pl.col("RawClose") *
|
152
|
+
(pl.col("RawClose") * self._outstanding_shares_expr).alias("MarketCap"),
|
112
153
|
)
|
154
|
+
|
113
155
|
return self.__class__(data)
|
114
156
|
|
115
157
|
def with_equity(self, statements: Statements) -> Self:
|
@@ -121,12 +163,44 @@ class Prices(Base):
|
|
121
163
|
Returns:
|
122
164
|
Self: `Equity` 列が追加された、新しいPricesオブジェクト。
|
123
165
|
"""
|
166
|
+
if "Equity" in self.data.columns:
|
167
|
+
return self
|
168
|
+
|
124
169
|
data = self.data.join_asof(
|
125
170
|
statements.equity(),
|
126
171
|
on="Date",
|
127
172
|
by="Code",
|
128
173
|
check_sortedness=False,
|
129
174
|
)
|
175
|
+
|
176
|
+
return self.__class__(data)
|
177
|
+
|
178
|
+
def with_book_value_yield(self) -> Self:
|
179
|
+
"""時系列の一株あたり純資産と純資産利回りを列として追加する。
|
180
|
+
|
181
|
+
計算式:
|
182
|
+
一株あたり純資産 = 純資産 / (調整済み発行済株式数 - 調整済み自己株式数)
|
183
|
+
純資産利回り = 一株あたり純資産 / 調整前終値
|
184
|
+
|
185
|
+
Returns:
|
186
|
+
Self: `BookValuePerShare`, `BookValueYield` 列が追加された、
|
187
|
+
新しいPricesオブジェクト。
|
188
|
+
|
189
|
+
Note:
|
190
|
+
このメソッドを呼び出す前に、`with_equity()` および
|
191
|
+
`with_adjusted_shares()` を実行して、純資産および調整済み株式数
|
192
|
+
列を事前に計算しておく必要があります。
|
193
|
+
"""
|
194
|
+
data = self.data.with_columns(
|
195
|
+
(pl.col("Equity") / self._outstanding_shares_expr).alias(
|
196
|
+
"BookValuePerShare",
|
197
|
+
),
|
198
|
+
).with_columns(
|
199
|
+
(pl.col("BookValuePerShare") / pl.col("RawClose")).alias(
|
200
|
+
"BookValueYield",
|
201
|
+
),
|
202
|
+
)
|
203
|
+
|
130
204
|
return self.__class__(data)
|
131
205
|
|
132
206
|
def with_forecast_profit(self, statements: Statements) -> Self:
|
@@ -138,12 +212,42 @@ class Prices(Base):
|
|
138
212
|
Returns:
|
139
213
|
Self: `ForecastProfit` 列が追加された、新しいPricesオブジェクト。
|
140
214
|
"""
|
215
|
+
if "ForecastProfit" in self.data.columns:
|
216
|
+
return self
|
217
|
+
|
141
218
|
data = self.data.join_asof(
|
142
219
|
statements.forecast_profit(),
|
143
220
|
on="Date",
|
144
221
|
by="Code",
|
145
222
|
check_sortedness=False,
|
146
223
|
)
|
224
|
+
|
225
|
+
return self.__class__(data)
|
226
|
+
|
227
|
+
def with_earnings_yield(self) -> Self:
|
228
|
+
"""時系列の一株あたり純利益と収益利回り(純利益利回り)を列として追加する。
|
229
|
+
|
230
|
+
計算式:
|
231
|
+
一株あたり純利益 = 予想純利益 / (調整済み発行済株式数 - 調整済み自己株式数)
|
232
|
+
収益利回り = 一株あたり純利益 / 調整前終値
|
233
|
+
|
234
|
+
Returns:
|
235
|
+
Self: `EarningsPerShare`, `EarningsYield` 列が追加された、
|
236
|
+
新しいPricesオブジェクト。
|
237
|
+
|
238
|
+
Note:
|
239
|
+
このメソッドを呼び出す前に、`with_forecast_profit()` および
|
240
|
+
`with_adjusted_shares()` を実行して、予想純利益および調整済み株式数
|
241
|
+
列を事前に計算しておく必要があります。
|
242
|
+
"""
|
243
|
+
data = self.data.with_columns(
|
244
|
+
(pl.col("ForecastProfit") / self._outstanding_shares_expr).alias(
|
245
|
+
"EarningsPerShare",
|
246
|
+
),
|
247
|
+
).with_columns(
|
248
|
+
(pl.col("EarningsPerShare") / pl.col("RawClose")).alias("EarningsYield"),
|
249
|
+
)
|
250
|
+
|
147
251
|
return self.__class__(data)
|
148
252
|
|
149
253
|
def with_forecast_dividend(self, statements: Statements) -> Self:
|
@@ -155,10 +259,75 @@ class Prices(Base):
|
|
155
259
|
Returns:
|
156
260
|
Self: `ForecastDividend` 列が追加された、新しいPricesオブジェクト。
|
157
261
|
"""
|
262
|
+
if "ForecastDividend" in self.data.columns:
|
263
|
+
return self
|
264
|
+
|
158
265
|
data = self.data.join_asof(
|
159
266
|
statements.forecast_dividend(),
|
160
267
|
on="Date",
|
161
268
|
by="Code",
|
162
269
|
check_sortedness=False,
|
163
270
|
)
|
271
|
+
|
164
272
|
return self.__class__(data)
|
273
|
+
|
274
|
+
def with_dividend_yield(self) -> Self:
|
275
|
+
"""時系列の一株あたり配当金と配当利回りを列として追加する。
|
276
|
+
|
277
|
+
計算式:
|
278
|
+
一株あたり配当金 = 予想年間配当総額 / (調整済み発行済株式数 - 調整済み自己株式数)
|
279
|
+
配当利回り = 一株あたり配当金 / 調整前終値
|
280
|
+
|
281
|
+
Returns:
|
282
|
+
Self: `DividendPerShare`, `DividendYield` 列が追加された、
|
283
|
+
新しいPricesオブジェクト。
|
284
|
+
|
285
|
+
Note:
|
286
|
+
このメソッドを呼び出す前に、`with_forecast_dividend()` および
|
287
|
+
`with_adjusted_shares()` を実行して、予想年間配当総額および調整済み株式数
|
288
|
+
列を事前に計算しておく必要があります。
|
289
|
+
""" # noqa: E501
|
290
|
+
data = self.data.with_columns(
|
291
|
+
(pl.col("ForecastDividend") / self._outstanding_shares_expr).alias(
|
292
|
+
"DividendPerShare",
|
293
|
+
),
|
294
|
+
).with_columns(
|
295
|
+
(pl.col("DividendPerShare") / pl.col("RawClose")).alias("DividendYield"),
|
296
|
+
)
|
297
|
+
|
298
|
+
return self.__class__(data)
|
299
|
+
|
300
|
+
def with_yields(self, statements: Statements) -> Self:
|
301
|
+
"""すべての利回り関連指標を計算し、列として追加する。
|
302
|
+
|
303
|
+
このメソッドは、以下の利回り関連指標をまとめて計算し、DataFrameに
|
304
|
+
追加するコンビニエンスメソッドです。
|
305
|
+
|
306
|
+
* 純資産利回り (`BookValueYield`)
|
307
|
+
* 収益利回り (`EarningsYield`)
|
308
|
+
* 配当利回り (`DividendYield`)
|
309
|
+
|
310
|
+
内部で `with_adjusted_shares()`, `with_equity()`,
|
311
|
+
`with_book_value_yield()`, `with_forecast_profit()`,
|
312
|
+
`with_earnings_yield()`, `with_forecast_dividend()`,
|
313
|
+
`with_dividend_yield()` を呼び出します。
|
314
|
+
これらのメソッドはべき等であるため、重複して呼び出されても
|
315
|
+
無駄な計算は行われません。
|
316
|
+
|
317
|
+
Args:
|
318
|
+
statements (Statements): 財務データを提供する`Statements`オブジェクト。
|
319
|
+
|
320
|
+
Returns:
|
321
|
+
Self: `BookValuePerShare`, `BookValueYield`, `EarningsPerShare`,
|
322
|
+
`EarningsYield`, `DividendPerShare`, `DividendYield` 列が追加された、
|
323
|
+
新しいPricesオブジェクト。
|
324
|
+
"""
|
325
|
+
return (
|
326
|
+
self.with_adjusted_shares(statements)
|
327
|
+
.with_equity(statements)
|
328
|
+
.with_book_value_yield()
|
329
|
+
.with_forecast_profit(statements)
|
330
|
+
.with_earnings_yield()
|
331
|
+
.with_forecast_dividend(statements)
|
332
|
+
.with_dividend_yield()
|
333
|
+
)
|
kabukit/core/statements.py
CHANGED
@@ -12,7 +12,7 @@ if TYPE_CHECKING:
|
|
12
12
|
|
13
13
|
class Statements(Base):
|
14
14
|
def shares(self) -> DataFrame:
|
15
|
-
"""
|
15
|
+
"""発行済株式数および自己株式数を取得する。"""
|
16
16
|
return self.data.filter(
|
17
17
|
pl.col("IssuedShares").is_not_null(),
|
18
18
|
).select(
|
@@ -20,7 +20,6 @@ class Statements(Base):
|
|
20
20
|
"Code",
|
21
21
|
"IssuedShares",
|
22
22
|
"TreasuryShares",
|
23
|
-
"AverageOutstandingShares",
|
24
23
|
)
|
25
24
|
|
26
25
|
def equity(self) -> DataFrame:
|
@@ -13,9 +13,9 @@ kabukit/core/base.py,sha256=YQfGw3P2QshRdut3KhtrAleVvnFsIPOw5oGA9azypAA,1695
|
|
13
13
|
kabukit/core/client.py,sha256=tVq1r3zpOfjmOtnRI1KPZHgTgBZYIpJzfw15i2kAM48,676
|
14
14
|
kabukit/core/info.py,sha256=5BX7mDavF6g-b0KzHgKIFHUS5701BoaHtw1JcHSsy94,174
|
15
15
|
kabukit/core/list.py,sha256=AjnXzC9XIu21l6IBEHHAS5VAnfxTfkAA9m1WAOZJNa8,174
|
16
|
-
kabukit/core/prices.py,sha256=
|
16
|
+
kabukit/core/prices.py,sha256=YGhz6ZjfC86aZ0pM4NFxceXTs2gTmO2hVdPd5DawV14,13316
|
17
17
|
kabukit/core/reports.py,sha256=ch_xe84GbB17JTfmY3ArQqneQ2XOuvrAykBTAyNmWuM,177
|
18
|
-
kabukit/core/statements.py,sha256=
|
18
|
+
kabukit/core/statements.py,sha256=_n4-8G284e6y_MwhvUq4xBK4bapQHk-Zmwu09C_r7wU,2790
|
19
19
|
kabukit/edinet/__init__.py,sha256=PKa4D-jVpeoOkdVp9NwwpgAiGEBjqvmJLmpzF-9SlVk,101
|
20
20
|
kabukit/edinet/client.py,sha256=BlM7pjXpKweOo-ses41JiKinqRn4qerMN5NF7hgYKgg,3275
|
21
21
|
kabukit/edinet/concurrent.py,sha256=2YPzIFuuOB8-gL3CnHIlP486QH5d21qjKNKGCFK7Hzk,4707
|
@@ -33,7 +33,7 @@ kabukit/utils/concurrent.py,sha256=m2zVqJUz4xFVpNbEc9YEaj3Jmbl82njupdm4_rBOoYQ,4
|
|
33
33
|
kabukit/utils/config.py,sha256=Jp-2TCnIj_QqA71FzYCkHXbvXvhw_1JVl4PR0foA1vM,618
|
34
34
|
kabukit/utils/date.py,sha256=DEC6Ac5LS8eiW6JtrmcD3U1pX4qzXtx4ale0swpO4Ag,937
|
35
35
|
kabukit/utils/params.py,sha256=qcaJbf6CWPUoZAZsYDTaZSnBUWeAersbWnR_iiYW9GM,1108
|
36
|
-
kabukit-0.5.
|
37
|
-
kabukit-0.5.
|
38
|
-
kabukit-0.5.
|
39
|
-
kabukit-0.5.
|
36
|
+
kabukit-0.5.3.dist-info/WHEEL,sha256=n2u5OFBbdZvCiUKAmfnY1Po2j3FB_NWfuUlt5WiAjrk,79
|
37
|
+
kabukit-0.5.3.dist-info/entry_points.txt,sha256=vvX771TemoM-35vVizW3JJ70HvRXnd2tX4P1Btzyoxs,46
|
38
|
+
kabukit-0.5.3.dist-info/METADATA,sha256=B1p6W0ztcfnlZ2i1x6IpAjobxlffOATdoSngUxu6ztc,3207
|
39
|
+
kabukit-0.5.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|