junshan-kit 2.4.8__py2.py3-none-any.whl → 2.4.9__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of junshan-kit might be problematic. Click here for more details.
- junshan_kit/DataHub.py +114 -0
- junshan_kit/DataProcessor.py +114 -24
- junshan_kit/DataSets.py +186 -37
- junshan_kit/{Models.py → ModelsHub.py} +5 -0
- junshan_kit/ParametersHub.py +404 -0
- junshan_kit/Print_Info.py +6 -2
- junshan_kit/TrainingHub.py +75 -0
- junshan_kit/kit.py +94 -23
- {junshan_kit-2.4.8.dist-info → junshan_kit-2.4.9.dist-info}/METADATA +2 -2
- junshan_kit-2.4.9.dist-info/RECORD +12 -0
- junshan_kit/ComOptimizers.py +0 -126
- junshan_kit/ExperimentHub.py +0 -338
- junshan_kit/SPBM.py +0 -350
- junshan_kit/SPBM_func.py +0 -601
- junshan_kit/TrainingParas.py +0 -470
- junshan_kit/check_args.py +0 -116
- junshan_kit/datahub.py +0 -281
- junshan_kit-2.4.8.dist-info/RECORD +0 -16
- {junshan_kit-2.4.8.dist-info → junshan_kit-2.4.9.dist-info}/WHEEL +0 -0
junshan_kit/SPBM_func.py
DELETED
|
@@ -1,601 +0,0 @@
|
|
|
1
|
-
import torch, time
|
|
2
|
-
import cvxpy as cp
|
|
3
|
-
import numpy as np
|
|
4
|
-
np.set_printoptions(precision=8, suppress=True)
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
def add_cutting(x_his, f_his, g_his, x_k, g_k, loss, cutting_number = 10):
|
|
8
|
-
x_his.append(x_k)
|
|
9
|
-
g_his.append(g_k)
|
|
10
|
-
f_his.append(loss)
|
|
11
|
-
|
|
12
|
-
if len(f_his) > cutting_number:
|
|
13
|
-
x_his.pop(0)
|
|
14
|
-
g_his.pop(0)
|
|
15
|
-
f_his.pop(0)
|
|
16
|
-
|
|
17
|
-
return x_his, f_his, g_his
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
def cut_selection(x_his, f_his, g_his, M):
|
|
21
|
-
selected_x, selected_f, selected_g = [], [], []
|
|
22
|
-
for j in range(len(f_his)-1):
|
|
23
|
-
lhs = f_his[-1]
|
|
24
|
-
rhs = f_his[j] + torch.dot(g_his[j],(x_his[-1] - x_his[j])) + M * torch.norm(g_his[j] - g_his[-1],p=2) ** 2
|
|
25
|
-
# print((lhs.item(),rhs.item()))
|
|
26
|
-
if lhs >= rhs:
|
|
27
|
-
selected_x.append(x_his[j])
|
|
28
|
-
selected_g.append(g_his[j])
|
|
29
|
-
selected_f.append(f_his[j])
|
|
30
|
-
|
|
31
|
-
selected_x.append(x_his[-1])
|
|
32
|
-
selected_g.append(g_his[-1])
|
|
33
|
-
selected_f.append(f_his[-1])
|
|
34
|
-
|
|
35
|
-
return selected_x, selected_f, selected_g
|
|
36
|
-
|
|
37
|
-
def get_var(selected_x, selected_f, selected_g, delta):
|
|
38
|
-
Gk = torch.stack(selected_g, dim=0).T # 0.00059s
|
|
39
|
-
rk = delta * torch.norm(Gk[-1,:], p=2)
|
|
40
|
-
ek_list = []
|
|
41
|
-
for _ in range(len(selected_f)):
|
|
42
|
-
ek_list.append(selected_f[_] - selected_g[_] @ selected_x[_])
|
|
43
|
-
|
|
44
|
-
xk_tensor = torch.stack(selected_x, dim=0)
|
|
45
|
-
ek = torch.stack(ek_list, dim=0)
|
|
46
|
-
|
|
47
|
-
return Gk, rk, ek
|
|
48
|
-
|
|
49
|
-
# <sub_pf>
|
|
50
|
-
def subproblem_pf(Gk, ek, xk, delta, Paras):
|
|
51
|
-
# tensor ---> numpy (0.05s)
|
|
52
|
-
Gk_np = Gk.cpu().numpy()
|
|
53
|
-
ek_np = ek.cpu().numpy()
|
|
54
|
-
xk_np = xk.cpu().numpy()
|
|
55
|
-
|
|
56
|
-
# print(xk_np.dtype,xk_np.dtype)
|
|
57
|
-
|
|
58
|
-
n, m = Gk_np.shape
|
|
59
|
-
|
|
60
|
-
# define variable
|
|
61
|
-
lambda_var = cp.Variable(m, nonneg=True)
|
|
62
|
-
v = cp.Variable(nonneg=True)
|
|
63
|
-
|
|
64
|
-
# objective function
|
|
65
|
-
objective = cp.Minimize(
|
|
66
|
-
(delta / 2) * cp.quad_form(lambda_var, Gk_np.T @ Gk_np) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
67
|
-
|
|
68
|
-
# constraints
|
|
69
|
-
constraints: list[cp.Constraint] = [cp.sum(lambda_var) + v == 1]
|
|
70
|
-
|
|
71
|
-
# SOVER
|
|
72
|
-
problem = cp.Problem(objective, constraints)
|
|
73
|
-
problem.solve()
|
|
74
|
-
|
|
75
|
-
# print("lambda* =", lambda_var.value)
|
|
76
|
-
# print("v* =", v.value)
|
|
77
|
-
# print("Optimal Value =", problem.value)
|
|
78
|
-
# print(type(lambda_var.value))
|
|
79
|
-
|
|
80
|
-
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
|
81
|
-
# a = xk_np - delta * Gk_np @ lambda_var.value
|
|
82
|
-
|
|
83
|
-
xk = xk - delta * Gk @ lambda_GPU
|
|
84
|
-
|
|
85
|
-
return xk
|
|
86
|
-
|
|
87
|
-
# <sub_pf>
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
def subproblem_tr(Gk, ek, xk, rk, Paras):
|
|
91
|
-
|
|
92
|
-
# tensor ---> numpy (0.05s)
|
|
93
|
-
Gk_np = Gk.cpu().numpy()
|
|
94
|
-
ek_np = ek.cpu().numpy()
|
|
95
|
-
xk_np = xk.cpu().numpy()
|
|
96
|
-
rk_np = rk.cpu().numpy()
|
|
97
|
-
|
|
98
|
-
# print(xk_np.dtype,xk_np.dtype)
|
|
99
|
-
|
|
100
|
-
n, m = Gk_np.shape
|
|
101
|
-
A = Gk.T @ Gk
|
|
102
|
-
|
|
103
|
-
# mu = 1e-4
|
|
104
|
-
# A = Gk.T @ Gk + mu * torch.eye(Gk.shape[1], device=Gk.device)
|
|
105
|
-
|
|
106
|
-
Lk = torch.linalg.cholesky(A).T # In order to accelerate
|
|
107
|
-
Lk_np = Lk.cpu().numpy()
|
|
108
|
-
|
|
109
|
-
# print(f"Lk = {torch.norm(Lk,p=2)},Gk = {torch.norm(Gk,p=2)}") # euqal
|
|
110
|
-
# assert False
|
|
111
|
-
|
|
112
|
-
# define variable
|
|
113
|
-
lambda_var = cp.Variable(m, nonneg=True)
|
|
114
|
-
v = cp.Variable(nonneg=True)
|
|
115
|
-
# s_time = time.time()
|
|
116
|
-
# objective function
|
|
117
|
-
# objective = cp.Minimize(
|
|
118
|
-
# rk_np * cp.norm(Gk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
119
|
-
|
|
120
|
-
objective = cp.Minimize(
|
|
121
|
-
rk_np * cp.norm(Lk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
122
|
-
|
|
123
|
-
# objective = cp.Minimize(
|
|
124
|
-
# rk_np * cp.norm(Gk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
# constraints
|
|
128
|
-
constraints: list[cp.Constraint] = [cp.sum(lambda_var) + v == 1]
|
|
129
|
-
|
|
130
|
-
# SOVER
|
|
131
|
-
problem = cp.Problem(objective, constraints)
|
|
132
|
-
problem.solve()
|
|
133
|
-
# problem.solve(solver=cp.SCS, eps=1e-5)
|
|
134
|
-
# problem.solve(solver=cp.ECOS, abstol=1e-8, reltol=1e-8, feastol=1e-8)
|
|
135
|
-
|
|
136
|
-
# e_time = time.time()
|
|
137
|
-
# print(e_time - s_time)
|
|
138
|
-
|
|
139
|
-
# print("lambda* =", lambda_var.value)
|
|
140
|
-
# print("v* =", v.value)
|
|
141
|
-
# print("Optimal Value =", problem.value)
|
|
142
|
-
# print(type(lambda_var.value))
|
|
143
|
-
|
|
144
|
-
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
|
145
|
-
# a = xk_np - delta * Gk_np @ lambda_var.value
|
|
146
|
-
|
|
147
|
-
# print(f"xk = {xk.shape}, rk = {rk.shape},GK = {Gk.shape}, Lk = {Lk.shape}, lambda_GPU = {lambda_GPU}")
|
|
148
|
-
|
|
149
|
-
# print(f"{torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)}")
|
|
150
|
-
# print(f"{torch.norm(Lk @ lambda_GPU.reshape(-1,1),p=2)}")
|
|
151
|
-
# assert False
|
|
152
|
-
|
|
153
|
-
xk = xk.reshape(-1,1) - (rk / torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)) * Gk @ lambda_GPU.reshape(-1,1)
|
|
154
|
-
|
|
155
|
-
# xk = xk.reshape(-1,1) - (rk / torch.norm(Lk @ lambda_GPU.reshape(-1,1), p=2)) * (Gk @ lambda_GPU.reshape(-1,1))
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
# <SPBM-TR_Sub>
|
|
159
|
-
def subproblem_tr_2(Gk, ek, xk, rk, Paras):
|
|
160
|
-
|
|
161
|
-
# tensor ---> numpy (0.05s)
|
|
162
|
-
Gk_np = Gk.cpu().numpy()
|
|
163
|
-
ek_np = ek.cpu().numpy()
|
|
164
|
-
xk_np = xk.cpu().numpy()
|
|
165
|
-
rk_np = rk.cpu().numpy()
|
|
166
|
-
|
|
167
|
-
# print(xk_np.dtype,xk_np.dtype)
|
|
168
|
-
|
|
169
|
-
n, m = Gk_np.shape
|
|
170
|
-
A = Gk.T @ Gk
|
|
171
|
-
|
|
172
|
-
# print(f'A = {A}')
|
|
173
|
-
Lk = torch.linalg.cholesky(A).T # In order to accelerate
|
|
174
|
-
|
|
175
|
-
Lk_np = Lk.cpu().numpy()
|
|
176
|
-
|
|
177
|
-
# print(f"Lk = {Lk}")
|
|
178
|
-
|
|
179
|
-
# print(f"Lk = {torch.norm(Lk,p=2)},Gk = {torch.norm(Gk,p=2)}") # euqal
|
|
180
|
-
# assert False
|
|
181
|
-
|
|
182
|
-
# define variable
|
|
183
|
-
lambda_var = cp.Variable(m, nonneg=True)
|
|
184
|
-
nu = cp.Variable(nonneg=True)
|
|
185
|
-
# s_time = time.time()
|
|
186
|
-
# objective function
|
|
187
|
-
# objective = cp.Minimize(
|
|
188
|
-
# rk_np * cp.norm(Gk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
189
|
-
|
|
190
|
-
objective = cp.Minimize(
|
|
191
|
-
rk_np * cp.norm(Lk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
192
|
-
|
|
193
|
-
# objective = cp.Minimize(
|
|
194
|
-
# rk_np * cp.norm(Gk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
# constraints
|
|
198
|
-
constraints: list[cp.Constraint] = [cp.sum(lambda_var) + nu == 1]
|
|
199
|
-
|
|
200
|
-
# SOVER
|
|
201
|
-
problem = cp.Problem(objective, constraints)
|
|
202
|
-
problem.solve()
|
|
203
|
-
# problem.solve(solver=cp.SCS, eps=1e-5)
|
|
204
|
-
# problem.solve(solver=cp.ECOS, abstol=1e-8, reltol=1e-8, feastol=1e-8)
|
|
205
|
-
|
|
206
|
-
# e_time = time.time()
|
|
207
|
-
# print(e_time - s_time)
|
|
208
|
-
|
|
209
|
-
# print("lambda* =", lambda_var.value)
|
|
210
|
-
# print("nu* =", nu.value)
|
|
211
|
-
# print("Optimal Value =", problem.value)
|
|
212
|
-
# print(type(lambda_var.value))
|
|
213
|
-
|
|
214
|
-
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
|
215
|
-
# a = xk_np - delta * Gk_np @ lambda_var.value
|
|
216
|
-
|
|
217
|
-
# print(f"xk = {xk.shape}, rk = {rk.shape},GK = {Gk.shape}, Lk = {Lk.shape}, lambda_GPU = {lambda_GPU}")
|
|
218
|
-
|
|
219
|
-
# print(f"{torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)}")
|
|
220
|
-
# print(f"{torch.norm(Lk @ lambda_GPU.reshape(-1,1),p=2)}")
|
|
221
|
-
# assert False
|
|
222
|
-
|
|
223
|
-
# case:
|
|
224
|
-
# xk = xk.reshape(-1,1) - (rk / torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)) * Gk @ lambda_GPU.reshape(-1,1)
|
|
225
|
-
|
|
226
|
-
# xk = xk.reshape(-1,1) - (rk / torch.norm(Lk @ lambda_GPU.reshape(-1,1), p=2)) * (Gk @ lambda_GPU.reshape(-1,1))
|
|
227
|
-
|
|
228
|
-
# return xk.reshape(-1)
|
|
229
|
-
eps = 1e-6
|
|
230
|
-
g_lambda = Gk @ lambda_GPU.reshape(-1, 1)
|
|
231
|
-
norm_g_lambda = torch.norm(g_lambda, p=2)
|
|
232
|
-
|
|
233
|
-
# print(nu.value)
|
|
234
|
-
|
|
235
|
-
if norm_g_lambda < eps: ## 0.01s
|
|
236
|
-
if lambda_var.value is None:
|
|
237
|
-
raise ValueError("lambda_var has not been solved yet")
|
|
238
|
-
|
|
239
|
-
v_star = np.dot(lambda_var.value, ek_np)
|
|
240
|
-
# print(f"v = {v_star}")
|
|
241
|
-
|
|
242
|
-
m = Gk.shape[1]
|
|
243
|
-
mu = cp.Variable(m, nonneg=True)
|
|
244
|
-
|
|
245
|
-
#
|
|
246
|
-
term1 = 0.25 * cp.sum_squares(Lk_np @ mu)
|
|
247
|
-
term2 = mu @ (ek_np - v_star * np.ones(m) + Gk_np.T @ xk_np)
|
|
248
|
-
|
|
249
|
-
objective = cp.Minimize(term1 - term2)
|
|
250
|
-
problem = cp.Problem(objective)
|
|
251
|
-
problem.solve()
|
|
252
|
-
|
|
253
|
-
mu_GPU = torch.from_numpy(mu.value).float().to(Paras['device'])
|
|
254
|
-
# print(mu_GPU)
|
|
255
|
-
# Clamp all elements in mu_GPU to be at least 1e-8 to avoid numerical instability (e.g., division by zero or log of zero)
|
|
256
|
-
|
|
257
|
-
# mu_GPU = torch.clamp(mu_GPU, min=1e-8)
|
|
258
|
-
|
|
259
|
-
xk = xk.reshape(-1,1) - 0.5 * Gk @ mu_GPU.reshape(-1,1)
|
|
260
|
-
|
|
261
|
-
# print(f"xk = {torch.norm(xk)}, Gk*mu = {Gk @ mu_GPU.reshape(-1,1)}")
|
|
262
|
-
return xk.reshape(-1)
|
|
263
|
-
|
|
264
|
-
# Otherwise, update normally.
|
|
265
|
-
xk = xk.reshape(-1, 1) - (rk / norm_g_lambda) * g_lambda
|
|
266
|
-
|
|
267
|
-
return xk.reshape(-1)
|
|
268
|
-
# <SPBM-TR_Sub>
|
|
269
|
-
|
|
270
|
-
# <SPBM_TR_NoneSpecial>
|
|
271
|
-
def subproblem_tr_NoneSpecial(Gk, ek, xk, rk, Paras):
|
|
272
|
-
# tensor ---> numpy (0.05s)
|
|
273
|
-
Gk_np = Gk.cpu().numpy()
|
|
274
|
-
ek_np = ek.cpu().numpy()
|
|
275
|
-
xk_np = xk.cpu().numpy()
|
|
276
|
-
rk_np = rk.cpu().numpy()
|
|
277
|
-
|
|
278
|
-
n, m = Gk_np.shape
|
|
279
|
-
A = Gk.T @ Gk
|
|
280
|
-
|
|
281
|
-
Lk = torch.linalg.cholesky(A).T # In order to accelerate
|
|
282
|
-
Lk_np = Lk.cpu().numpy()
|
|
283
|
-
|
|
284
|
-
# define variable (dual)
|
|
285
|
-
lambda_var = cp.Variable(m, nonneg=True)
|
|
286
|
-
nu = cp.Variable(nonneg=True)
|
|
287
|
-
|
|
288
|
-
# define objective function
|
|
289
|
-
objective = cp.Minimize(
|
|
290
|
-
rk_np * cp.norm(Lk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
291
|
-
|
|
292
|
-
# constraints
|
|
293
|
-
constraints: list[cp.Constraint] = [cp.sum(lambda_var) + nu == 1]
|
|
294
|
-
|
|
295
|
-
# SOVER
|
|
296
|
-
problem = cp.Problem(objective, constraints)
|
|
297
|
-
problem.solve()
|
|
298
|
-
|
|
299
|
-
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
|
300
|
-
|
|
301
|
-
if lambda_var.value is None:
|
|
302
|
-
raise ValueError("lambda_var has not been solved yet")
|
|
303
|
-
# calculate optimal value of primal problem
|
|
304
|
-
|
|
305
|
-
Gk_xk = Gk_np.T @ xk_np.reshape(-1,1)
|
|
306
|
-
# print(Gk_xk)
|
|
307
|
-
# print(ek_np + Gk_xk)
|
|
308
|
-
# print(lambda_var.value)
|
|
309
|
-
v_star_item1 = np.dot(lambda_var.value, (ek_np + Gk_xk))
|
|
310
|
-
v_star_item2 = rk_np * np.linalg.norm(Gk_np@lambda_var.value)
|
|
311
|
-
|
|
312
|
-
v_star = v_star_item1 - v_star_item2
|
|
313
|
-
|
|
314
|
-
m = Gk.shape[1]
|
|
315
|
-
mu = cp.Variable(m, nonneg=True)
|
|
316
|
-
|
|
317
|
-
#
|
|
318
|
-
term1 = 0.25 * cp.sum_squares(Lk_np @ mu)
|
|
319
|
-
term2 = mu @ (ek_np - v_star * np.ones(m) + Gk_np.T @ xk_np)
|
|
320
|
-
|
|
321
|
-
objective = cp.Minimize(term1 - term2)
|
|
322
|
-
problem = cp.Problem(objective)
|
|
323
|
-
problem.solve()
|
|
324
|
-
|
|
325
|
-
mu_GPU = torch.from_numpy(mu.value).float().to(Paras['device'])
|
|
326
|
-
# print(mu_GPU)
|
|
327
|
-
|
|
328
|
-
xk = xk.reshape(-1,1) - 0.5 * Gk @ mu_GPU.reshape(-1,1)
|
|
329
|
-
|
|
330
|
-
# print(f"xk = {torch.norm(xk)}, Gk*mu = {Gk @ mu_GPU.reshape(-1,1)}")
|
|
331
|
-
return xk.reshape(-1)
|
|
332
|
-
# <SPBM_TR_NoneSpecial>
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
def subproblem_tr_3(Gk, ek, xk, rk, Paras):
|
|
337
|
-
|
|
338
|
-
# tensor ---> numpy (0.05s)
|
|
339
|
-
Gk_np = Gk.cpu().numpy()
|
|
340
|
-
ek_np = ek.cpu().numpy()
|
|
341
|
-
xk_np = xk.cpu().numpy()
|
|
342
|
-
rk_np = rk.cpu().numpy()
|
|
343
|
-
|
|
344
|
-
n, m = Gk_np.shape
|
|
345
|
-
A = Gk.T @ Gk
|
|
346
|
-
|
|
347
|
-
# print(f'A = {A}')
|
|
348
|
-
Lk = torch.linalg.cholesky(A).T # In order to accelerate
|
|
349
|
-
|
|
350
|
-
Lk_np = Lk.cpu().numpy()
|
|
351
|
-
|
|
352
|
-
# define variable
|
|
353
|
-
lambda_var = cp.Variable(m, nonneg=True)
|
|
354
|
-
nu = cp.Variable(nonneg=True)
|
|
355
|
-
|
|
356
|
-
objective = cp.Minimize(
|
|
357
|
-
rk_np * cp.norm(Lk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
358
|
-
|
|
359
|
-
# constraints
|
|
360
|
-
constraints: list[cp.Constraint] = [cp.sum(lambda_var) + nu == 1]
|
|
361
|
-
|
|
362
|
-
# SOVER
|
|
363
|
-
problem = cp.Problem(objective, constraints)
|
|
364
|
-
problem.solve()
|
|
365
|
-
|
|
366
|
-
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
|
367
|
-
# a = xk_np - delta * Gk_np @ lambda_var.value
|
|
368
|
-
|
|
369
|
-
if lambda_var.value is None:
|
|
370
|
-
raise ValueError("lambda_var has not been solved yet")
|
|
371
|
-
|
|
372
|
-
v_star = np.dot(lambda_var.value, ek_np)
|
|
373
|
-
# print(f"v = {v_star}")
|
|
374
|
-
|
|
375
|
-
m = Gk.shape[1]
|
|
376
|
-
mu = cp.Variable(m, nonneg=True)
|
|
377
|
-
|
|
378
|
-
# Construct the objective function
|
|
379
|
-
term1 = 0.25 * cp.sum_squares(Lk_np @ mu)
|
|
380
|
-
term2 = mu @ (ek_np - v_star * np.ones(m) + Gk_np.T @ xk_np)
|
|
381
|
-
|
|
382
|
-
objective = cp.Minimize(term1 - term2)
|
|
383
|
-
problem = cp.Problem(objective)
|
|
384
|
-
problem.solve()
|
|
385
|
-
mu_GPU = torch.from_numpy(mu.value).float().to(Paras['device'])
|
|
386
|
-
|
|
387
|
-
xk = xk.reshape(-1,1) - 0.5 * Gk @ mu_GPU.reshape(-1,1)
|
|
388
|
-
|
|
389
|
-
return xk.reshape(-1)
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
def subproblem_tr_NoneLower(Gk, ek, xk, rk, Paras):
|
|
393
|
-
# tensor ---> numpy (0.05s)
|
|
394
|
-
Gk_np = Gk.cpu().numpy()
|
|
395
|
-
ek_np = ek.cpu().numpy()
|
|
396
|
-
xk_np = xk.cpu().numpy()
|
|
397
|
-
rk_np = rk.cpu().numpy()
|
|
398
|
-
|
|
399
|
-
# print(xk_np.dtype,xk_np.dtype)
|
|
400
|
-
|
|
401
|
-
n, m = Gk_np.shape
|
|
402
|
-
A = Gk.T @ Gk
|
|
403
|
-
|
|
404
|
-
# print(f'A = {A}')
|
|
405
|
-
Lk = torch.linalg.cholesky(A).T # In order to accelerate
|
|
406
|
-
|
|
407
|
-
Lk_np = Lk.cpu().numpy()
|
|
408
|
-
|
|
409
|
-
lambda_var = cp.Variable(m, nonneg=True)
|
|
410
|
-
nu = cp.Variable(nonneg=True)
|
|
411
|
-
|
|
412
|
-
objective = cp.Minimize(
|
|
413
|
-
rk_np * cp.norm(Lk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
414
|
-
|
|
415
|
-
# constraints
|
|
416
|
-
constraints = [cp.sum(lambda_var) == 1]
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
problem = cp.Problem(objective, constraints) # type: ignore
|
|
420
|
-
problem.solve()
|
|
421
|
-
# problem.solve(solver=cp.SCS, eps=1e-5)
|
|
422
|
-
# problem.solve(solver=cp.ECOS, abstol=1e-8, reltol=1e-8, feastol=1e-8)
|
|
423
|
-
|
|
424
|
-
# e_time = time.time()
|
|
425
|
-
# print(e_time - s_time)
|
|
426
|
-
|
|
427
|
-
# print("lambda* =", lambda_var.value)
|
|
428
|
-
# print("nu* =", nu.value)
|
|
429
|
-
# print("Optimal Value =", problem.value)
|
|
430
|
-
# print(type(lambda_var.value))
|
|
431
|
-
|
|
432
|
-
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
|
433
|
-
# a = xk_np - delta * Gk_np @ lambda_var.value
|
|
434
|
-
|
|
435
|
-
# print(f"xk = {xk.shape}, rk = {rk.shape},GK = {Gk.shape}, Lk = {Lk.shape}, lambda_GPU = {lambda_GPU}")
|
|
436
|
-
|
|
437
|
-
# print(f"{torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)}")
|
|
438
|
-
# print(f"{torch.norm(Lk @ lambda_GPU.reshape(-1,1),p=2)}")
|
|
439
|
-
# assert False
|
|
440
|
-
|
|
441
|
-
# case:
|
|
442
|
-
# xk = xk.reshape(-1,1) - (rk / torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)) * Gk @ lambda_GPU.reshape(-1,1)
|
|
443
|
-
|
|
444
|
-
# xk = xk.reshape(-1,1) - (rk / torch.norm(Lk @ lambda_GPU.reshape(-1,1), p=2)) * (Gk @ lambda_GPU.reshape(-1,1))
|
|
445
|
-
|
|
446
|
-
# return xk.reshape(-1)
|
|
447
|
-
|
|
448
|
-
eps = 1e-6
|
|
449
|
-
g_lambda = Gk @ lambda_GPU.reshape(-1, 1)
|
|
450
|
-
norm_g_lambda = torch.norm(g_lambda, p=2)
|
|
451
|
-
|
|
452
|
-
# print(nu.value)
|
|
453
|
-
|
|
454
|
-
if norm_g_lambda < eps: ## 0.01s
|
|
455
|
-
if lambda_var.value is None:
|
|
456
|
-
raise ValueError("lambda_var has not been solved yet")
|
|
457
|
-
|
|
458
|
-
v_star = np.dot(lambda_var.value, ek_np)
|
|
459
|
-
# print(f"v = {v_star}")
|
|
460
|
-
|
|
461
|
-
m = Gk.shape[1]
|
|
462
|
-
mu = cp.Variable(m, nonneg=True)
|
|
463
|
-
|
|
464
|
-
# Construct the objective function
|
|
465
|
-
term1 = 0.25 * cp.sum_squares(Lk_np @ mu)
|
|
466
|
-
term2 = mu @ (ek_np - v_star * np.ones(m) + Gk_np.T @ xk_np)
|
|
467
|
-
|
|
468
|
-
objective = cp.Minimize(term1 - term2)
|
|
469
|
-
problem = cp.Problem(objective)
|
|
470
|
-
problem.solve()
|
|
471
|
-
|
|
472
|
-
mu_GPU = torch.from_numpy(mu.value).float().to(Paras['device'])
|
|
473
|
-
# print(mu_GPU)
|
|
474
|
-
# Clamp all elements in mu_GPU to be at least 1e-8 to avoid numerical instability (e.g., division by zero or log of zero)
|
|
475
|
-
|
|
476
|
-
# mu_GPU = torch.clamp(mu_GPU, min=1e-8)
|
|
477
|
-
|
|
478
|
-
xk = xk.reshape(-1,1) - 0.5 * Gk @ mu_GPU.reshape(-1,1)
|
|
479
|
-
|
|
480
|
-
# print(f"xk = {torch.norm(xk)}, Gk*mu = {Gk @ mu_GPU.reshape(-1,1)}")
|
|
481
|
-
return xk.reshape(-1)
|
|
482
|
-
|
|
483
|
-
# therwise, update normally.
|
|
484
|
-
xk = xk.reshape(-1, 1) - (rk / norm_g_lambda) * g_lambda
|
|
485
|
-
return xk.reshape(-1)
|
|
486
|
-
|
|
487
|
-
|
|
488
|
-
def subproblem_pf_NoneLower(Gk, ek, xk, delta, Paras):
|
|
489
|
-
# tensor ---> numpy (0.05s)
|
|
490
|
-
Gk_np = Gk.cpu().numpy()
|
|
491
|
-
ek_np = ek.cpu().numpy()
|
|
492
|
-
xk_np = xk.cpu().numpy()
|
|
493
|
-
|
|
494
|
-
# print(xk_np.dtype,xk_np.dtype)
|
|
495
|
-
|
|
496
|
-
n, m = Gk_np.shape
|
|
497
|
-
|
|
498
|
-
# define variable
|
|
499
|
-
lambda_var = cp.Variable(m, nonneg=True)
|
|
500
|
-
# v = cp.Variable(nonneg=True)
|
|
501
|
-
|
|
502
|
-
# objective function
|
|
503
|
-
objective = cp.Minimize(
|
|
504
|
-
(delta / 2) * cp.quad_form(lambda_var, Gk_np.T @ Gk_np) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
505
|
-
|
|
506
|
-
# constraints
|
|
507
|
-
constraints = [cp.sum(lambda_var) == 1]
|
|
508
|
-
|
|
509
|
-
# SOVER
|
|
510
|
-
problem = cp.Problem(objective, constraints) # type: ignore
|
|
511
|
-
problem.solve()
|
|
512
|
-
|
|
513
|
-
# print("lambda* =", lambda_var.value)
|
|
514
|
-
# print("v* =", v.value)
|
|
515
|
-
# print("Optimal Value =", problem.value)
|
|
516
|
-
# print(type(lambda_var.value))
|
|
517
|
-
|
|
518
|
-
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
|
519
|
-
# a = xk_np - delta * Gk_np @ lambda_var.value
|
|
520
|
-
|
|
521
|
-
xk = xk - delta * Gk @ lambda_GPU
|
|
522
|
-
|
|
523
|
-
return xk
|
|
524
|
-
|
|
525
|
-
def bundle(Gk, ek, xk, delta, Paras):
|
|
526
|
-
# tensor ---> numpy (0.05s)
|
|
527
|
-
Gk_np = Gk.cpu().numpy()
|
|
528
|
-
ek_np = ek.cpu().numpy()
|
|
529
|
-
xk_np = xk.cpu().numpy()
|
|
530
|
-
|
|
531
|
-
# print(xk_np.dtype,xk_np.dtype)
|
|
532
|
-
|
|
533
|
-
n, m = Gk_np.shape
|
|
534
|
-
|
|
535
|
-
# define variable
|
|
536
|
-
lambda_var = cp.Variable(m, nonneg=True)
|
|
537
|
-
# v = cp.Variable(nonneg=True)
|
|
538
|
-
|
|
539
|
-
# objective function
|
|
540
|
-
objective = cp.Minimize(
|
|
541
|
-
(delta / 2) * cp.quad_form(lambda_var, Gk_np.T @ Gk_np) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
|
542
|
-
|
|
543
|
-
# constraints
|
|
544
|
-
constraints = [cp.sum(lambda_var) == 1]
|
|
545
|
-
|
|
546
|
-
# SOVER
|
|
547
|
-
problem = cp.Problem(objective, constraints) # type: ignore
|
|
548
|
-
problem.solve()
|
|
549
|
-
|
|
550
|
-
# print("lambda* =", lambda_var.value)
|
|
551
|
-
# print("v* =", v.value)
|
|
552
|
-
# print("Optimal Value =", problem.value)
|
|
553
|
-
# print(type(lambda_var.value))
|
|
554
|
-
|
|
555
|
-
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
|
556
|
-
# a = xk_np - delta * Gk_np @ lambda_var.value
|
|
557
|
-
|
|
558
|
-
xk = xk - delta * Gk @ lambda_GPU
|
|
559
|
-
|
|
560
|
-
return xk
|
|
561
|
-
|
|
562
|
-
|
|
563
|
-
def subproblem_tr_primal(Gk, ek, xk, rk, Paras):
|
|
564
|
-
|
|
565
|
-
# tensor ---> numpy (0.05s)
|
|
566
|
-
Gk_np = Gk.cpu().numpy()
|
|
567
|
-
ek_np = ek.cpu().numpy()
|
|
568
|
-
xk_np = xk.cpu().numpy()
|
|
569
|
-
rk_np = rk.cpu().numpy()
|
|
570
|
-
|
|
571
|
-
# print(Gk_np.shape)
|
|
572
|
-
n, m = Gk_np.shape
|
|
573
|
-
|
|
574
|
-
|
|
575
|
-
m_ones = np.ones(m)
|
|
576
|
-
x = cp.Variable(n)
|
|
577
|
-
v = cp.Variable()
|
|
578
|
-
|
|
579
|
-
objective = cp.Minimize(v)
|
|
580
|
-
|
|
581
|
-
constraints = [
|
|
582
|
-
Gk_np.T @ x + ek_np <= v * m_ones,
|
|
583
|
-
cp.norm(x - xk_np) <= rk_np,
|
|
584
|
-
v >= 0
|
|
585
|
-
]
|
|
586
|
-
|
|
587
|
-
problem = cp.Problem(objective, constraints) # type: ignore
|
|
588
|
-
problem.solve()
|
|
589
|
-
|
|
590
|
-
return torch.from_numpy(x.value).float().to(Paras['device'])
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
599
|
-
|
|
600
|
-
|
|
601
|
-
|