junshan-kit 2.3.9__py2.py3-none-any.whl → 2.4.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- junshan_kit/ComOptimizers.py +126 -0
- junshan_kit/DataProcessor.py +14 -10
- junshan_kit/DataSets.py +71 -221
- junshan_kit/ExperimentHub.py +328 -0
- junshan_kit/Models.py +207 -0
- junshan_kit/Print_Info.py +59 -0
- junshan_kit/SPBM.py +350 -0
- junshan_kit/SPBM_func.py +601 -0
- junshan_kit/TrainingParas.py +470 -0
- junshan_kit/check_args.py +116 -0
- junshan_kit/datahub.py +281 -0
- junshan_kit/kit.py +7 -1
- {junshan_kit-2.3.9.dist-info → junshan_kit-2.4.1.dist-info}/METADATA +1 -2
- junshan_kit-2.4.1.dist-info/RECORD +16 -0
- junshan_kit-2.3.9.dist-info/RECORD +0 -7
- {junshan_kit-2.3.9.dist-info → junshan_kit-2.4.1.dist-info}/WHEEL +0 -0
junshan_kit/SPBM_func.py
ADDED
@@ -0,0 +1,601 @@
|
|
1
|
+
import torch, time
|
2
|
+
import cvxpy as cp
|
3
|
+
import numpy as np
|
4
|
+
np.set_printoptions(precision=8, suppress=True)
|
5
|
+
|
6
|
+
|
7
|
+
def add_cutting(x_his, f_his, g_his, x_k, g_k, loss, cutting_number = 10):
|
8
|
+
x_his.append(x_k)
|
9
|
+
g_his.append(g_k)
|
10
|
+
f_his.append(loss)
|
11
|
+
|
12
|
+
if len(f_his) > cutting_number:
|
13
|
+
x_his.pop(0)
|
14
|
+
g_his.pop(0)
|
15
|
+
f_his.pop(0)
|
16
|
+
|
17
|
+
return x_his, f_his, g_his
|
18
|
+
|
19
|
+
|
20
|
+
def cut_selection(x_his, f_his, g_his, M):
|
21
|
+
selected_x, selected_f, selected_g = [], [], []
|
22
|
+
for j in range(len(f_his)-1):
|
23
|
+
lhs = f_his[-1]
|
24
|
+
rhs = f_his[j] + torch.dot(g_his[j],(x_his[-1] - x_his[j])) + M * torch.norm(g_his[j] - g_his[-1],p=2) ** 2
|
25
|
+
# print((lhs.item(),rhs.item()))
|
26
|
+
if lhs >= rhs:
|
27
|
+
selected_x.append(x_his[j])
|
28
|
+
selected_g.append(g_his[j])
|
29
|
+
selected_f.append(f_his[j])
|
30
|
+
|
31
|
+
selected_x.append(x_his[-1])
|
32
|
+
selected_g.append(g_his[-1])
|
33
|
+
selected_f.append(f_his[-1])
|
34
|
+
|
35
|
+
return selected_x, selected_f, selected_g
|
36
|
+
|
37
|
+
def get_var(selected_x, selected_f, selected_g, delta):
|
38
|
+
Gk = torch.stack(selected_g, dim=0).T # 0.00059s
|
39
|
+
rk = delta * torch.norm(Gk[-1,:], p=2)
|
40
|
+
ek_list = []
|
41
|
+
for _ in range(len(selected_f)):
|
42
|
+
ek_list.append(selected_f[_] - selected_g[_] @ selected_x[_])
|
43
|
+
|
44
|
+
xk_tensor = torch.stack(selected_x, dim=0)
|
45
|
+
ek = torch.stack(ek_list, dim=0)
|
46
|
+
|
47
|
+
return Gk, rk, ek
|
48
|
+
|
49
|
+
# <sub_pf>
|
50
|
+
def subproblem_pf(Gk, ek, xk, delta, Paras):
|
51
|
+
# tensor ---> numpy (0.05s)
|
52
|
+
Gk_np = Gk.cpu().numpy()
|
53
|
+
ek_np = ek.cpu().numpy()
|
54
|
+
xk_np = xk.cpu().numpy()
|
55
|
+
|
56
|
+
# print(xk_np.dtype,xk_np.dtype)
|
57
|
+
|
58
|
+
n, m = Gk_np.shape
|
59
|
+
|
60
|
+
# define variable
|
61
|
+
lambda_var = cp.Variable(m, nonneg=True)
|
62
|
+
v = cp.Variable(nonneg=True)
|
63
|
+
|
64
|
+
# objective function
|
65
|
+
objective = cp.Minimize(
|
66
|
+
(delta / 2) * cp.quad_form(lambda_var, Gk_np.T @ Gk_np) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
67
|
+
|
68
|
+
# constraints
|
69
|
+
constraints: list[cp.Constraint] = [cp.sum(lambda_var) + v == 1]
|
70
|
+
|
71
|
+
# SOVER
|
72
|
+
problem = cp.Problem(objective, constraints)
|
73
|
+
problem.solve()
|
74
|
+
|
75
|
+
# print("lambda* =", lambda_var.value)
|
76
|
+
# print("v* =", v.value)
|
77
|
+
# print("Optimal Value =", problem.value)
|
78
|
+
# print(type(lambda_var.value))
|
79
|
+
|
80
|
+
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
81
|
+
# a = xk_np - delta * Gk_np @ lambda_var.value
|
82
|
+
|
83
|
+
xk = xk - delta * Gk @ lambda_GPU
|
84
|
+
|
85
|
+
return xk
|
86
|
+
|
87
|
+
# <sub_pf>
|
88
|
+
|
89
|
+
|
90
|
+
def subproblem_tr(Gk, ek, xk, rk, Paras):
|
91
|
+
|
92
|
+
# tensor ---> numpy (0.05s)
|
93
|
+
Gk_np = Gk.cpu().numpy()
|
94
|
+
ek_np = ek.cpu().numpy()
|
95
|
+
xk_np = xk.cpu().numpy()
|
96
|
+
rk_np = rk.cpu().numpy()
|
97
|
+
|
98
|
+
# print(xk_np.dtype,xk_np.dtype)
|
99
|
+
|
100
|
+
n, m = Gk_np.shape
|
101
|
+
A = Gk.T @ Gk
|
102
|
+
|
103
|
+
# mu = 1e-4
|
104
|
+
# A = Gk.T @ Gk + mu * torch.eye(Gk.shape[1], device=Gk.device)
|
105
|
+
|
106
|
+
Lk = torch.linalg.cholesky(A).T # In order to accelerate
|
107
|
+
Lk_np = Lk.cpu().numpy()
|
108
|
+
|
109
|
+
# print(f"Lk = {torch.norm(Lk,p=2)},Gk = {torch.norm(Gk,p=2)}") # euqal
|
110
|
+
# assert False
|
111
|
+
|
112
|
+
# define variable
|
113
|
+
lambda_var = cp.Variable(m, nonneg=True)
|
114
|
+
v = cp.Variable(nonneg=True)
|
115
|
+
# s_time = time.time()
|
116
|
+
# objective function
|
117
|
+
# objective = cp.Minimize(
|
118
|
+
# rk_np * cp.norm(Gk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
119
|
+
|
120
|
+
objective = cp.Minimize(
|
121
|
+
rk_np * cp.norm(Lk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
122
|
+
|
123
|
+
# objective = cp.Minimize(
|
124
|
+
# rk_np * cp.norm(Gk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
125
|
+
|
126
|
+
|
127
|
+
# constraints
|
128
|
+
constraints: list[cp.Constraint] = [cp.sum(lambda_var) + v == 1]
|
129
|
+
|
130
|
+
# SOVER
|
131
|
+
problem = cp.Problem(objective, constraints)
|
132
|
+
problem.solve()
|
133
|
+
# problem.solve(solver=cp.SCS, eps=1e-5)
|
134
|
+
# problem.solve(solver=cp.ECOS, abstol=1e-8, reltol=1e-8, feastol=1e-8)
|
135
|
+
|
136
|
+
# e_time = time.time()
|
137
|
+
# print(e_time - s_time)
|
138
|
+
|
139
|
+
# print("lambda* =", lambda_var.value)
|
140
|
+
# print("v* =", v.value)
|
141
|
+
# print("Optimal Value =", problem.value)
|
142
|
+
# print(type(lambda_var.value))
|
143
|
+
|
144
|
+
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
145
|
+
# a = xk_np - delta * Gk_np @ lambda_var.value
|
146
|
+
|
147
|
+
# print(f"xk = {xk.shape}, rk = {rk.shape},GK = {Gk.shape}, Lk = {Lk.shape}, lambda_GPU = {lambda_GPU}")
|
148
|
+
|
149
|
+
# print(f"{torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)}")
|
150
|
+
# print(f"{torch.norm(Lk @ lambda_GPU.reshape(-1,1),p=2)}")
|
151
|
+
# assert False
|
152
|
+
|
153
|
+
xk = xk.reshape(-1,1) - (rk / torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)) * Gk @ lambda_GPU.reshape(-1,1)
|
154
|
+
|
155
|
+
# xk = xk.reshape(-1,1) - (rk / torch.norm(Lk @ lambda_GPU.reshape(-1,1), p=2)) * (Gk @ lambda_GPU.reshape(-1,1))
|
156
|
+
|
157
|
+
|
158
|
+
# <SPBM-TR_Sub>
|
159
|
+
def subproblem_tr_2(Gk, ek, xk, rk, Paras):
|
160
|
+
|
161
|
+
# tensor ---> numpy (0.05s)
|
162
|
+
Gk_np = Gk.cpu().numpy()
|
163
|
+
ek_np = ek.cpu().numpy()
|
164
|
+
xk_np = xk.cpu().numpy()
|
165
|
+
rk_np = rk.cpu().numpy()
|
166
|
+
|
167
|
+
# print(xk_np.dtype,xk_np.dtype)
|
168
|
+
|
169
|
+
n, m = Gk_np.shape
|
170
|
+
A = Gk.T @ Gk
|
171
|
+
|
172
|
+
# print(f'A = {A}')
|
173
|
+
Lk = torch.linalg.cholesky(A).T # In order to accelerate
|
174
|
+
|
175
|
+
Lk_np = Lk.cpu().numpy()
|
176
|
+
|
177
|
+
# print(f"Lk = {Lk}")
|
178
|
+
|
179
|
+
# print(f"Lk = {torch.norm(Lk,p=2)},Gk = {torch.norm(Gk,p=2)}") # euqal
|
180
|
+
# assert False
|
181
|
+
|
182
|
+
# define variable
|
183
|
+
lambda_var = cp.Variable(m, nonneg=True)
|
184
|
+
nu = cp.Variable(nonneg=True)
|
185
|
+
# s_time = time.time()
|
186
|
+
# objective function
|
187
|
+
# objective = cp.Minimize(
|
188
|
+
# rk_np * cp.norm(Gk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
189
|
+
|
190
|
+
objective = cp.Minimize(
|
191
|
+
rk_np * cp.norm(Lk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
192
|
+
|
193
|
+
# objective = cp.Minimize(
|
194
|
+
# rk_np * cp.norm(Gk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
195
|
+
|
196
|
+
|
197
|
+
# constraints
|
198
|
+
constraints: list[cp.Constraint] = [cp.sum(lambda_var) + nu == 1]
|
199
|
+
|
200
|
+
# SOVER
|
201
|
+
problem = cp.Problem(objective, constraints)
|
202
|
+
problem.solve()
|
203
|
+
# problem.solve(solver=cp.SCS, eps=1e-5)
|
204
|
+
# problem.solve(solver=cp.ECOS, abstol=1e-8, reltol=1e-8, feastol=1e-8)
|
205
|
+
|
206
|
+
# e_time = time.time()
|
207
|
+
# print(e_time - s_time)
|
208
|
+
|
209
|
+
# print("lambda* =", lambda_var.value)
|
210
|
+
# print("nu* =", nu.value)
|
211
|
+
# print("Optimal Value =", problem.value)
|
212
|
+
# print(type(lambda_var.value))
|
213
|
+
|
214
|
+
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
215
|
+
# a = xk_np - delta * Gk_np @ lambda_var.value
|
216
|
+
|
217
|
+
# print(f"xk = {xk.shape}, rk = {rk.shape},GK = {Gk.shape}, Lk = {Lk.shape}, lambda_GPU = {lambda_GPU}")
|
218
|
+
|
219
|
+
# print(f"{torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)}")
|
220
|
+
# print(f"{torch.norm(Lk @ lambda_GPU.reshape(-1,1),p=2)}")
|
221
|
+
# assert False
|
222
|
+
|
223
|
+
# case:
|
224
|
+
# xk = xk.reshape(-1,1) - (rk / torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)) * Gk @ lambda_GPU.reshape(-1,1)
|
225
|
+
|
226
|
+
# xk = xk.reshape(-1,1) - (rk / torch.norm(Lk @ lambda_GPU.reshape(-1,1), p=2)) * (Gk @ lambda_GPU.reshape(-1,1))
|
227
|
+
|
228
|
+
# return xk.reshape(-1)
|
229
|
+
eps = 1e-6
|
230
|
+
g_lambda = Gk @ lambda_GPU.reshape(-1, 1)
|
231
|
+
norm_g_lambda = torch.norm(g_lambda, p=2)
|
232
|
+
|
233
|
+
# print(nu.value)
|
234
|
+
|
235
|
+
if norm_g_lambda < eps: ## 0.01s
|
236
|
+
if lambda_var.value is None:
|
237
|
+
raise ValueError("lambda_var has not been solved yet")
|
238
|
+
|
239
|
+
v_star = np.dot(lambda_var.value, ek_np)
|
240
|
+
# print(f"v = {v_star}")
|
241
|
+
|
242
|
+
m = Gk.shape[1]
|
243
|
+
mu = cp.Variable(m, nonneg=True)
|
244
|
+
|
245
|
+
#
|
246
|
+
term1 = 0.25 * cp.sum_squares(Lk_np @ mu)
|
247
|
+
term2 = mu @ (ek_np - v_star * np.ones(m) + Gk_np.T @ xk_np)
|
248
|
+
|
249
|
+
objective = cp.Minimize(term1 - term2)
|
250
|
+
problem = cp.Problem(objective)
|
251
|
+
problem.solve()
|
252
|
+
|
253
|
+
mu_GPU = torch.from_numpy(mu.value).float().to(Paras['device'])
|
254
|
+
# print(mu_GPU)
|
255
|
+
# Clamp all elements in mu_GPU to be at least 1e-8 to avoid numerical instability (e.g., division by zero or log of zero)
|
256
|
+
|
257
|
+
# mu_GPU = torch.clamp(mu_GPU, min=1e-8)
|
258
|
+
|
259
|
+
xk = xk.reshape(-1,1) - 0.5 * Gk @ mu_GPU.reshape(-1,1)
|
260
|
+
|
261
|
+
# print(f"xk = {torch.norm(xk)}, Gk*mu = {Gk @ mu_GPU.reshape(-1,1)}")
|
262
|
+
return xk.reshape(-1)
|
263
|
+
|
264
|
+
# Otherwise, update normally.
|
265
|
+
xk = xk.reshape(-1, 1) - (rk / norm_g_lambda) * g_lambda
|
266
|
+
|
267
|
+
return xk.reshape(-1)
|
268
|
+
# <SPBM-TR_Sub>
|
269
|
+
|
270
|
+
# <SPBM_TR_NoneSpecial>
|
271
|
+
def subproblem_tr_NoneSpecial(Gk, ek, xk, rk, Paras):
|
272
|
+
# tensor ---> numpy (0.05s)
|
273
|
+
Gk_np = Gk.cpu().numpy()
|
274
|
+
ek_np = ek.cpu().numpy()
|
275
|
+
xk_np = xk.cpu().numpy()
|
276
|
+
rk_np = rk.cpu().numpy()
|
277
|
+
|
278
|
+
n, m = Gk_np.shape
|
279
|
+
A = Gk.T @ Gk
|
280
|
+
|
281
|
+
Lk = torch.linalg.cholesky(A).T # In order to accelerate
|
282
|
+
Lk_np = Lk.cpu().numpy()
|
283
|
+
|
284
|
+
# define variable (dual)
|
285
|
+
lambda_var = cp.Variable(m, nonneg=True)
|
286
|
+
nu = cp.Variable(nonneg=True)
|
287
|
+
|
288
|
+
# define objective function
|
289
|
+
objective = cp.Minimize(
|
290
|
+
rk_np * cp.norm(Lk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
291
|
+
|
292
|
+
# constraints
|
293
|
+
constraints: list[cp.Constraint] = [cp.sum(lambda_var) + nu == 1]
|
294
|
+
|
295
|
+
# SOVER
|
296
|
+
problem = cp.Problem(objective, constraints)
|
297
|
+
problem.solve()
|
298
|
+
|
299
|
+
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
300
|
+
|
301
|
+
if lambda_var.value is None:
|
302
|
+
raise ValueError("lambda_var has not been solved yet")
|
303
|
+
# calculate optimal value of primal problem
|
304
|
+
|
305
|
+
Gk_xk = Gk_np.T @ xk_np.reshape(-1,1)
|
306
|
+
# print(Gk_xk)
|
307
|
+
# print(ek_np + Gk_xk)
|
308
|
+
# print(lambda_var.value)
|
309
|
+
v_star_item1 = np.dot(lambda_var.value, (ek_np + Gk_xk))
|
310
|
+
v_star_item2 = rk_np * np.linalg.norm(Gk_np@lambda_var.value)
|
311
|
+
|
312
|
+
v_star = v_star_item1 - v_star_item2
|
313
|
+
|
314
|
+
m = Gk.shape[1]
|
315
|
+
mu = cp.Variable(m, nonneg=True)
|
316
|
+
|
317
|
+
#
|
318
|
+
term1 = 0.25 * cp.sum_squares(Lk_np @ mu)
|
319
|
+
term2 = mu @ (ek_np - v_star * np.ones(m) + Gk_np.T @ xk_np)
|
320
|
+
|
321
|
+
objective = cp.Minimize(term1 - term2)
|
322
|
+
problem = cp.Problem(objective)
|
323
|
+
problem.solve()
|
324
|
+
|
325
|
+
mu_GPU = torch.from_numpy(mu.value).float().to(Paras['device'])
|
326
|
+
# print(mu_GPU)
|
327
|
+
|
328
|
+
xk = xk.reshape(-1,1) - 0.5 * Gk @ mu_GPU.reshape(-1,1)
|
329
|
+
|
330
|
+
# print(f"xk = {torch.norm(xk)}, Gk*mu = {Gk @ mu_GPU.reshape(-1,1)}")
|
331
|
+
return xk.reshape(-1)
|
332
|
+
# <SPBM_TR_NoneSpecial>
|
333
|
+
|
334
|
+
|
335
|
+
|
336
|
+
def subproblem_tr_3(Gk, ek, xk, rk, Paras):
|
337
|
+
|
338
|
+
# tensor ---> numpy (0.05s)
|
339
|
+
Gk_np = Gk.cpu().numpy()
|
340
|
+
ek_np = ek.cpu().numpy()
|
341
|
+
xk_np = xk.cpu().numpy()
|
342
|
+
rk_np = rk.cpu().numpy()
|
343
|
+
|
344
|
+
n, m = Gk_np.shape
|
345
|
+
A = Gk.T @ Gk
|
346
|
+
|
347
|
+
# print(f'A = {A}')
|
348
|
+
Lk = torch.linalg.cholesky(A).T # In order to accelerate
|
349
|
+
|
350
|
+
Lk_np = Lk.cpu().numpy()
|
351
|
+
|
352
|
+
# define variable
|
353
|
+
lambda_var = cp.Variable(m, nonneg=True)
|
354
|
+
nu = cp.Variable(nonneg=True)
|
355
|
+
|
356
|
+
objective = cp.Minimize(
|
357
|
+
rk_np * cp.norm(Lk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
358
|
+
|
359
|
+
# constraints
|
360
|
+
constraints: list[cp.Constraint] = [cp.sum(lambda_var) + nu == 1]
|
361
|
+
|
362
|
+
# SOVER
|
363
|
+
problem = cp.Problem(objective, constraints)
|
364
|
+
problem.solve()
|
365
|
+
|
366
|
+
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
367
|
+
# a = xk_np - delta * Gk_np @ lambda_var.value
|
368
|
+
|
369
|
+
if lambda_var.value is None:
|
370
|
+
raise ValueError("lambda_var has not been solved yet")
|
371
|
+
|
372
|
+
v_star = np.dot(lambda_var.value, ek_np)
|
373
|
+
# print(f"v = {v_star}")
|
374
|
+
|
375
|
+
m = Gk.shape[1]
|
376
|
+
mu = cp.Variable(m, nonneg=True)
|
377
|
+
|
378
|
+
# Construct the objective function
|
379
|
+
term1 = 0.25 * cp.sum_squares(Lk_np @ mu)
|
380
|
+
term2 = mu @ (ek_np - v_star * np.ones(m) + Gk_np.T @ xk_np)
|
381
|
+
|
382
|
+
objective = cp.Minimize(term1 - term2)
|
383
|
+
problem = cp.Problem(objective)
|
384
|
+
problem.solve()
|
385
|
+
mu_GPU = torch.from_numpy(mu.value).float().to(Paras['device'])
|
386
|
+
|
387
|
+
xk = xk.reshape(-1,1) - 0.5 * Gk @ mu_GPU.reshape(-1,1)
|
388
|
+
|
389
|
+
return xk.reshape(-1)
|
390
|
+
|
391
|
+
|
392
|
+
def subproblem_tr_NoneLower(Gk, ek, xk, rk, Paras):
|
393
|
+
# tensor ---> numpy (0.05s)
|
394
|
+
Gk_np = Gk.cpu().numpy()
|
395
|
+
ek_np = ek.cpu().numpy()
|
396
|
+
xk_np = xk.cpu().numpy()
|
397
|
+
rk_np = rk.cpu().numpy()
|
398
|
+
|
399
|
+
# print(xk_np.dtype,xk_np.dtype)
|
400
|
+
|
401
|
+
n, m = Gk_np.shape
|
402
|
+
A = Gk.T @ Gk
|
403
|
+
|
404
|
+
# print(f'A = {A}')
|
405
|
+
Lk = torch.linalg.cholesky(A).T # In order to accelerate
|
406
|
+
|
407
|
+
Lk_np = Lk.cpu().numpy()
|
408
|
+
|
409
|
+
lambda_var = cp.Variable(m, nonneg=True)
|
410
|
+
nu = cp.Variable(nonneg=True)
|
411
|
+
|
412
|
+
objective = cp.Minimize(
|
413
|
+
rk_np * cp.norm(Lk_np @ lambda_var, 2) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
414
|
+
|
415
|
+
# constraints
|
416
|
+
constraints = [cp.sum(lambda_var) == 1]
|
417
|
+
|
418
|
+
|
419
|
+
problem = cp.Problem(objective, constraints) # type: ignore
|
420
|
+
problem.solve()
|
421
|
+
# problem.solve(solver=cp.SCS, eps=1e-5)
|
422
|
+
# problem.solve(solver=cp.ECOS, abstol=1e-8, reltol=1e-8, feastol=1e-8)
|
423
|
+
|
424
|
+
# e_time = time.time()
|
425
|
+
# print(e_time - s_time)
|
426
|
+
|
427
|
+
# print("lambda* =", lambda_var.value)
|
428
|
+
# print("nu* =", nu.value)
|
429
|
+
# print("Optimal Value =", problem.value)
|
430
|
+
# print(type(lambda_var.value))
|
431
|
+
|
432
|
+
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
433
|
+
# a = xk_np - delta * Gk_np @ lambda_var.value
|
434
|
+
|
435
|
+
# print(f"xk = {xk.shape}, rk = {rk.shape},GK = {Gk.shape}, Lk = {Lk.shape}, lambda_GPU = {lambda_GPU}")
|
436
|
+
|
437
|
+
# print(f"{torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)}")
|
438
|
+
# print(f"{torch.norm(Lk @ lambda_GPU.reshape(-1,1),p=2)}")
|
439
|
+
# assert False
|
440
|
+
|
441
|
+
# case:
|
442
|
+
# xk = xk.reshape(-1,1) - (rk / torch.norm(Gk @ lambda_GPU.reshape(-1,1),p=2)) * Gk @ lambda_GPU.reshape(-1,1)
|
443
|
+
|
444
|
+
# xk = xk.reshape(-1,1) - (rk / torch.norm(Lk @ lambda_GPU.reshape(-1,1), p=2)) * (Gk @ lambda_GPU.reshape(-1,1))
|
445
|
+
|
446
|
+
# return xk.reshape(-1)
|
447
|
+
|
448
|
+
eps = 1e-6
|
449
|
+
g_lambda = Gk @ lambda_GPU.reshape(-1, 1)
|
450
|
+
norm_g_lambda = torch.norm(g_lambda, p=2)
|
451
|
+
|
452
|
+
# print(nu.value)
|
453
|
+
|
454
|
+
if norm_g_lambda < eps: ## 0.01s
|
455
|
+
if lambda_var.value is None:
|
456
|
+
raise ValueError("lambda_var has not been solved yet")
|
457
|
+
|
458
|
+
v_star = np.dot(lambda_var.value, ek_np)
|
459
|
+
# print(f"v = {v_star}")
|
460
|
+
|
461
|
+
m = Gk.shape[1]
|
462
|
+
mu = cp.Variable(m, nonneg=True)
|
463
|
+
|
464
|
+
# Construct the objective function
|
465
|
+
term1 = 0.25 * cp.sum_squares(Lk_np @ mu)
|
466
|
+
term2 = mu @ (ek_np - v_star * np.ones(m) + Gk_np.T @ xk_np)
|
467
|
+
|
468
|
+
objective = cp.Minimize(term1 - term2)
|
469
|
+
problem = cp.Problem(objective)
|
470
|
+
problem.solve()
|
471
|
+
|
472
|
+
mu_GPU = torch.from_numpy(mu.value).float().to(Paras['device'])
|
473
|
+
# print(mu_GPU)
|
474
|
+
# Clamp all elements in mu_GPU to be at least 1e-8 to avoid numerical instability (e.g., division by zero or log of zero)
|
475
|
+
|
476
|
+
# mu_GPU = torch.clamp(mu_GPU, min=1e-8)
|
477
|
+
|
478
|
+
xk = xk.reshape(-1,1) - 0.5 * Gk @ mu_GPU.reshape(-1,1)
|
479
|
+
|
480
|
+
# print(f"xk = {torch.norm(xk)}, Gk*mu = {Gk @ mu_GPU.reshape(-1,1)}")
|
481
|
+
return xk.reshape(-1)
|
482
|
+
|
483
|
+
# therwise, update normally.
|
484
|
+
xk = xk.reshape(-1, 1) - (rk / norm_g_lambda) * g_lambda
|
485
|
+
return xk.reshape(-1)
|
486
|
+
|
487
|
+
|
488
|
+
def subproblem_pf_NoneLower(Gk, ek, xk, delta, Paras):
|
489
|
+
# tensor ---> numpy (0.05s)
|
490
|
+
Gk_np = Gk.cpu().numpy()
|
491
|
+
ek_np = ek.cpu().numpy()
|
492
|
+
xk_np = xk.cpu().numpy()
|
493
|
+
|
494
|
+
# print(xk_np.dtype,xk_np.dtype)
|
495
|
+
|
496
|
+
n, m = Gk_np.shape
|
497
|
+
|
498
|
+
# define variable
|
499
|
+
lambda_var = cp.Variable(m, nonneg=True)
|
500
|
+
# v = cp.Variable(nonneg=True)
|
501
|
+
|
502
|
+
# objective function
|
503
|
+
objective = cp.Minimize(
|
504
|
+
(delta / 2) * cp.quad_form(lambda_var, Gk_np.T @ Gk_np) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
505
|
+
|
506
|
+
# constraints
|
507
|
+
constraints = [cp.sum(lambda_var) == 1]
|
508
|
+
|
509
|
+
# SOVER
|
510
|
+
problem = cp.Problem(objective, constraints) # type: ignore
|
511
|
+
problem.solve()
|
512
|
+
|
513
|
+
# print("lambda* =", lambda_var.value)
|
514
|
+
# print("v* =", v.value)
|
515
|
+
# print("Optimal Value =", problem.value)
|
516
|
+
# print(type(lambda_var.value))
|
517
|
+
|
518
|
+
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
519
|
+
# a = xk_np - delta * Gk_np @ lambda_var.value
|
520
|
+
|
521
|
+
xk = xk - delta * Gk @ lambda_GPU
|
522
|
+
|
523
|
+
return xk
|
524
|
+
|
525
|
+
def bundle(Gk, ek, xk, delta, Paras):
|
526
|
+
# tensor ---> numpy (0.05s)
|
527
|
+
Gk_np = Gk.cpu().numpy()
|
528
|
+
ek_np = ek.cpu().numpy()
|
529
|
+
xk_np = xk.cpu().numpy()
|
530
|
+
|
531
|
+
# print(xk_np.dtype,xk_np.dtype)
|
532
|
+
|
533
|
+
n, m = Gk_np.shape
|
534
|
+
|
535
|
+
# define variable
|
536
|
+
lambda_var = cp.Variable(m, nonneg=True)
|
537
|
+
# v = cp.Variable(nonneg=True)
|
538
|
+
|
539
|
+
# objective function
|
540
|
+
objective = cp.Minimize(
|
541
|
+
(delta / 2) * cp.quad_form(lambda_var, Gk_np.T @ Gk_np) - (Gk_np.T @ xk_np + ek_np) @ lambda_var)
|
542
|
+
|
543
|
+
# constraints
|
544
|
+
constraints = [cp.sum(lambda_var) == 1]
|
545
|
+
|
546
|
+
# SOVER
|
547
|
+
problem = cp.Problem(objective, constraints) # type: ignore
|
548
|
+
problem.solve()
|
549
|
+
|
550
|
+
# print("lambda* =", lambda_var.value)
|
551
|
+
# print("v* =", v.value)
|
552
|
+
# print("Optimal Value =", problem.value)
|
553
|
+
# print(type(lambda_var.value))
|
554
|
+
|
555
|
+
lambda_GPU= torch.from_numpy(lambda_var.value).float().to(Paras['device']) # 1e-3
|
556
|
+
# a = xk_np - delta * Gk_np @ lambda_var.value
|
557
|
+
|
558
|
+
xk = xk - delta * Gk @ lambda_GPU
|
559
|
+
|
560
|
+
return xk
|
561
|
+
|
562
|
+
|
563
|
+
def subproblem_tr_primal(Gk, ek, xk, rk, Paras):
|
564
|
+
|
565
|
+
# tensor ---> numpy (0.05s)
|
566
|
+
Gk_np = Gk.cpu().numpy()
|
567
|
+
ek_np = ek.cpu().numpy()
|
568
|
+
xk_np = xk.cpu().numpy()
|
569
|
+
rk_np = rk.cpu().numpy()
|
570
|
+
|
571
|
+
# print(Gk_np.shape)
|
572
|
+
n, m = Gk_np.shape
|
573
|
+
|
574
|
+
|
575
|
+
m_ones = np.ones(m)
|
576
|
+
x = cp.Variable(n)
|
577
|
+
v = cp.Variable()
|
578
|
+
|
579
|
+
objective = cp.Minimize(v)
|
580
|
+
|
581
|
+
constraints = [
|
582
|
+
Gk_np.T @ x + ek_np <= v * m_ones,
|
583
|
+
cp.norm(x - xk_np) <= rk_np,
|
584
|
+
v >= 0
|
585
|
+
]
|
586
|
+
|
587
|
+
problem = cp.Problem(objective, constraints) # type: ignore
|
588
|
+
problem.solve()
|
589
|
+
|
590
|
+
return torch.from_numpy(x.value).float().to(Paras['device'])
|
591
|
+
|
592
|
+
|
593
|
+
|
594
|
+
|
595
|
+
|
596
|
+
|
597
|
+
|
598
|
+
|
599
|
+
|
600
|
+
|
601
|
+
|