junshan-kit 2.2.8__py2.py3-none-any.whl → 2.5.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
junshan_kit/DataSets.py CHANGED
@@ -1,18 +1,60 @@
1
1
  """
2
2
  ----------------------------------------------------------------------
3
3
  >>> Author : Junshan Yin
4
- >>> Last Updated : 2025-xx-xx
4
+ >>> Last Updated : 2025-10-16
5
5
  ----------------------------------------------------------------------
6
6
  """
7
7
 
8
- import os, time
8
+ import os
9
9
  import pandas as pd
10
+ from scipy.sparse import csr_matrix
11
+ from scipy.io import savemat
10
12
  import junshan_kit.DataProcessor
11
13
  import junshan_kit.kit
12
14
  from sklearn.preprocessing import StandardScaler
13
15
 
16
+ #----------------------------------------------------------
17
+ def _download_data(data_name, data_type):
18
+ """
19
+ Download and extract a dataset from Jianguoyun using either Firefox or Chrome automation.
14
20
 
15
- def download_data(data_name):
21
+ This helper function allows the user to manually provide a Jianguoyun download link,
22
+ choose a browser (Firefox or Chrome) for automated downloading, and automatically unzip the downloaded dataset into a structured local directory.
23
+
24
+ Args:
25
+ data_name (str):
26
+ The name of the dataset (used as a folder name for storage).
27
+
28
+ data_type (str):
29
+ The dataset category, e.g., "binary" or "multi".
30
+ Determines the subdirectory under './exp_data/'.
31
+
32
+ Raises:
33
+ ValueError:
34
+ If `data_type` is not one of the allowed options: ["binary", "multi"].
35
+
36
+ Behavior:
37
+ - Prompts the user to input a Jianguoyun download URL.
38
+ - Lets the user select a download method (Firefox or Chrome).
39
+ - Downloads the `.zip` file into `./exp_data/{data_name}/`.
40
+ - Automatically extracts the zip file in the same directory.
41
+ - Prints progress and completion messages.
42
+
43
+ Example:
44
+ >>> _download_data("mnist", "binary")
45
+ Enter the Jianguoyun download URL: https://www.jianguoyun.com/p/abcd1234
46
+ Select download method:
47
+ 1. Firefox
48
+ 2. Chrome
49
+ Enter the number of your choice (1 or 2):
50
+
51
+ Note:
52
+ Requires `junshan_kit` with `JianguoyunDownloaderFirefox`,
53
+ `JianguoyunDownloaderChrome`, and `unzip_file` utilities available.
54
+ """
55
+ allowed_types = ["binary", "multi"]
56
+ if data_type not in allowed_types:
57
+ raise ValueError(f"Invalid data_type: {data_type!r}. Must be one of {allowed_types}.")
16
58
  from junshan_kit.kit import JianguoyunDownloaderFirefox, JianguoyunDownloaderChrome
17
59
 
18
60
  # User selects download method
@@ -27,38 +69,309 @@ def download_data(data_name):
27
69
 
28
70
  if choice == "1":
29
71
  JianguoyunDownloaderFirefox(url, f"./exp_data/{data_name}").run()
30
- print(" Download completed using Firefox")
72
+ print("*** Download completed using Firefox ***")
31
73
  break
32
74
  elif choice == "2":
33
75
  JianguoyunDownloaderChrome(url, f"./exp_data/{data_name}").run()
34
- print(" Download completed using Chrome")
76
+ print("*** Download completed using Chrome ***")
35
77
  break
36
78
  else:
37
- print(" Invalid choice. Please enter 1 or 2.\n")
79
+ print("*** Invalid choice. Please enter 1 or 2 ***\n")
38
80
 
81
+ # unzip file
82
+ junshan_kit.kit.unzip_file(f'./exp_data/{data_name}/{data_name}.zip', f'./exp_data/{data_name}')
39
83
 
40
- def credit_card_fraud_detection(data_name = "Credit Card Fraud Detection", print_info = False):
84
+ def _export_csv(df, data_name, data_type):
85
+ path = f'./exp_data/{data_name}/'
86
+ os.makedirs(path, exist_ok=True)
87
+ df.to_csv(path + f'{data_name}_num.csv', index=False)
88
+ print(path + f'{data_name}.csv')
41
89
 
42
- csv_path = f'./exp_data/{data_name}/creditcard.csv'
43
- drop_cols = []
44
- label_col = 'Class'
45
- label_map = {0: -1, 1: 1}
46
90
 
47
- if not os.path.exists(csv_path):
91
+ def _export_mat(df, data_name, label_col):
92
+ # Extract label and feature matrices
93
+ y = df[label_col].values # Target column
94
+ X = df.drop(columns=[label_col]).values # Feature matrix
95
+
96
+ # Convert to sparse matrices
97
+ X_sparse = csr_matrix(X)
98
+ Y_sparse = csr_matrix(y.reshape(-1, 1)) # Convert target to column sparse matrix
99
+
100
+ # Get number of samples and features
101
+ m, n = X.shape
102
+
103
+ # Save as a MAT file (supports large datasets)
104
+ save_path = f'exp_data/{data_name}/{data_name}.mat'
105
+ savemat(save_path, {'X': X_sparse, 'Y': Y_sparse, 'm': m, 'n': n}, do_compression=True)
106
+
107
+ # Print confirmation
108
+ print("Sparse MAT file saved to:", save_path)
109
+ print("Number of samples (m):", m)
110
+ print("Number of features (n):", n)
111
+
112
+
113
+ def _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, user_one_hot_cols = [], export_csv = False, time_info = None, df = None, missing_strategy = 'drop', Paras = None):
114
+
115
+ if csv_path is not None and not os.path.exists(csv_path):
48
116
  print('\n' + '*'*60)
49
117
  print(f"Please download the data.")
50
118
  print(csv_path)
51
- download_data(data_name)
52
- junshan_kit.kit.unzip_file(f'./exp_data/{data_name}/{data_name}.zip', f'./exp_data/{data_name}')
53
-
119
+ _download_data(data_name, data_type=data_type)
120
+
121
+ if not os.path.exists(f"./exp_data/{data_name}"):
122
+ print('\n' + '*'*60)
123
+ print(f"Please download the data.")
124
+ print(f"./exp_data/{data_name}")
125
+ _download_data(data_name, data_type=data_type)
126
+
127
+ if df is None:
128
+ df = pd.read_csv(csv_path)
129
+
54
130
  cleaner = junshan_kit.DataProcessor.CSV_TO_Pandas()
55
- df = cleaner.preprocess_dataset(csv_path, drop_cols, label_col, label_map, print_info=print_info)
131
+ df = cleaner.preprocess_dataset(df, drop_cols, label_col, label_map, title_name=data_name, user_one_hot_cols=user_one_hot_cols, print_info=print_info, time_info = time_info, missing_strategy = missing_strategy)
132
+
133
+ if export_csv:
134
+ _export_csv(df, data_name, data_type)
135
+
136
+ if Paras is not None and Paras["export_mat"]:
137
+ _export_mat(df, data_name, label_col)
138
+
139
+ return df
140
+
141
+
142
+
143
+ # ********************************************************************
144
+ """
145
+ ----------------------------------------------------------------------
146
+ Datasets
147
+ ----------------------------------------------------------------------
148
+ """
149
+
150
+ def credit_card_fraud_detection(data_name = "Credit Card Fraud Detection", print_info = False, export_csv=False, drop_cols = []):
151
+
152
+ data_type = "binary"
153
+ csv_path = f'./exp_data/{data_name}/creditcard.csv'
154
+ label_col = 'Class'
155
+ label_map = {0: -1, 1: 1}
156
+
157
+
158
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv)
159
+
160
+
161
+ return df
162
+
163
+
164
+ def diabetes_health_indicators(data_name = "Diabetes Health Indicators", print_info = False, export_csv = False, drop_cols = [], Standard = False):
165
+ data_type = "binary"
166
+ csv_path = f'./exp_data/{data_name}/diabetes_dataset.csv'
167
+ label_col = 'diagnosed_diabetes'
168
+ label_map = {0: -1, 1: 1}
169
+
170
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv)
171
+
172
+ return df
173
+
174
+
175
+ def electric_vehicle_population(data_name = "Electric Vehicle Population", print_info = False, export_csv = False, drop_cols = ['VIN (1-10)', 'DOL Vehicle ID', 'Vehicle Location'], Standard = False):
176
+
177
+ data_type = "binary"
178
+ csv_path = f'./exp_data/{data_name}/Electric_Vehicle_Population_Data.csv'
179
+ # drop_cols = ['VIN (1-10)', 'DOL Vehicle ID', 'Vehicle Location']
180
+ label_col = 'Electric Vehicle Type'
181
+ label_map = {
182
+ 'Battery Electric Vehicle (BEV)': 1,
183
+ 'Plug-in Hybrid Electric Vehicle (PHEV)': -1
184
+ }
185
+
186
+
187
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv)
188
+
189
+ return df
190
+
191
+ def global_house_purchase(data_name = "Global House Purchase", print_info = False, export_csv = False, drop_cols = ['property_id'], Standard =False):
192
+
193
+ data_type = "binary"
194
+ csv_path = f'./exp_data/{data_name}/global_house_purchase_dataset.csv'
195
+ label_col = 'decision'
196
+ label_map = {0: -1, 1: 1}
197
+
198
+
199
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv)
200
+
201
+ return df
202
+
203
+
204
+ def health_lifestyle(data_name = "Health Lifestyle", print_info = False, export_csv = False, drop_cols = ['id'], Standard =False):
205
+
206
+ data_type = "binary"
207
+ csv_path = f'./exp_data/{data_name}/health_lifestyle_dataset.csv'
208
+
209
+ label_col = 'disease_risk'
210
+ label_map = {0: -1, 1: 1}
211
+
212
+
213
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv)
214
+
215
+ return df
216
+
217
+
218
+ def medical_insurance_cost_prediction(data_name = "Medical Insurance Cost Prediction", print_info = False, export_csv = False, drop_cols = ['alcohol_freq'], Standard = False):
219
+ """
220
+ 1. The missing values in this dataset are handled by directly removing the corresponding column. Since the `alcohol_freq` column contains a large number of missing values, deleting the rows would result in significant data loss, so the entire column is dropped instead.
221
+
222
+ 2. There are several columns that could serve as binary classification labels, such as `is_high_risk`, `cardiovascular_disease`, and `liver_disease`. In this case, `is_high_risk` is chosen as the label column.
223
+ """
224
+
225
+ data_type = "binary"
226
+ csv_path = f'./exp_data/{data_name}/medical_insurance.csv'
227
+
228
+ label_col = 'is_high_risk'
229
+ label_map = {0: -1, 1: 1}
230
+
231
+
232
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv)
233
+
234
+ return df
235
+
236
+
237
+ def particle_physics_event_classification(data_name = "Particle Physics Event Classification", print_info = False, export_csv = False, drop_cols = [], Standard =False):
238
+
239
+ data_type = "binary"
240
+ csv_path = f'./exp_data/{data_name}/Particle Physics Event Classification.csv'
241
+
242
+ label_col = 'Label'
243
+ label_map = {'s': -1, 'b': 1}
244
+
245
+
246
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv)
247
+
248
+ return df
249
+
250
+
251
+
252
+ def adult_income_prediction(data_name = "Adult Income Prediction", print_info = False, export_csv=False, drop_cols = [], Standard = False):
253
+
254
+ data_type = "binary"
255
+ csv_path = f'./exp_data/{data_name}/adult.csv'
256
+
257
+ label_col = 'income'
258
+ label_map = {'<=50K': -1, '>50K': 1}
259
+
260
+
261
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv)
56
262
 
57
263
  return df
264
+
265
+
266
+ def TamilNadu_weather_2020_2025(data_name = "TN Weather 2020-2025", print_info = False, export_csv = False, drop_cols = ['Unnamed: 0'], Standard = False):
267
+
268
+ data_type = "binary"
269
+ csv_path = f'./exp_data/{data_name}/TNweather_1.8M.csv'
58
270
 
271
+ label_col = 'rain_tomorrow'
272
+ label_map = {0: -1, 1: 1}
273
+
274
+ time_info = {
275
+ 'time_col_name': 'time',
276
+ 'trans_type': 0
277
+ }
278
+
279
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv, time_info=time_info)
280
+
281
+
282
+ return df
283
+
284
+ def YouTube_Recommendation(data_name = "YouTube Recommendation", print_info = False, export_csv = False, drop_cols = ['user_id']):
285
+
286
+ data_type = "binary"
287
+ csv_path = f'./exp_data/{data_name}/youtube recommendation dataset.csv'
59
288
 
289
+ label_col = 'subscribed_after'
290
+ label_map = {0: -1, 1: 1}
291
+
292
+ # Extraction mode.
293
+ # - 0 : Extract ['year', 'month', 'day', 'hour']
294
+ # - 1 : Extract ['hour', 'dayofweek', 'is_weekend']
295
+ # - 2 : Extract ['year', 'month', 'day']
296
+ time_info = {
297
+ 'time_col_name': 'timestamp',
298
+ 'trans_type': 1
299
+ }
300
+
301
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv, time_info=time_info)
302
+
303
+ return df
304
+
305
+
306
+ def Santander_Customer_Satisfaction(data_name = "SantanderCustomerSatisfaction", print_info = False, export_csv = False):
307
+ data_type = "binary"
308
+ csv_path = None
309
+
310
+ drop_cols = ['ID_code']
311
+ label_col = 'target'
312
+ label_map = {False: -1, True: 1}
313
+
314
+ df, y, categorical_indicator, attribute_names = junshan_kit.kit.download_openml_data(data_name)
315
+
316
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv, df=df)
317
+
318
+ return df
319
+
320
+
321
+ def newsgroups_drift(data_name = "20_newsgroups.drift", print_info = False, export_csv = False):
322
+ data_type = "binary"
323
+ csv_path = None
324
+
325
+ drop_cols = ['ID_code']
326
+ label_col = 'target'
327
+ label_map = {False: -1, True: 1}
328
+
329
+ df, y, categorical_indicator, attribute_names = junshan_kit.kit.download_openml_data(data_name)
330
+
331
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv, df=df)
332
+
333
+ return df
334
+
335
+
336
+ def Homesite_Quote_Conversion(data_name = "Homesite_Quote_Conversion", print_info = False, export_csv = False):
337
+ data_type = "binary"
338
+ csv_path = None
339
+ missing_strategy = 'mode'
340
+
341
+ drop_cols = ['QuoteNumber']
342
+ label_col = 'QuoteConversion_Flag'
343
+ label_map = {0: -1, 1: 1}
344
+
345
+ time_info = {
346
+ 'time_col_name': 'Original_Quote_Date',
347
+ 'trans_type': 2
348
+ }
349
+
350
+ df, y, categorical_indicator, attribute_names = junshan_kit.kit.download_openml_data(data_name)
351
+
352
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv, df=df, time_info = time_info, missing_strategy = missing_strategy)
353
+
354
+ return df
355
+
356
+
357
+ def IEEE_CIS_Fraud_Detection(data_name = "IEEE-CIS_Fraud_Detection", print_info = False, export_csv = False, export_mat = False):
358
+ data_type = "binary"
359
+ csv_path = None
360
+ missing_strategy = 'mode'
361
+
362
+ drop_cols = ['TransactionID']
363
+ label_col = 'isFraud'
364
+ label_map = {0: -1, 1: 1}
365
+
366
+ Paras = {
367
+ "export_mat": export_mat
368
+ }
369
+
370
+ df, y, categorical_indicator, attribute_names = junshan_kit.kit.download_openml_data(data_name)
371
+
372
+ df = _run(csv_path, data_name, data_type, drop_cols, label_col, label_map, print_info, export_csv=export_csv, df=df, missing_strategy = missing_strategy, Paras = Paras)
373
+
374
+ return df
60
375
 
61
376
 
62
- def wine_and_food_pairing_dataset():
63
- pass
64
377
 
@@ -0,0 +1,40 @@
1
+ import torch
2
+ from torch.nn.utils import parameters_to_vector
3
+ import torch.nn.functional as F
4
+
5
+ def compute_epoch_loss(X, y, model, loss_fn, Paras):
6
+ pred = model(X)
7
+ _, c = pred.shape
8
+
9
+ if c == 1:
10
+ # Logistic Regression with L2 (binary)
11
+ if isinstance(loss_fn, torch.nn.BCEWithLogitsLoss):
12
+ pred = pred.view(-1).float()
13
+ loss = loss_fn(pred, y.float())
14
+ if Paras["model_name"] == "LogRegressionBinaryL2":
15
+ x = parameters_to_vector(model.parameters())
16
+ lam = Paras["lambda"]
17
+ loss = loss + 0.5 * lam * torch.norm(x, p=2) ** 2
18
+
19
+ else:
20
+ assert False
21
+
22
+ else:
23
+ # Least Square (mutil)
24
+ if isinstance(loss_fn, torch.nn.MSELoss):
25
+ # loss
26
+ y_onehot = F.one_hot(y.long(), num_classes=c).float()
27
+ pred_prob = torch.softmax(pred, dim=1)
28
+ loss = 0.5 * loss_fn(pred_prob, y_onehot) * float(c)
29
+
30
+ elif isinstance(loss_fn, torch.nn.CrossEntropyLoss):
31
+ # loss
32
+ loss = loss_fn(pred, y.long())
33
+
34
+ else:
35
+ print(
36
+ f"\033[34m **** isinstance(loss_fn, torch.nn.MSELoss)? {loss_fn} **** \033[0m"
37
+ )
38
+ assert False
39
+
40
+ return loss
@@ -0,0 +1,212 @@
1
+ import torchvision,torch, random
2
+ import numpy as np
3
+ from torchvision.models import resnet18,resnet34, ResNet18_Weights, ResNet34_Weights
4
+ import torch.nn as nn
5
+
6
+
7
+ # ---------------- Build ResNet18 - Caltech101 -----------------------
8
+ def Build_ResNet18_CALTECH101_Resize_32():
9
+
10
+ """
11
+ 1. Modify the first convolutional layer for smaller input (e.g., 32x32 instead of 224x224)
12
+ Original: kernel_size=7, stride=2, padding=3 → changed to 3x3 kernel, stride=1, padding=1
13
+
14
+ 2. Adjust the final fully connected layer to match the number of Caltech101 classes (101)
15
+ """
16
+ model = resnet18(weights=None)
17
+ model.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) # 1
18
+ model.fc = nn.Linear(model.fc.in_features, 101) # 2
19
+
20
+ return model
21
+
22
+
23
+ # ---------------- Build ResNet18 - CIFAR100 -----------------------
24
+ def Build_ResNet18_CIFAR100():
25
+ """
26
+ 1. Modify the first convolutional layer for smaller input (e.g., 32x32 instead of 224x224)
27
+ Original: kernel_size=7, stride=2, padding=3 → changed to 3x3 kernel, stride=1, padding=1
28
+
29
+ 2. Adjust the final fully connected layer to match the number of CIFAR-100 classes (100)
30
+ """
31
+
32
+ model = resnet18(weights=None)
33
+ # model = resnet18(weights=ResNet18_Weights.DEFAULT)
34
+ model.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) # 1
35
+ model.fc = nn.Linear(model.fc.in_features, 100) # 2
36
+
37
+ return model
38
+
39
+
40
+ # ---------------- Build ResNet18 - MNIST ----------------------------
41
+ def Build_ResNet18_MNIST():
42
+ """
43
+ 1. Modify the first convolutional layer to accept grayscale input (1 channel instead of 3)
44
+ Original: in_channels=3 → changed to in_channels=1
45
+
46
+ 2. Adjust the final fully connected layer to match the number of MNIST classes (10)
47
+ """
48
+
49
+ model = resnet18(weights=None)
50
+ model.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) # 1
51
+ model.fc = nn.Linear(model.fc.in_features, 10) # 2
52
+
53
+ return model
54
+
55
+
56
+ # ---------------- Build ResNet34 - CIFAR100 -----------------------
57
+ def Build_ResNet34_CIFAR100():
58
+
59
+ model = resnet34(weights=None)
60
+ model.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
61
+ model.fc = nn.Linear(model.fc.in_features, 100)
62
+ return model
63
+
64
+ # ---------------- Build ResNet18 - MNIST ----------------------------
65
+ def Build_ResNet34_MNIST():
66
+ # Do not load the pre-trained weights
67
+ model = resnet34(weights=None)
68
+
69
+ model.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
70
+ model.fc = nn.Linear(model.fc.in_features, 10)
71
+
72
+ return model
73
+
74
+ # ---------------- Build ResNet34 - Caltech101 -----------------------
75
+ def Build_ResNet34_CALTECH101_Resize_32():
76
+
77
+ model = resnet34(weights=None)
78
+ model.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
79
+ model.fc = nn.Linear(model.fc.in_features, 101)
80
+ return model
81
+
82
+
83
+ #**************************************************************
84
+ # ---------------------- LeastSquares -------------------------
85
+ #**************************************************************
86
+ # ---------------- LeastSquares - MNIST -----------------------
87
+ def Build_LeastSquares_MNIST():
88
+ """
89
+ 1. flatten MNIST images (1x28x28 → 784)
90
+ 2. Use a linear layer for multi-classification
91
+ """
92
+ return nn.Sequential(
93
+ nn.Flatten(),
94
+ nn.Linear(28 * 28, 10))
95
+
96
+ # ---------------- LeastSquares - CIFAR100 --------------------
97
+ def Build_LeastSquares_CIFAR100():
98
+ """
99
+ 1. flatten MNIST images (3 * 32 * 32 → 784)
100
+ 2. Use a linear layer for multi-classification
101
+ """
102
+ return nn.Sequential(
103
+ nn.Flatten(),
104
+ nn.Linear(3 * 32 * 32, 100))
105
+
106
+ # ---------------- LeastSquares - Caltech101 ------------------
107
+ def Build_LeastSquares_CALTECH101_Resize_32():
108
+ return nn.Sequential(
109
+ nn.Flatten(),
110
+ nn.Linear(3*32*32, 101)
111
+ )
112
+
113
+
114
+ #*************************************************************
115
+ # --------------- LogRegressionBinary ------------------------
116
+ #*************************************************************
117
+ # -------------- LogRegressionBinary - MNIST ------------------
118
+ def Build_LogRegressionBinary_MNIST():
119
+ """
120
+ 1. flatten MNIST images (1x28x28 → 784)
121
+ 2. Use a linear layer for binary classification
122
+ """
123
+ return nn.Sequential(
124
+ nn.Flatten(),
125
+ nn.Linear(28 * 28, 1))
126
+
127
+
128
+ # --------------- LogRegressionBinary - CIFAR100 --------------
129
+ def Build_LogRegressionBinary_CIFAR100():
130
+ """
131
+ 1. flatten CIFAR100 images
132
+ 2. Use a linear layer for binary classification
133
+ """
134
+ return nn.Sequential(
135
+ nn.Flatten(),
136
+ nn.Linear(3* 32 * 32, 1))
137
+
138
+ # -------------- LogRegressionBinary - RCV1 ------------------
139
+ def Build_LogRegressionBinary_RCV1():
140
+ """
141
+ 1. Use a linear layer for binary classification
142
+ """
143
+ return nn.Sequential(
144
+ nn.Linear(47236, 1))
145
+
146
+ # <LogRegressionBinaryL2>
147
+ #**************************************************************
148
+ # ------------- LogRegressionBinaryL2 -------------------------
149
+ #**************************************************************
150
+ def Build_LogRegressionBinaryL2_RCV1():
151
+ """
152
+ 1. Use a linear layer for binary classification
153
+ """
154
+ return nn.Sequential(
155
+ nn.Linear(47236, 1))
156
+ # <LogRegressionBinaryL2>
157
+
158
+ # ---------------------------------------------------------
159
+ def Build_LogRegressionBinaryL2_MNIST():
160
+ """
161
+ 1. flatten MNIST images (1x28x28 -> 784)
162
+ 2. Use a linear layer for binary classification
163
+ """
164
+ return nn.Sequential(
165
+ nn.Flatten(),
166
+ nn.Linear(28 * 28, 1))
167
+
168
+ # ---------------------------------------------------------
169
+ def Build_LogRegressionBinaryL2_CIFAR100():
170
+ """
171
+ 1. flatten CIFAR100 images
172
+ 2. Use a linear layer for binary classification
173
+ """
174
+ return nn.Sequential(
175
+ nn.Flatten(),
176
+ nn.Linear(3* 32 * 32, 1))
177
+
178
+ # ---------------------------------------------------------
179
+ def Build_LogRegressionBinaryL2_Duke():
180
+ """
181
+ Use a linear layer for binary classification
182
+ """
183
+ return nn.Sequential(
184
+ nn.Flatten(),
185
+ nn.Linear(7129, 1))
186
+
187
+ # ---------------------------------------------------------
188
+ def Build_LogRegressionBinaryL2_Ijcnn():
189
+ """
190
+ Use a linear layer for binary classification
191
+ """
192
+ return nn.Sequential(
193
+ nn.Flatten(),
194
+ nn.Linear(22, 1))
195
+
196
+ # ---------------------------------------------------------
197
+ def Build_LogRegressionBinaryL2_w8a():
198
+ """
199
+ Use a linear layer for binary classification
200
+ """
201
+ return nn.Sequential(
202
+ nn.Flatten(),
203
+ nn.Linear(300, 1))
204
+
205
+ # ---------------------------------------------------------
206
+ def Build_LogRegressionBinaryL2_Adult_Income_Prediction():
207
+ pass
208
+
209
+
210
+ def Build_LogRegressionBinaryL2_Credit_Card_Fraud_Detection():
211
+ pass
212
+