junifer 0.0.7.dev169__py3-none-any.whl → 0.0.7.dev174__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
junifer/_version.py CHANGED
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
28
28
  commit_id: COMMIT_ID
29
29
  __commit_id__: COMMIT_ID
30
30
 
31
- __version__ = version = '0.0.7.dev169'
32
- __version_tuple__ = version_tuple = (0, 0, 7, 'dev169')
31
+ __version__ = version = '0.0.7.dev174'
32
+ __version_tuple__ = version_tuple = (0, 0, 7, 'dev174')
33
33
 
34
34
  __commit_id__ = commit_id = None
@@ -14,7 +14,7 @@ from junifer.api.queue_context import GnuParallelLocalAdapter
14
14
 
15
15
  def test_GnuParallelLocalAdapter_env_kind_error() -> None:
16
16
  """Test error for invalid env kind."""
17
- with pytest.raises(ValueError, match="Invalid value for `env.kind`"):
17
+ with pytest.raises(ValueError, match=r"Invalid value for `env.kind`"):
18
18
  GnuParallelLocalAdapter(
19
19
  job_name="check_env_kind",
20
20
  job_dir=Path("."),
@@ -26,7 +26,7 @@ def test_GnuParallelLocalAdapter_env_kind_error() -> None:
26
26
 
27
27
  def test_GnuParallelLocalAdapter_env_shell_error() -> None:
28
28
  """Test error for invalid env shell."""
29
- with pytest.raises(ValueError, match="Invalid value for `env.shell`"):
29
+ with pytest.raises(ValueError, match=r"Invalid value for `env.shell`"):
30
30
  GnuParallelLocalAdapter(
31
31
  job_name="check_env_shell",
32
32
  job_dir=Path("."),
@@ -14,7 +14,7 @@ from junifer.api.queue_context import HTCondorAdapter
14
14
 
15
15
  def test_HTCondorAdapter_env_kind_error() -> None:
16
16
  """Test error for invalid env kind."""
17
- with pytest.raises(ValueError, match="Invalid value for `env.kind`"):
17
+ with pytest.raises(ValueError, match=r"Invalid value for `env.kind`"):
18
18
  HTCondorAdapter(
19
19
  job_name="check_env_kind",
20
20
  job_dir=Path("."),
@@ -26,7 +26,7 @@ def test_HTCondorAdapter_env_kind_error() -> None:
26
26
 
27
27
  def test_HTCondorAdapter_env_shell_error() -> None:
28
28
  """Test error for invalid env shell."""
29
- with pytest.raises(ValueError, match="Invalid value for `env.shell`"):
29
+ with pytest.raises(ValueError, match=r"Invalid value for `env.shell`"):
30
30
  HTCondorAdapter(
31
31
  job_name="check_env_shell",
32
32
  job_dir=Path("."),
@@ -38,7 +38,7 @@ def test_HTCondorAdapter_env_shell_error() -> None:
38
38
 
39
39
  def test_HTCondorAdapter_collect_error() -> None:
40
40
  """Test error for invalid collect option."""
41
- with pytest.raises(ValueError, match="Invalid value for `collect`"):
41
+ with pytest.raises(ValueError, match=r"Invalid value for `collect`"):
42
42
  HTCondorAdapter(
43
43
  job_name="check_collect",
44
44
  job_dir=Path("."),
@@ -634,7 +634,7 @@ def test_aicha(version: int) -> None:
634
634
 
635
635
  def test_retrieve_aicha_incorrect_version() -> None:
636
636
  """Test retrieve AICHA with incorrect version."""
637
- with pytest.raises(ValueError, match="The parameter `version`"):
637
+ with pytest.raises(ValueError, match=r"The parameter `version`"):
638
638
  _retrieve_aicha(
639
639
  version=100,
640
640
  )
@@ -697,7 +697,7 @@ def test_shen(
697
697
 
698
698
  def test_retrieve_shen_incorrect_year() -> None:
699
699
  """Test retrieve Shen with incorrect year."""
700
- with pytest.raises(ValueError, match="The parameter `year`"):
700
+ with pytest.raises(ValueError, match=r"The parameter `year`"):
701
701
  _retrieve_shen(
702
702
  year=1969,
703
703
  )
@@ -705,7 +705,7 @@ def test_retrieve_shen_incorrect_year() -> None:
705
705
 
706
706
  def test_retrieve_shen_incorrect_n_rois() -> None:
707
707
  """Test retrieve Shen with incorrect ROIs."""
708
- with pytest.raises(ValueError, match="The parameter `n_rois`"):
708
+ with pytest.raises(ValueError, match=r"The parameter `n_rois`"):
709
709
  _retrieve_shen(
710
710
  year=2015,
711
711
  n_rois=10,
@@ -747,7 +747,7 @@ def test_retrieve_shen_incorrect_param_combo(
747
747
  The parametrized ROI count values.
748
748
 
749
749
  """
750
- with pytest.raises(ValueError, match="The parameter combination"):
750
+ with pytest.raises(ValueError, match=r"The parameter combination"):
751
751
  _retrieve_shen(
752
752
  resolution=resolution,
753
753
  year=year,
@@ -875,7 +875,7 @@ def test_yan(
875
875
  def test_retrieve_yan_incorrect_networks() -> None:
876
876
  """Test retrieve Yan with incorrect networks."""
877
877
  with pytest.raises(
878
- ValueError, match="Either one of `yeo_networks` or `kong_networks`"
878
+ ValueError, match=r"Either one of `yeo_networks` or `kong_networks`"
879
879
  ):
880
880
  _retrieve_yan(
881
881
  n_rois=31418,
@@ -884,7 +884,7 @@ def test_retrieve_yan_incorrect_networks() -> None:
884
884
  )
885
885
 
886
886
  with pytest.raises(
887
- ValueError, match="Either one of `yeo_networks` or `kong_networks`"
887
+ ValueError, match=r"Either one of `yeo_networks` or `kong_networks`"
888
888
  ):
889
889
  _retrieve_yan(
890
890
  n_rois=31418,
@@ -895,7 +895,7 @@ def test_retrieve_yan_incorrect_networks() -> None:
895
895
 
896
896
  def test_retrieve_yan_incorrect_n_rois() -> None:
897
897
  """Test retrieve Yan with incorrect ROIs."""
898
- with pytest.raises(ValueError, match="The parameter `n_rois`"):
898
+ with pytest.raises(ValueError, match=r"The parameter `n_rois`"):
899
899
  _retrieve_yan(
900
900
  n_rois=31418,
901
901
  yeo_networks=7,
@@ -904,7 +904,7 @@ def test_retrieve_yan_incorrect_n_rois() -> None:
904
904
 
905
905
  def test_retrieve_yan_incorrect_yeo_networks() -> None:
906
906
  """Test retrieve Yan with incorrect Yeo networks."""
907
- with pytest.raises(ValueError, match="The parameter `yeo_networks`"):
907
+ with pytest.raises(ValueError, match=r"The parameter `yeo_networks`"):
908
908
  _retrieve_yan(
909
909
  n_rois=100,
910
910
  yeo_networks=27,
@@ -913,7 +913,7 @@ def test_retrieve_yan_incorrect_yeo_networks() -> None:
913
913
 
914
914
  def test_retrieve_yan_incorrect_kong_networks() -> None:
915
915
  """Test retrieve Yan with incorrect Kong networks."""
916
- with pytest.raises(ValueError, match="The parameter `kong_networks`"):
916
+ with pytest.raises(ValueError, match=r"The parameter `kong_networks`"):
917
917
  _retrieve_yan(
918
918
  n_rois=100,
919
919
  kong_networks=27,
@@ -976,7 +976,7 @@ def test_brainnetome(
976
976
 
977
977
  def test_retrieve_brainnetome_incorrect_threshold() -> None:
978
978
  """Test retrieve Brainnetome with incorrect threshold."""
979
- with pytest.raises(ValueError, match="The parameter `threshold`"):
979
+ with pytest.raises(ValueError, match=r"The parameter `threshold`"):
980
980
  _retrieve_brainnetome(
981
981
  threshold=100,
982
982
  )
@@ -1091,7 +1091,7 @@ def test_merge_parcellations_3D_multiple_overlapping() -> None:
1091
1091
  names = ["high", "low"]
1092
1092
  labels_lists = [labels1, labels2]
1093
1093
 
1094
- with pytest.warns(RuntimeWarning, match="overlapping voxels"):
1094
+ with pytest.warns(RuntimeWarning, match=r"overlapping voxels"):
1095
1095
  merge_parcellations(parcellation_list, names, labels_lists)
1096
1096
 
1097
1097
  parc_data = parcellation.get_fdata()
@@ -1128,7 +1128,7 @@ def test_merge_parcellations_3D_multiple_duplicated_labels() -> None:
1128
1128
  names = ["high", "low"]
1129
1129
  labels_lists = [labels1, labels2]
1130
1130
 
1131
- with pytest.warns(RuntimeWarning, match="duplicated labels."):
1131
+ with pytest.warns(RuntimeWarning, match=r"duplicated labels."):
1132
1132
  merged_parc, _ = merge_parcellations(
1133
1133
  parcellation_list, names, labels_lists
1134
1134
  )
@@ -223,7 +223,7 @@ def signals_and_covariances(
223
223
  def test_check_square() -> None:
224
224
  """Test square matrix assertion."""
225
225
  non_square = np.ones((2, 3))
226
- with pytest.raises(ValueError, match="Expected a square matrix"):
226
+ with pytest.raises(ValueError, match=r"Expected a square matrix"):
227
227
  _check_square(non_square)
228
228
 
229
229
 
@@ -244,7 +244,7 @@ def test_check_spd(invalid_input: np.ndarray) -> None:
244
244
 
245
245
  """
246
246
  with pytest.raises(
247
- ValueError, match="Expected a symmetric positive definite matrix."
247
+ ValueError, match=r"Expected a symmetric positive definite matrix."
248
248
  ):
249
249
  _check_spd(invalid_input)
250
250
 
@@ -555,7 +555,7 @@ def test_geometric_mean_error_non_square_matrix() -> None:
555
555
  n_features = 5
556
556
  mat1 = np.ones((n_features, n_features + 1))
557
557
 
558
- with pytest.raises(ValueError, match="Expected a square matrix"):
558
+ with pytest.raises(ValueError, match=r"Expected a square matrix"):
559
559
  _geometric_mean([mat1])
560
560
 
561
561
 
@@ -566,7 +566,7 @@ def test_geometric_mean_error_input_matrices_have_different_shapes() -> None:
566
566
  mat2 = np.ones((n_features + 1, n_features + 1))
567
567
 
568
568
  with pytest.raises(
569
- ValueError, match="Matrices are not of the same shape."
569
+ ValueError, match=r"Matrices are not of the same shape."
570
570
  ):
571
571
  _geometric_mean([mat1, mat2])
572
572
 
@@ -577,7 +577,7 @@ def test_geometric_mean_error_non_spd_input_matrix() -> None:
577
577
  mat2 = np.ones((n_features + 1, n_features + 1))
578
578
 
579
579
  with pytest.raises(
580
- ValueError, match="Expected a symmetric positive definite matrix."
580
+ ValueError, match=r"Expected a symmetric positive definite matrix."
581
581
  ):
582
582
  _geometric_mean([mat2])
583
583
 
@@ -588,19 +588,20 @@ def test_connectivity_measure_errors():
588
588
  conn_measure = JuniferConnectivityMeasure()
589
589
 
590
590
  with pytest.raises(
591
- ValueError, match="'subjects' input argument must be an iterable"
591
+ ValueError, match=r"'subjects' input argument must be an iterable"
592
592
  ):
593
593
  conn_measure.fit(1.0)
594
594
 
595
595
  # input subjects not 2D numpy.ndarrays
596
596
  with pytest.raises(
597
- ValueError, match="Each subject must be 2D numpy.ndarray."
597
+ ValueError, match=r"Each subject must be 2D numpy.ndarray."
598
598
  ):
599
599
  conn_measure.fit([np.ones((100, 40)), np.ones((10,))])
600
600
 
601
601
  # input subjects with different number of features
602
602
  with pytest.raises(
603
- ValueError, match="All subjects must have the same number of features."
603
+ ValueError,
604
+ match=r"All subjects must have the same number of features.",
604
605
  ):
605
606
  conn_measure.fit([np.ones((100, 40)), np.ones((100, 41))])
606
607
 
@@ -609,7 +610,7 @@ def test_connectivity_measure_errors():
609
610
 
610
611
  with pytest.raises(
611
612
  ValueError,
612
- match="Tangent space parametrization .* only be .* group of subjects",
613
+ match=r"Tangent space parametrization .* only be .* group of subjects",
613
614
  ):
614
615
  conn_measure.fit_transform([np.ones((100, 40))])
615
616
 
@@ -873,7 +874,7 @@ def test_connectivity_measure_check_vectorization_option(
873
874
  )
874
875
 
875
876
  # Check not fitted error
876
- with pytest.raises(ValueError, match="has not been fitted. "):
877
+ with pytest.raises(ValueError, match=r"has not been fitted. "):
877
878
  JuniferConnectivityMeasure().inverse_transform(
878
879
  vectorized_connectivities
879
880
  )
@@ -956,7 +957,7 @@ def test_connectivity_measure_check_inverse_transformation_discard_diag(
956
957
 
957
958
  assert_array_almost_equal(inverse_transformed, connectivities)
958
959
  with pytest.raises(
959
- ValueError, match="cannot reconstruct connectivity matrices"
960
+ ValueError, match=r"cannot reconstruct connectivity matrices"
960
961
  ):
961
962
  conn_measure.inverse_transform(vectorized_connectivities)
962
963
 
@@ -1010,7 +1011,7 @@ def test_connectivity_measure_inverse_transform_tangent(
1010
1011
 
1011
1012
  assert_array_almost_equal(inverse_transformed, covariances)
1012
1013
  with pytest.raises(
1013
- ValueError, match="cannot reconstruct connectivity matrices"
1014
+ ValueError, match=r"cannot reconstruct connectivity matrices"
1014
1015
  ):
1015
1016
  tangent_measure.inverse_transform(vectorized_displacements)
1016
1017
 
@@ -1050,7 +1051,7 @@ def test_confounds_connectivity_measure_errors() -> None:
1050
1051
 
1051
1052
  # Raising error for input confounds are not iterable
1052
1053
  conn_measure = JuniferConnectivityMeasure(vectorize=True)
1053
- msg = "'confounds' input argument must be an iterable"
1054
+ msg = r"'confounds' input argument must be an iterable"
1054
1055
 
1055
1056
  with pytest.raises(ValueError, match=msg):
1056
1057
  conn_measure._check_input(X=signals, confounds=1.0)
@@ -1066,7 +1067,7 @@ def test_confounds_connectivity_measure_errors() -> None:
1066
1067
  # Raising error for input confounds are given but not vectorize=True
1067
1068
  conn_measure = JuniferConnectivityMeasure(vectorize=False)
1068
1069
  with pytest.raises(
1069
- ValueError, match="'confounds' are provided but vectorize=False"
1070
+ ValueError, match=r"'confounds' are provided but vectorize=False"
1070
1071
  ):
1071
1072
  conn_measure.fit_transform(signals, None, confounds[:10])
1072
1073
 
@@ -1082,7 +1083,7 @@ def test_connectivity_measure_standardize(
1082
1083
  The input signals.
1083
1084
 
1084
1085
  """
1085
- match = "default strategy for standardize"
1086
+ match = r"default strategy for standardize"
1086
1087
 
1087
1088
  with pytest.warns(DeprecationWarning, match=match):
1088
1089
  JuniferConnectivityMeasure(kind="correlation").fit_transform(signals)
@@ -1101,7 +1102,7 @@ def test_connectivity_measure_standardize(
1101
1102
  )
1102
1103
  def test_xi_correlation_error() -> None:
1103
1104
  """Check xi correlation according to paper."""
1104
- with pytest.raises(RuntimeError, match="scipy.stats.chatterjeexi"):
1105
+ with pytest.raises(RuntimeError, match=r"scipy.stats.chatterjeexi"):
1105
1106
  JuniferConnectivityMeasure(kind="xi correlation").fit_transform(
1106
1107
  np.zeros((2, 2))
1107
1108
  )
@@ -144,7 +144,7 @@ def test_anisotropic_sphere_extraction() -> None:
144
144
  def test_errors() -> None:
145
145
  """Test errors."""
146
146
  masker = JuniferNiftiSpheresMasker(seeds=([1, 2]), radius=0.2)
147
- with pytest.raises(ValueError, match="Seeds must be a list .+"):
147
+ with pytest.raises(ValueError, match=r"Seeds must be a list .+"):
148
148
  masker.fit()
149
149
 
150
150
 
@@ -183,7 +183,7 @@ def test_nifti_spheres_masker_overlap() -> None:
183
183
  radius=2,
184
184
  allow_overlap=False,
185
185
  )
186
- with pytest.raises(ValueError, match="Overlap detected"):
186
+ with pytest.raises(ValueError, match=r"Overlap detected"):
187
187
  noverlapping_masker.fit_transform(fmri_img)
188
188
 
189
189
 
@@ -288,7 +288,7 @@ def test_nifti_spheres_masker_inverse_transform() -> None:
288
288
  masker = JuniferNiftiSpheresMasker(seeds=[(1, 1, 1)], radius=1)
289
289
  with pytest.raises(
290
290
  NotImplementedError,
291
- match="some of which are non-reversible",
291
+ match=r"some of which are non-reversible",
292
292
  ):
293
293
  masker.inverse_transform(data[0, 0, 0, :])
294
294
 
@@ -319,7 +319,7 @@ def test_nifti_spheres_masker_io_shapes() -> None:
319
319
  masker.fit()
320
320
 
321
321
  # DeprecationWarning *should* be raised for 3D inputs
322
- with pytest.warns(DeprecationWarning, match="Starting in version 0.12"):
322
+ with pytest.warns(DeprecationWarning, match=r"Starting in version 0.12"):
323
323
  test_data = masker.transform(img_3d)
324
324
  assert test_data.shape == (1, n_regions)
325
325
 
@@ -26,16 +26,16 @@ from junifer.testing.datagrabbers import (
26
26
  def test_fMRIPrepConfoundRemover_init() -> None:
27
27
  """Test fMRIPrepConfoundRemover init."""
28
28
 
29
- with pytest.raises(ValueError, match="keys must be strings"):
29
+ with pytest.raises(ValueError, match=r"keys must be strings"):
30
30
  fMRIPrepConfoundRemover(strategy={1: "full"}) # type: ignore
31
31
 
32
- with pytest.raises(ValueError, match="values must be strings"):
32
+ with pytest.raises(ValueError, match=r"values must be strings"):
33
33
  fMRIPrepConfoundRemover(strategy={"motion": 1}) # type: ignore
34
34
 
35
- with pytest.raises(ValueError, match="component names"):
35
+ with pytest.raises(ValueError, match=r"component names"):
36
36
  fMRIPrepConfoundRemover(strategy={"wrong": "full"})
37
37
 
38
- with pytest.raises(ValueError, match="confound types"):
38
+ with pytest.raises(ValueError, match=r"confound types"):
39
39
  fMRIPrepConfoundRemover(strategy={"motion": "wrong"})
40
40
 
41
41
 
@@ -342,7 +342,7 @@ def test_fMRIPrepConfoundRemover__get_scrub_regressors_errors(
342
342
  The parametrized preprocessor.
343
343
 
344
344
  """
345
- with pytest.raises(RuntimeError, match="Invalid confounds file."):
345
+ with pytest.raises(RuntimeError, match=r"Invalid confounds file."):
346
346
  preprocessor._get_scrub_regressors(pd.DataFrame({"a": [1, 2]}))
347
347
 
348
348
 
@@ -354,7 +354,7 @@ def test_fMRIPrepConfoundRemover__validate_data() -> None:
354
354
  element_data = DefaultDataReader().fit_transform(dg["sub-01"])
355
355
  vbm = element_data["VBM_GM"]
356
356
  with pytest.raises(
357
- DimensionError, match="incompatible dimensionality"
357
+ DimensionError, match=r"incompatible dimensionality"
358
358
  ):
359
359
  confound_remover._validate_data(vbm)
360
360
  # Check missing nested type in correct data type
@@ -363,22 +363,22 @@ def test_fMRIPrepConfoundRemover__validate_data() -> None:
363
363
  bold = element_data["BOLD"]
364
364
  # Test confound type
365
365
  with pytest.raises(
366
- ValueError, match="`BOLD.confounds` data type not provided"
366
+ ValueError, match=r"`BOLD.confounds` data type not provided"
367
367
  ):
368
368
  confound_remover._validate_data(bold)
369
369
  # Test confound data
370
370
  bold["confounds"] = {}
371
371
  with pytest.raises(
372
- ValueError, match="`BOLD.confounds.data` not provided"
372
+ ValueError, match=r"`BOLD.confounds.data` not provided"
373
373
  ):
374
374
  confound_remover._validate_data(bold)
375
375
  # Test confound data is valid type
376
376
  bold["confounds"] = {"data": None}
377
- with pytest.raises(ValueError, match="must be a `pandas.DataFrame`"):
377
+ with pytest.raises(ValueError, match=r"must be a `pandas.DataFrame`"):
378
378
  confound_remover._validate_data(bold)
379
379
  # Test confound data dimension mismatch with BOLD
380
380
  bold["confounds"] = {"data": pd.DataFrame()}
381
- with pytest.raises(ValueError, match="Image time series and"):
381
+ with pytest.raises(ValueError, match=r"Image time series and"):
382
382
  confound_remover._validate_data(bold)
383
383
  # Check nested type variations
384
384
  with PartlyCloudyTestingDataGrabber(reduce_confounds=False) as dg:
@@ -393,19 +393,19 @@ def test_fMRIPrepConfoundRemover__validate_data() -> None:
393
393
  }
394
394
  # Test incorrect format
395
395
  modified_bold["confounds"].update({"format": "wrong"})
396
- with pytest.raises(ValueError, match="Invalid confounds format"):
396
+ with pytest.raises(ValueError, match=r"Invalid confounds format"):
397
397
  confound_remover._validate_data(modified_bold)
398
398
  # Test missing mappings for adhoc
399
399
  modified_bold["confounds"].update({"format": "adhoc"})
400
400
  with pytest.raises(
401
- ValueError, match="`BOLD.confounds.mappings` need to be set"
401
+ ValueError, match=r"`BOLD.confounds.mappings` need to be set"
402
402
  ):
403
403
  confound_remover._validate_data(modified_bold)
404
404
  # Test missing fmriprep mappings for adhoc
405
405
  modified_bold["confounds"].update({"mappings": {}})
406
406
  with pytest.raises(
407
407
  ValueError,
408
- match="`BOLD.confounds.mappings.fmriprep` need to be set",
408
+ match=r"`BOLD.confounds.mappings.fmriprep` need to be set",
409
409
  ):
410
410
  confound_remover._validate_data(modified_bold)
411
411
  # Test incorrect fmriprep mappings for adhoc
@@ -1174,7 +1174,7 @@ def test_collect_error_single_output() -> None:
1174
1174
  """Test error for collect in single output storage."""
1175
1175
  with pytest.raises(
1176
1176
  NotImplementedError,
1177
- match="is not implemented for single output.",
1177
+ match=r"is not implemented for single output.",
1178
1178
  ):
1179
1179
  storage = HDF5FeatureStorage(uri="/tmp", single_output=True)
1180
1180
  storage.collect()
@@ -211,7 +211,7 @@ def test_process_meta_element(meta: dict, elements: list[str]) -> None:
211
211
  The parametrized elements to assert against.
212
212
 
213
213
  """
214
- hash1, processed_meta, _ = process_meta(meta)
214
+ _, processed_meta, _ = process_meta(meta)
215
215
  assert "_element_keys" in processed_meta
216
216
  assert processed_meta["_element_keys"] == elements
217
217
  assert "A" in processed_meta
@@ -41,41 +41,41 @@ def test_get_aggfunc_by_name(name: str, params: Optional[dict]) -> None:
41
41
 
42
42
  def test_get_aggfunc_by_name_errors() -> None:
43
43
  """Test aggregation function retrieval using wrong name."""
44
- with pytest.raises(ValueError, match="unknown. Please provide any of"):
44
+ with pytest.raises(ValueError, match=r"unknown. Please provide any of"):
45
45
  get_aggfunc_by_name(name="invalid", func_params=None)
46
46
 
47
- with pytest.raises(ValueError, match="list of limits"):
47
+ with pytest.raises(ValueError, match=r"list of limits"):
48
48
  get_aggfunc_by_name(name="winsorized_mean", func_params=None)
49
49
 
50
- with pytest.raises(ValueError, match="list of limits"):
50
+ with pytest.raises(ValueError, match=r"list of limits"):
51
51
  get_aggfunc_by_name(
52
52
  name="winsorized_mean", func_params={"limits": 0.1}
53
53
  )
54
54
 
55
- with pytest.raises(ValueError, match="list of two limits"):
55
+ with pytest.raises(ValueError, match=r"list of two limits"):
56
56
  get_aggfunc_by_name(
57
57
  name="winsorized_mean", func_params={"limits": [0.2]}
58
58
  )
59
59
 
60
- with pytest.raises(ValueError, match="list of two"):
60
+ with pytest.raises(ValueError, match=r"list of two"):
61
61
  get_aggfunc_by_name(
62
62
  name="winsorized_mean", func_params={"limits": [0.2, 0.7, 0.1]}
63
63
  )
64
64
 
65
- with pytest.raises(ValueError, match="must be between 0 and 1"):
65
+ with pytest.raises(ValueError, match=r"must be between 0 and 1"):
66
66
  get_aggfunc_by_name(
67
67
  name="winsorized_mean", func_params={"limits": [-1, 0.7]}
68
68
  )
69
69
 
70
- with pytest.raises(ValueError, match="must be between 0 and 1"):
70
+ with pytest.raises(ValueError, match=r"must be between 0 and 1"):
71
71
  get_aggfunc_by_name(
72
72
  name="winsorized_mean", func_params={"limits": [0.1, 2]}
73
73
  )
74
74
 
75
- with pytest.raises(ValueError, match="must be specified."):
75
+ with pytest.raises(ValueError, match=r"must be specified."):
76
76
  get_aggfunc_by_name(name="select", func_params=None)
77
77
 
78
- with pytest.raises(ValueError, match="must be specified, not both."):
78
+ with pytest.raises(ValueError, match=r"must be specified, not both."):
79
79
  get_aggfunc_by_name(
80
80
  name="select", func_params={"pick": [0], "drop": [1]}
81
81
  )
@@ -110,10 +110,10 @@ def test_select() -> None:
110
110
  """Test select."""
111
111
  input = np.arange(28).reshape(7, 4)
112
112
 
113
- with pytest.raises(ValueError, match="must be specified."):
113
+ with pytest.raises(ValueError, match=r"must be specified."):
114
114
  select(input, axis=2)
115
115
 
116
- with pytest.raises(ValueError, match="must be specified, not both."):
116
+ with pytest.raises(ValueError, match=r"must be specified, not both."):
117
117
  select(input, pick=[1], drop=[2], axis=2)
118
118
 
119
119
  out1 = select(input, pick=[1], axis=0)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: junifer
3
- Version: 0.0.7.dev169
3
+ Version: 0.0.7.dev174
4
4
  Summary: JUelich NeuroImaging FEature extractoR
5
5
  Author-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
6
6
  Maintainer-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
@@ -1,6 +1,6 @@
1
1
  junifer/__init__.py,sha256=2McgH1yNue6Z1V26-uN_mfMjbTcx4CLhym-DMBl5xA4,266
2
2
  junifer/__init__.pyi,sha256=SsTvgq2Dod6UqJN96GH1lCphH6hJQQurEJHGNhHjGUI,508
3
- junifer/_version.py,sha256=P_WJzTuDS9u9hkF-7Q5yHF8P4YVpBkHo7yDGV0wOf8k,721
3
+ junifer/_version.py,sha256=aRs3MRmwBljg9_60dmUIeG2J9jJ81ahn1KK92Db2bw4,721
4
4
  junifer/conftest.py,sha256=qnumYhFkwHBPrzvhPFOFHBp22x5zU0JfVBDOWjidlGo,1583
5
5
  junifer/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
6
  junifer/stats.py,sha256=e9aaagMGtgpRfW3Wdpz9ocpnYld1IWylCDcjFUgX9Mk,6225
@@ -15,8 +15,8 @@ junifer/api/queue_context/gnu_parallel_local_adapter.py,sha256=xCa1JxzQvsW9uyxGb
15
15
  junifer/api/queue_context/htcondor_adapter.py,sha256=clNn6rBnHWKQP1fHiJT_PC44-wkYAhwMbg66pL2BJDs,13809
16
16
  junifer/api/queue_context/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
17
  junifer/api/queue_context/queue_context_adapter.py,sha256=a6UE8xavDfuaZbkWYsayVs6l-rwIrbpFSpqSyHsEeYY,1577
18
- junifer/api/queue_context/tests/test_gnu_parallel_local_adapter.py,sha256=Nv_0axIW4SOE7-TyQXd_nM_0A_kDiFAgrkQcmQafW_s,6585
19
- junifer/api/queue_context/tests/test_htcondor_adapter.py,sha256=-8bA1E-2sS0RMwB-_78l11hud-G-YKJR6x-tUpdg7vs,8600
18
+ junifer/api/queue_context/tests/test_gnu_parallel_local_adapter.py,sha256=Ve9UE3maCYAvah6SKxJK50uxI6UfxDVUM_rOAgw0ZD0,6587
19
+ junifer/api/queue_context/tests/test_htcondor_adapter.py,sha256=HkUb6r11pBkJRtB7SEtzQIC42HDJNkYbWRK1VSuoB3Y,8603
20
20
  junifer/api/res/run_conda.bash,sha256=Axm0xTsP6doUV0X0k6nUP_UJr_2GzA8CPvulQZ01Uno,517
21
21
  junifer/api/res/run_conda.zsh,sha256=32Sm1VNjsrpdH_Wi46jGhPbrJjrmNlPIHtkQ6cHVUkU,515
22
22
  junifer/api/res/run_venv.bash,sha256=aynMRwBgFzYc4CAWbnne_A0UPD5ZFd81w62u22IXzPo,507
@@ -101,7 +101,7 @@ junifer/data/parcellations/__init__.pyi,sha256=lhBHTbMDizzqUqVHrx2eyfPFodrTBgMFe
101
101
  junifer/data/parcellations/_ants_parcellation_warper.py,sha256=LIfeIAv3bFQbIrl6Cr7RU2RdkA-c2G6qURIBUe5MJCQ,5826
102
102
  junifer/data/parcellations/_fsl_parcellation_warper.py,sha256=lmZDPv2fMjOnbJ0z2d3K9S7QH2bgYd5bXbzxNDUR5NY,2699
103
103
  junifer/data/parcellations/_parcellations.py,sha256=eG6i_UgvhR0XwIdVhRqhiwunn7fO_-3AFlKAk8ayXHc,48430
104
- junifer/data/parcellations/tests/test_parcellations.py,sha256=s3TtsXTw7wEb-FvW0pFX2QcIXjp9IwlgjtM8X95rz_8,37544
104
+ junifer/data/parcellations/tests/test_parcellations.py,sha256=kb_FZ5kUwQVYilRDylVM3MGK8rZaOfYMlGATNl8EWyw,37556
105
105
  junifer/data/tests/test_data_utils.py,sha256=6-UQ7HDZ7_zA7iQalzk29KJBdftQMVyqKsQ0tx1URkE,1062
106
106
  junifer/data/tests/test_dispatch.py,sha256=bm4R0E8gs_XpJ6B5lfWFXjle7PmDjaX7Wu0L6mEU33w,2315
107
107
  junifer/data/tests/test_template_spaces.py,sha256=ZEicEcLqOJ-NpuBZ5SYh4yZ0xZRkhYHnYXiC_YSxjrY,3219
@@ -161,8 +161,8 @@ junifer/external/nilearn/__init__.pyi,sha256=bcCz7O02UameBxbtPjhUal-Z9rI01pv3ikt
161
161
  junifer/external/nilearn/junifer_connectivity_measure.py,sha256=oP7JyggH0w4V9FlEXSn0wCApXYy9zBj-XSawOBmMniY,18588
162
162
  junifer/external/nilearn/junifer_nifti_spheres_masker.py,sha256=1CqtGFpfgVR2sK_pDYsBlgAEg-fIG5CkKzXzTTXG7EY,16533
163
163
  junifer/external/nilearn/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
164
- junifer/external/nilearn/tests/test_junifer_connectivity_measure.py,sha256=CVUA1AV4syIMWq3S-cqXYvuBPzHZHiZLeTi_sAkuI6g,35042
165
- junifer/external/nilearn/tests/test_junifer_nifti_spheres_masker.py,sha256=9UvBAVO-uo0nMIHYfAQ85kJMrwpBxpVRsN1-mHLk7ik,12244
164
+ junifer/external/nilearn/tests/test_junifer_connectivity_measure.py,sha256=Tn3U-KpK4e8sYOyjvB6FOjZL7EMqs9mQcTDTqCpV2no,35067
165
+ junifer/external/nilearn/tests/test_junifer_nifti_spheres_masker.py,sha256=QrqvlJq_MqjmQXI_x-BJ-M82_HEIPFam-N8u0MJGrlk,12248
166
166
  junifer/markers/__init__.py,sha256=wHAxljlZppxgXimSJw21mp9oUYYyaID4LYfeBolva30,310
167
167
  junifer/markers/__init__.pyi,sha256=xiO6-ymmLkJA3xq2-WFNp0_5TRW871_MyCYcPOyRVSw,1236
168
168
  junifer/markers/base.py,sha256=GSU6NJA97pTMpFPyoTQrNffG0zXB_dwV_Eire4EnHQw,8283
@@ -283,7 +283,7 @@ junifer/preprocess/confounds/__init__.py,sha256=L3CquKcndFb2b8yVo-XLi-zsNCe8MMKU
283
283
  junifer/preprocess/confounds/__init__.pyi,sha256=iC70cqcWNMX4JM42RcUgKb9YX8ciK8oVERdWWjo-13c,102
284
284
  junifer/preprocess/confounds/fmriprep_confound_remover.py,sha256=o7mD_TRnflske75CJxSbg2uTN5zlJ4W0iovS8iQtnfg,27052
285
285
  junifer/preprocess/confounds/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
286
- junifer/preprocess/confounds/tests/test_fmriprep_confound_remover.py,sha256=qqSZL3RgKOTu3eu1ASxackemFlSqBmy7VSNk0ksP9s8,23531
286
+ junifer/preprocess/confounds/tests/test_fmriprep_confound_remover.py,sha256=oysZynFFEyB4HlUETaxfMfflL6P8M4EEfDRfg5pzLJM,23544
287
287
  junifer/preprocess/smoothing/__init__.py,sha256=7aTwvAG522kA76QQwqxwY5zV_6asyPaaH2uSMTaKQls,216
288
288
  junifer/preprocess/smoothing/__init__.pyi,sha256=5sjw61Eyon9gE_SWoktND9raw6IkgqcT2rtGNhVV9EA,58
289
289
  junifer/preprocess/smoothing/_afni_smoothing.py,sha256=4mdZk9YkA02wZ8rS6sbLnXL_7SIX7M0NwHPLckJgCmI,3325
@@ -310,11 +310,11 @@ junifer/storage/pandas_base.py,sha256=SYpbPdzkslrRcJdxZkW1NRUYRnAxMGAn1XhdCA8Yal
310
310
  junifer/storage/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
311
311
  junifer/storage/sqlite.py,sha256=18bQsfov5DTlGFlVMV9akTiatO7QPWMBcynZRetEBQM,21202
312
312
  junifer/storage/utils.py,sha256=dgSbYjpwzy7dutcsdacd-5ZLR8kIucRcdlXw99aAjFI,9806
313
- junifer/storage/tests/test_hdf5.py,sha256=qlhc4DvQ_ruI5D6FPXL9jL8x9undFzOZZnMkmsax5EU,34169
313
+ junifer/storage/tests/test_hdf5.py,sha256=834V6Y_0NIjsf2IAkC5QkGOnuAQzxi47p45pqwsIPMw,34170
314
314
  junifer/storage/tests/test_pandas_base.py,sha256=S7_XM9EeBFoC4ojI0wYTFEXT5XMTWeVHiW6ddXdIjEI,4082
315
315
  junifer/storage/tests/test_sqlite.py,sha256=0TQIcqHPgk67ALsR-98CA73ulDPsR2t9wGXYaem983w,28312
316
316
  junifer/storage/tests/test_storage_base.py,sha256=Ic4zaPPhaKJDujfjxOM3h0GOhCtMnfT_jdWsuskKMac,3214
317
- junifer/storage/tests/test_utils.py,sha256=tdQbgA7FOO4_qdCuo2ZiXBeD_-9IKc-CsYDfhA_rCI4,12730
317
+ junifer/storage/tests/test_utils.py,sha256=xYXgP2_FyROXiHU_tMZWsLhRf1f7oIGn1kyhh4DuVGA,12726
318
318
  junifer/testing/__init__.py,sha256=gqfrX2c7I31VYBmH9hCUERO-61NwubT1cvy1bKM0NqU,249
319
319
  junifer/testing/__init__.pyi,sha256=OFqGc5GCjoD4hPVOYNWvnvvP_RVF-oO-UQR8n9HDVtM,133
320
320
  junifer/testing/datagrabbers.py,sha256=ui2VwArMjx4KUD2Cf8PRJOExvDHfPntuuuhEEwWwTZ4,6571
@@ -327,7 +327,7 @@ junifer/testing/tests/test_partlycloudytesting_datagrabber.py,sha256=ggU8XQQ6F0H
327
327
  junifer/testing/tests/test_spmauditory_datagrabber.py,sha256=1G1emk-Ze59HiNLaYsyIz5O1YGW9darcqlzvhE-J_Mc,919
328
328
  junifer/testing/tests/test_testing_registry.py,sha256=MK4a_q4MHieCvYhnhuPm_dH76lX0yyDOZP8tZ30aC7Y,508
329
329
  junifer/tests/test_main.py,sha256=GMff7jlisGM9_FsiUwWDte43j-KQJGFRYZpwRRqTkd8,373
330
- junifer/tests/test_stats.py,sha256=NljoGFu2JOPADbi9W0WeUHwpf8nZSdOkcCgCv-Z1fY4,4149
330
+ junifer/tests/test_stats.py,sha256=M1OW4OORyKRktfMSrLB9l_JHkB2QQ9ptCKVbhZvb5Xk,4160
331
331
  junifer/typing/__init__.py,sha256=e0UbuxozXUIxz8h8pLokMOxZV629Q1lnA7vvgm95WF0,215
332
332
  junifer/typing/__init__.pyi,sha256=l_AHfe7LkM6lhaUxnlZ5frBxtZeKbblVUFY3yyWLg70,688
333
333
  junifer/typing/_typing.py,sha256=7FAQSqOTlWAtBGkgz6K-Ge1svLt5gCPGZ1zdqj5VXh0,1848
@@ -344,10 +344,10 @@ junifer/utils/tests/test_config.py,sha256=7ltIXuwb_W4Mv_1dxQWyiyM10XgUAfsWKV6D_i
344
344
  junifer/utils/tests/test_fs.py,sha256=WQS7cKlKEZ742CIuiOYYpueeAhY9PqlastfDVpVVtvE,923
345
345
  junifer/utils/tests/test_helpers.py,sha256=k5qqfxK8dFyuewTJyR1Qn6-nFaYNuVr0ysc18bfPjyU,929
346
346
  junifer/utils/tests/test_logging.py,sha256=W4tFKmaf8_CxnWZ-o_-XxM7DQbhGG18RsLZJk8bZelI,8163
347
- junifer-0.0.7.dev169.dist-info/licenses/AUTHORS.rst,sha256=rmULKpchpSol4ExWFdm-qu4fkpSZPYqIESVJBZtGb6E,163
348
- junifer-0.0.7.dev169.dist-info/licenses/LICENSE.md,sha256=MqCnOBu8uXsEOzRZWh9EBVfVz-kE9NkXcLCrtGXo2yU,34354
349
- junifer-0.0.7.dev169.dist-info/METADATA,sha256=l9Zkm6nY2tVn5o4hVT8W0PYvNEBwDwUIfOQ_EDVxt5Q,8396
350
- junifer-0.0.7.dev169.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
351
- junifer-0.0.7.dev169.dist-info/entry_points.txt,sha256=6O8ru0BP-SP7YMUZiizFNoaZ2HvJpadO2G7nKk4PwjI,48
352
- junifer-0.0.7.dev169.dist-info/top_level.txt,sha256=4bAq1R2QFQ4b3hohjys2JBvxrl0GKk5LNFzYvz9VGcA,8
353
- junifer-0.0.7.dev169.dist-info/RECORD,,
347
+ junifer-0.0.7.dev174.dist-info/licenses/AUTHORS.rst,sha256=rmULKpchpSol4ExWFdm-qu4fkpSZPYqIESVJBZtGb6E,163
348
+ junifer-0.0.7.dev174.dist-info/licenses/LICENSE.md,sha256=MqCnOBu8uXsEOzRZWh9EBVfVz-kE9NkXcLCrtGXo2yU,34354
349
+ junifer-0.0.7.dev174.dist-info/METADATA,sha256=eEkM03INWLTT7jN0Mlr3kPEEQLgt421h8q_ijx2zNf0,8396
350
+ junifer-0.0.7.dev174.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
351
+ junifer-0.0.7.dev174.dist-info/entry_points.txt,sha256=6O8ru0BP-SP7YMUZiizFNoaZ2HvJpadO2G7nKk4PwjI,48
352
+ junifer-0.0.7.dev174.dist-info/top_level.txt,sha256=4bAq1R2QFQ4b3hohjys2JBvxrl0GKk5LNFzYvz9VGcA,8
353
+ junifer-0.0.7.dev174.dist-info/RECORD,,