junifer 0.0.6.dev6__py3-none-any.whl → 0.0.6.dev16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- junifer/_version.py +2 -2
- junifer/external/nilearn/junifer_connectivity_measure.py +23 -15
- junifer/external/nilearn/tests/test_junifer_connectivity_measure.py +1 -0
- junifer/onthefly/__init__.py +2 -1
- junifer/onthefly/_brainprint.py +141 -0
- {junifer-0.0.6.dev6.dist-info → junifer-0.0.6.dev16.dist-info}/METADATA +1 -1
- {junifer-0.0.6.dev6.dist-info → junifer-0.0.6.dev16.dist-info}/RECORD +12 -11
- {junifer-0.0.6.dev6.dist-info → junifer-0.0.6.dev16.dist-info}/AUTHORS.rst +0 -0
- {junifer-0.0.6.dev6.dist-info → junifer-0.0.6.dev16.dist-info}/LICENSE.md +0 -0
- {junifer-0.0.6.dev6.dist-info → junifer-0.0.6.dev16.dist-info}/WHEEL +0 -0
- {junifer-0.0.6.dev6.dist-info → junifer-0.0.6.dev16.dist-info}/entry_points.txt +0 -0
- {junifer-0.0.6.dev6.dist-info → junifer-0.0.6.dev16.dist-info}/top_level.txt +0 -0
junifer/_version.py
CHANGED
@@ -12,5 +12,5 @@ __version__: str
|
|
12
12
|
__version_tuple__: VERSION_TUPLE
|
13
13
|
version_tuple: VERSION_TUPLE
|
14
14
|
|
15
|
-
__version__ = version = '0.0.6.
|
16
|
-
__version_tuple__ = version_tuple = (0, 0, 6, '
|
15
|
+
__version__ = version = '0.0.6.dev16'
|
16
|
+
__version_tuple__ = version_tuple = (0, 0, 6, 'dev16')
|
@@ -13,7 +13,7 @@ from nilearn.connectome import (
|
|
13
13
|
prec_to_partial,
|
14
14
|
sym_matrix_to_vec,
|
15
15
|
)
|
16
|
-
from scipy import linalg
|
16
|
+
from scipy import linalg, stats
|
17
17
|
from sklearn.base import clone
|
18
18
|
from sklearn.covariance import EmpiricalCovariance
|
19
19
|
|
@@ -314,15 +314,18 @@ class JuniferConnectivityMeasure(ConnectivityMeasure):
|
|
314
314
|
* default ``cov_estimator`` is
|
315
315
|
:class:`sklearn.covariance.EmpiricalCovariance`
|
316
316
|
* default ``kind`` is ``"correlation"``
|
317
|
+
* supports Spearman's correlation via ``kind="spearman correlation"``
|
317
318
|
|
318
319
|
Parameters
|
319
320
|
----------
|
320
321
|
cov_estimator : estimator object, optional
|
321
322
|
The covariance estimator
|
322
323
|
(default ``EmpiricalCovariance(store_precision=False)``).
|
323
|
-
kind : {"covariance", "correlation", "
|
324
|
-
"tangent", "precision"}, optional
|
325
|
-
The matrix kind.
|
324
|
+
kind : {"covariance", "correlation", "spearman correlation", \
|
325
|
+
"partial correlation", "tangent", "precision"}, optional
|
326
|
+
The matrix kind. The default value uses Pearson's correlation.
|
327
|
+
If ``"spearman correlation"`` is used, the data will be ranked before
|
328
|
+
estimating the covariance. For the use of ``"tangent"`` see [1]_
|
326
329
|
(default "correlation").
|
327
330
|
vectorize : bool, optional
|
328
331
|
If True, connectivity matrices are reshaped into 1D arrays and only
|
@@ -400,17 +403,22 @@ class JuniferConnectivityMeasure(ConnectivityMeasure):
|
|
400
403
|
self.cov_estimator_ = clone(self.cov_estimator)
|
401
404
|
|
402
405
|
# Compute all the matrices, stored in "connectivities"
|
403
|
-
if self.kind
|
404
|
-
covariances_std = [
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
406
|
+
if self.kind in ["correlation", "spearman correlation"]:
|
407
|
+
covariances_std = []
|
408
|
+
for x in X:
|
409
|
+
x = signal.standardize_signal(
|
410
|
+
x,
|
411
|
+
detrend=False,
|
412
|
+
standardize=self.standardize,
|
413
|
+
)
|
414
|
+
|
415
|
+
# rank data if spearman correlation
|
416
|
+
# before calculating covariance
|
417
|
+
if self.kind == "spearman correlation":
|
418
|
+
x = stats.rankdata(x, axis=0)
|
419
|
+
|
420
|
+
covariances_std.append(self.cov_estimator_.fit(x).covariance_)
|
421
|
+
|
414
422
|
connectivities = [cov_to_corr(cov) for cov in covariances_std]
|
415
423
|
else:
|
416
424
|
covariances = [self.cov_estimator_.fit(x).covariance_ for x in X]
|
junifer/onthefly/__init__.py
CHANGED
@@ -0,0 +1,141 @@
|
|
1
|
+
"""Provide onthefly functions for BrainPrint post-analysis."""
|
2
|
+
|
3
|
+
# Authors: Synchon Mandal <s.mandal@fz-juelich.de>
|
4
|
+
# License: AGPL
|
5
|
+
|
6
|
+
from typing import TYPE_CHECKING, Dict, Optional, Type
|
7
|
+
|
8
|
+
import numpy as np
|
9
|
+
import pandas as pd
|
10
|
+
|
11
|
+
from ..utils import raise_error
|
12
|
+
|
13
|
+
|
14
|
+
if TYPE_CHECKING:
|
15
|
+
from junifer.storage import BaseFeatureStorage
|
16
|
+
|
17
|
+
|
18
|
+
__all__ = ["normalize", "reweight"]
|
19
|
+
|
20
|
+
|
21
|
+
def normalize(
|
22
|
+
storage: Type["BaseFeatureStorage"],
|
23
|
+
features: Dict[str, Dict[str, Optional[str]]],
|
24
|
+
kind: str,
|
25
|
+
) -> pd.DataFrame:
|
26
|
+
"""Read stored brainprint data and normalize either surfaces or volumes.
|
27
|
+
|
28
|
+
Parameters
|
29
|
+
----------
|
30
|
+
storage : storage-like
|
31
|
+
The storage class, for example, :class:`.HDF5FeatureStorage`.
|
32
|
+
features : dict, optional
|
33
|
+
The feature names or MD5 hashes to read as dict.
|
34
|
+
The dict should have the keys:
|
35
|
+
|
36
|
+
* ``"areas"`` (if ``kind="surface"``)
|
37
|
+
* ``"volumes"`` (if ``kind="volume"``)
|
38
|
+
* ``"eigenvalues"``
|
39
|
+
|
40
|
+
and the corresponding value for each of the keys is again
|
41
|
+
a dict with the keys:
|
42
|
+
|
43
|
+
* ``"feature_name"`` : str or None
|
44
|
+
* ``"feature_md5"`` : str or None
|
45
|
+
|
46
|
+
Either one of ``"feature_name"`` or ``"feature_md5"`` needs to be
|
47
|
+
not None for each first-level key, but both keys are mandatory.
|
48
|
+
|
49
|
+
kind : {"surface", "volume"}
|
50
|
+
The kind of normalization.
|
51
|
+
|
52
|
+
Returns
|
53
|
+
-------
|
54
|
+
pandas.DataFrame
|
55
|
+
The transformed feature as a ``pandas.DataFrame``.
|
56
|
+
|
57
|
+
Raises
|
58
|
+
------
|
59
|
+
ValueError
|
60
|
+
If ``kind`` is invalid.
|
61
|
+
|
62
|
+
"""
|
63
|
+
# Read storage
|
64
|
+
data_dict = {}
|
65
|
+
for k, v in features.items():
|
66
|
+
data_dict[k] = storage.read_df(**v) # type: ignore
|
67
|
+
|
68
|
+
# Check and normalize
|
69
|
+
valid_kind = ["surface", "volume"]
|
70
|
+
normalized_df = None
|
71
|
+
if kind == "surface":
|
72
|
+
eigenvalues_df = data_dict["eigenvalues"]
|
73
|
+
areas_df = data_dict["areas"]
|
74
|
+
normalized_df = eigenvalues_df.combine(
|
75
|
+
areas_df, lambda left, right: left * right
|
76
|
+
)
|
77
|
+
elif kind == "volume":
|
78
|
+
eigenvalues_df = data_dict["eigenvalues"]
|
79
|
+
volumes_df = data_dict["volumes"]
|
80
|
+
normalized_df = eigenvalues_df.combine(
|
81
|
+
volumes_df, lambda left, right: left * right ** np.divide(2.0, 3.0)
|
82
|
+
)
|
83
|
+
else:
|
84
|
+
raise_error(
|
85
|
+
"Invalid value for `kind`, should be one of: " f"{valid_kind}"
|
86
|
+
)
|
87
|
+
|
88
|
+
return normalized_df
|
89
|
+
|
90
|
+
|
91
|
+
def reweight(
|
92
|
+
storage: Type["BaseFeatureStorage"],
|
93
|
+
feature_name: Optional[str] = None,
|
94
|
+
feature_md5: Optional[str] = None,
|
95
|
+
) -> pd.DataFrame:
|
96
|
+
"""Read stored brainprint data and reweight eigenvalues.
|
97
|
+
|
98
|
+
Parameters
|
99
|
+
----------
|
100
|
+
storage : storage-like
|
101
|
+
The storage class, for example, :class:`.HDF5FeatureStorage`.
|
102
|
+
feature_name : str, optional
|
103
|
+
Name of the feature to read (default None).
|
104
|
+
feature_md5 : str, optional
|
105
|
+
MD5 hash of the feature to read (default None).
|
106
|
+
|
107
|
+
Returns
|
108
|
+
-------
|
109
|
+
pandas.DataFrame
|
110
|
+
The transformed feature as a ``pandas.DataFrame``.
|
111
|
+
|
112
|
+
"""
|
113
|
+
# Read storage
|
114
|
+
eigenvalues_df = storage.read_df(
|
115
|
+
feature_name=feature_name, feature_md5=feature_md5
|
116
|
+
) # type: ignore
|
117
|
+
|
118
|
+
# Create data for operation
|
119
|
+
exploded_count_idx_df = (
|
120
|
+
eigenvalues_df.reset_index("eigenvalue")
|
121
|
+
.index.value_counts()
|
122
|
+
.apply(lambda x: np.arange(1, x + 1).astype(float))
|
123
|
+
.to_frame()
|
124
|
+
.explode("count")
|
125
|
+
)
|
126
|
+
idx_data = (
|
127
|
+
pd.concat(
|
128
|
+
[exploded_count_idx_df] * len(eigenvalues_df.columns), axis=1
|
129
|
+
)
|
130
|
+
.reset_index()
|
131
|
+
.drop("subject", axis=1, inplace=False)
|
132
|
+
.to_numpy()
|
133
|
+
)
|
134
|
+
idx_df = pd.DataFrame(
|
135
|
+
data=idx_data,
|
136
|
+
index=eigenvalues_df.index,
|
137
|
+
columns=eigenvalues_df.columns,
|
138
|
+
)
|
139
|
+
|
140
|
+
# Combine
|
141
|
+
return eigenvalues_df.combine(idx_df, lambda left, right: left / right)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: junifer
|
3
|
-
Version: 0.0.6.
|
3
|
+
Version: 0.0.6.dev16
|
4
4
|
Summary: JUelich NeuroImaging FEature extractoR
|
5
5
|
Author-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
|
6
6
|
Maintainer-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
|
@@ -1,5 +1,5 @@
|
|
1
1
|
junifer/__init__.py,sha256=-T9XmiCCL0j3YLx-0Pph15sPfL5FlcBDscajjJ-V4sU,604
|
2
|
-
junifer/_version.py,sha256=
|
2
|
+
junifer/_version.py,sha256=6F6uOGNcjX6dbq-EmRB3esRKologELcdzkhY7J6HmO0,426
|
3
3
|
junifer/stats.py,sha256=BjQb2lfTGDP9l4UuQYmJFcJJNRfbJDGlNvC06SJaDDE,6237
|
4
4
|
junifer/api/__init__.py,sha256=lwyIF0hPc7fICuSoddJfay0LPqlTRxHJ_xbtizgFYZA,312
|
5
5
|
junifer/api/cli.py,sha256=53pews3mXkJ7DUDSkV51PbitYnuVAdQRkWG-gjO08Uw,16142
|
@@ -134,9 +134,9 @@ junifer/external/h5io/h5io/_version.py,sha256=mFY0GwwuN-a3M8w93_mskS6GZIvv9SNdjL
|
|
134
134
|
junifer/external/h5io/h5io/chunked_array.py,sha256=K1HWf7R2Jc7gCzBqAoBjx0ZnMmUhTe3iAO6RF6PdUO4,3338
|
135
135
|
junifer/external/h5io/h5io/chunked_list.py,sha256=1Y5BbuWzurJlEFQzJNuDdC3fNZ39ENEMba99X_4VeSM,1952
|
136
136
|
junifer/external/nilearn/__init__.py,sha256=UdUKYArx3hvcziln89iaSGZcNGwHvsmbB4E5gS1zvOs,321
|
137
|
-
junifer/external/nilearn/junifer_connectivity_measure.py,sha256=
|
137
|
+
junifer/external/nilearn/junifer_connectivity_measure.py,sha256=c8aLIlSs2eo6uHj-ZtYAto4szjbj21Zlj5JTQRrAnu8,17322
|
138
138
|
junifer/external/nilearn/junifer_nifti_spheres_masker.py,sha256=DbSK2hKrgpHZ_vCRLbVv3YJpLZNkEAG0HFfQQpG6zdU,16546
|
139
|
-
junifer/external/nilearn/tests/test_junifer_connectivity_measure.py,sha256=
|
139
|
+
junifer/external/nilearn/tests/test_junifer_connectivity_measure.py,sha256=yBsi9g_31UDo_oG7K6eKRp36CZ28G5cbNcKM3aTT53s,33946
|
140
140
|
junifer/external/nilearn/tests/test_junifer_nifti_spheres_masker.py,sha256=zpvBYIvaNjUj9fIUg5K78LRzJqbyMYlUo2UQYS9_lo4,12275
|
141
141
|
junifer/markers/__init__.py,sha256=u4BFgS_3GXAwFN2HfqdAhlBkyenLw4IYlMlwXwnjkVQ,1235
|
142
142
|
junifer/markers/base.py,sha256=__Z0owDdjTwb7alQneOeoaUqaeCVbHwFRnaRZERi37M,8364
|
@@ -206,7 +206,8 @@ junifer/markers/tests/test_marker_utils.py,sha256=SR3ADWI3uGv4ozYqVu-rMZnJVqP6Jn
|
|
206
206
|
junifer/markers/tests/test_markers_base.py,sha256=XYe1Z_88h2g1WX6Em4aM8VMyBuCpy5sNHbbpC0I89m4,2979
|
207
207
|
junifer/markers/tests/test_parcel_aggregation.py,sha256=FkB0O0HjTk1CnLOn-dzNs_9_byUOISRc4jV92shN2Kc,27655
|
208
208
|
junifer/markers/tests/test_sphere_aggregation.py,sha256=TGn5S7zKK0SJ4nHIxRZQSCpqRBmz7c8Sb8C79dLoHjE,10611
|
209
|
-
junifer/onthefly/__init__.py,sha256=
|
209
|
+
junifer/onthefly/__init__.py,sha256=TA6tPuw54ynDlumb9Ii-2p59hw2rGoCMe1-vQ89JzZ8,238
|
210
|
+
junifer/onthefly/_brainprint.py,sha256=-q5j5xOkuZD_f-pjWi-b8VRqM9ZXDk1TnccuQDfLwz4,3860
|
210
211
|
junifer/onthefly/read_transform.py,sha256=kZ-N_fKe9glaBTjhj_HXrdTtWXGI-fMoBpsawcOgsTw,4340
|
211
212
|
junifer/onthefly/tests/test_read_transform.py,sha256=D2C3IpXQHdsJSF07v8rEwGntLGXjZOserlRhebJUAVM,4719
|
212
213
|
junifer/pipeline/__init__.py,sha256=mmhtYuRGetBmBvKPVb9MxklcEK_R9ly-dgkzQiOp3g8,363
|
@@ -266,10 +267,10 @@ junifer/utils/logging.py,sha256=ardaiJkDfZMYvak5UIL5Etxg5Ii7inmVQSBdFLdgtb8,9781
|
|
266
267
|
junifer/utils/tests/test_fs.py,sha256=WQS7cKlKEZ742CIuiOYYpueeAhY9PqlastfDVpVVtvE,923
|
267
268
|
junifer/utils/tests/test_helpers.py,sha256=k5qqfxK8dFyuewTJyR1Qn6-nFaYNuVr0ysc18bfPjyU,929
|
268
269
|
junifer/utils/tests/test_logging.py,sha256=duO4ou365hxwa_kwihFtKPLaL6LC5XHiyhOijrrngbA,8009
|
269
|
-
junifer-0.0.6.
|
270
|
-
junifer-0.0.6.
|
271
|
-
junifer-0.0.6.
|
272
|
-
junifer-0.0.6.
|
273
|
-
junifer-0.0.6.
|
274
|
-
junifer-0.0.6.
|
275
|
-
junifer-0.0.6.
|
270
|
+
junifer-0.0.6.dev16.dist-info/AUTHORS.rst,sha256=rmULKpchpSol4ExWFdm-qu4fkpSZPYqIESVJBZtGb6E,163
|
271
|
+
junifer-0.0.6.dev16.dist-info/LICENSE.md,sha256=MqCnOBu8uXsEOzRZWh9EBVfVz-kE9NkXcLCrtGXo2yU,34354
|
272
|
+
junifer-0.0.6.dev16.dist-info/METADATA,sha256=aKu6mGcLd9lgmR5bN_3DPrnsQTbWteKq9f_tdfHXYV0,8279
|
273
|
+
junifer-0.0.6.dev16.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
|
274
|
+
junifer-0.0.6.dev16.dist-info/entry_points.txt,sha256=DxFvKq0pOqRunAK0FxwJcoDfV1-dZvsFDpD5HRqSDhw,48
|
275
|
+
junifer-0.0.6.dev16.dist-info/top_level.txt,sha256=4bAq1R2QFQ4b3hohjys2JBvxrl0GKk5LNFzYvz9VGcA,8
|
276
|
+
junifer-0.0.6.dev16.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|