junifer 0.0.6.dev445__py3-none-any.whl → 0.0.6.dev474__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -13,14 +13,15 @@ import nibabel as nib
13
13
  import nilearn.image as nimg
14
14
  import numpy as np
15
15
  import pandas as pd
16
+ from junifer_data import get
16
17
 
17
18
  from ...utils import logger, raise_error, warn_with_log
18
19
  from ...utils.singleton import Singleton
19
20
  from ..pipeline_data_registry_base import BasePipelineDataRegistry
20
21
  from ..utils import (
21
- check_dataset,
22
+ JUNIFER_DATA_VERSION,
22
23
  closest_resolution,
23
- fetch_file_via_datalad,
24
+ get_dataset_path,
24
25
  get_native_warper,
25
26
  )
26
27
  from ._ants_parcellation_warper import ANTsParcellationWarper
@@ -28,7 +29,6 @@ from ._fsl_parcellation_warper import FSLParcellationWarper
28
29
 
29
30
 
30
31
  if TYPE_CHECKING:
31
- from datalad.api import Dataset
32
32
  from nibabel.nifti1 import Nifti1Image
33
33
 
34
34
 
@@ -357,49 +357,40 @@ class ParcellationRegistry(BasePipelineDataRegistry, metaclass=Singleton):
357
357
  "Yan2023",
358
358
  "Brainnetome",
359
359
  ]:
360
- # Get dataset
361
- dataset = check_dataset()
362
360
  # Load parcellation and labels
363
361
  if t_family == "Schaefer2018":
364
362
  parcellation_fname, parcellation_labels = _retrieve_schaefer(
365
- dataset=dataset,
366
363
  resolution=resolution,
367
364
  **parcellation_definition,
368
365
  )
369
366
  elif t_family == "SUIT":
370
367
  parcellation_fname, parcellation_labels = _retrieve_suit(
371
- dataset=dataset,
372
368
  resolution=resolution,
373
369
  **parcellation_definition,
374
370
  )
375
371
  elif t_family == "Melbourne":
376
372
  parcellation_fname, parcellation_labels = _retrieve_tian(
377
- dataset=dataset,
378
373
  resolution=resolution,
379
374
  **parcellation_definition,
380
375
  )
381
376
  elif t_family == "AICHA":
382
377
  parcellation_fname, parcellation_labels = _retrieve_aicha(
383
- dataset=dataset,
384
378
  resolution=resolution,
385
379
  **parcellation_definition,
386
380
  )
387
381
  elif t_family == "Shen":
388
382
  parcellation_fname, parcellation_labels = _retrieve_shen(
389
- dataset=dataset,
390
383
  resolution=resolution,
391
384
  **parcellation_definition,
392
385
  )
393
386
  elif t_family == "Yan2023":
394
387
  parcellation_fname, parcellation_labels = _retrieve_yan(
395
- dataset=dataset,
396
388
  resolution=resolution,
397
389
  **parcellation_definition,
398
390
  )
399
391
  elif t_family == "Brainnetome":
400
392
  parcellation_fname, parcellation_labels = (
401
393
  _retrieve_brainnetome(
402
- dataset=dataset,
403
394
  resolution=resolution,
404
395
  **parcellation_definition,
405
396
  )
@@ -585,7 +576,6 @@ class ParcellationRegistry(BasePipelineDataRegistry, metaclass=Singleton):
585
576
 
586
577
 
587
578
  def _retrieve_schaefer(
588
- dataset: "Dataset",
589
579
  resolution: Optional[float] = None,
590
580
  n_rois: Optional[int] = None,
591
581
  yeo_networks: int = 7,
@@ -594,8 +584,6 @@ def _retrieve_schaefer(
594
584
 
595
585
  Parameters
596
586
  ----------
597
- dataset : datalad.api.Dataset
598
- The datalad dataset to fetch parcellation from.
599
587
  resolution : float, optional
600
588
  The desired resolution of the parcellation to load. If it is not
601
589
  available, the closest resolution will be loaded. Preferably, use a
@@ -646,24 +634,18 @@ def _retrieve_schaefer(
646
634
  resolution = closest_resolution(resolution, _valid_resolutions)
647
635
 
648
636
  # Fetch file paths
649
- parcellation_img_path = fetch_file_via_datalad(
650
- dataset=dataset,
651
- file_path=dataset.pathobj
652
- / "parcellations"
653
- / "Schaefer2018"
654
- / "Yeo2011"
655
- / (
656
- f"Schaefer2018_{n_rois}Parcels_{yeo_networks}Networks_order_"
657
- f"FSLMNI152_{resolution}mm.nii.gz"
658
- ),
637
+ path_prefix = Path("parcellations/Schaefer2018/Yeo2011")
638
+ parcellation_img_path = get(
639
+ file_path=path_prefix / f"Schaefer2018_{n_rois}Parcels_{yeo_networks}"
640
+ f"Networks_order_FSLMNI152_{resolution}mm.nii.gz",
641
+ dataset_path=get_dataset_path(),
642
+ tag=JUNIFER_DATA_VERSION,
659
643
  )
660
- parcellation_label_path = fetch_file_via_datalad(
661
- dataset=dataset,
662
- file_path=dataset.pathobj
663
- / "parcellations"
664
- / "Schaefer2018"
665
- / "Yeo2011"
666
- / (f"Schaefer2018_{n_rois}Parcels_{yeo_networks}Networks_order.txt"),
644
+ parcellation_label_path = get(
645
+ file_path=path_prefix
646
+ / f"Schaefer2018_{n_rois}Parcels_{yeo_networks}Networks_order.txt",
647
+ dataset_path=get_dataset_path(),
648
+ tag=JUNIFER_DATA_VERSION,
667
649
  )
668
650
 
669
651
  # Load labels
@@ -678,7 +660,6 @@ def _retrieve_schaefer(
678
660
 
679
661
 
680
662
  def _retrieve_tian(
681
- dataset: "Dataset",
682
663
  resolution: Optional[float] = None,
683
664
  scale: Optional[int] = None,
684
665
  space: str = "MNI152NLin6Asym",
@@ -688,8 +669,6 @@ def _retrieve_tian(
688
669
 
689
670
  Parameters
690
671
  ----------
691
- dataset : datalad.api.Dataset
692
- The datalad dataset to fetch parcellation from.
693
672
  resolution : float, optional
694
673
  The desired resolution of the parcellation to load. If it is not
695
674
  available, the closest resolution will be loaded. Preferably, use a
@@ -758,13 +737,8 @@ def _retrieve_tian(
758
737
 
759
738
  # Fetch file paths
760
739
  if magneticfield == "3T":
761
- parcellation_fname_base_3T = (
762
- dataset.pathobj
763
- / "parcellations"
764
- / "Melbourne"
765
- / "v1.4"
766
- / "3T"
767
- / "Subcortex-Only"
740
+ parcellation_fname_base_3T = Path(
741
+ "parcellations/Melbourne/v1.4/3T/Subcortex-Only"
768
742
  )
769
743
  if space == "MNI152NLin6Asym":
770
744
  if resolution == 1:
@@ -787,28 +761,29 @@ def _retrieve_tian(
787
761
  f"Tian_Subcortex_S{scale}_{magneticfield}_{space}.nii.gz"
788
762
  )
789
763
 
790
- parcellation_img_path = fetch_file_via_datalad(
791
- dataset=dataset,
764
+ parcellation_img_path = get(
792
765
  file_path=parcellation_fname,
766
+ dataset_path=get_dataset_path(),
767
+ tag=JUNIFER_DATA_VERSION,
793
768
  )
794
- parcellation_label_path = fetch_file_via_datalad(
795
- dataset=dataset,
769
+ parcellation_label_path = get(
796
770
  file_path=parcellation_fname_base_3T
797
771
  / f"Tian_Subcortex_S{scale}_3T_label.txt",
772
+ dataset_path=get_dataset_path(),
773
+ tag=JUNIFER_DATA_VERSION,
798
774
  )
799
775
  # Load labels
800
776
  labels = pd.read_csv(parcellation_label_path, sep=" ", header=None)[
801
777
  0
802
778
  ].to_list()
803
779
  elif magneticfield == "7T":
804
- parcellation_img_path = fetch_file_via_datalad(
805
- dataset=dataset,
806
- file_path=dataset.pathobj
807
- / "parcellations"
808
- / "Melbourne"
809
- / "v1.4"
810
- / "7T"
811
- / f"Tian_Subcortex_S{scale}_{magneticfield}.nii.gz",
780
+ parcellation_img_path = get(
781
+ file_path=Path(
782
+ "parcellations/Melbourne/v1.4/7T/"
783
+ f"Tian_Subcortex_S{scale}_{magneticfield}.nii.gz"
784
+ ),
785
+ dataset_path=get_dataset_path(),
786
+ tag=JUNIFER_DATA_VERSION,
812
787
  )
813
788
  # define 7T labels (b/c currently no labels file available for 7T)
814
789
  scale7Trois = {1: 16, 2: 34, 3: 54, 4: 62}
@@ -825,7 +800,6 @@ def _retrieve_tian(
825
800
 
826
801
 
827
802
  def _retrieve_suit(
828
- dataset: "Dataset",
829
803
  resolution: Optional[float],
830
804
  space: str = "MNI152NLin6Asym",
831
805
  ) -> tuple[Path, list[str]]:
@@ -833,8 +807,6 @@ def _retrieve_suit(
833
807
 
834
808
  Parameters
835
809
  ----------
836
- dataset : datalad.api.Dataset
837
- The datalad dataset to fetch parcellation from.
838
810
  resolution : float, optional
839
811
  The desired resolution of the parcellation to load. If it is not
840
812
  available, the closest resolution will be loaded. Preferably, use a
@@ -879,19 +851,16 @@ def _retrieve_suit(
879
851
  space = "MNI"
880
852
 
881
853
  # Fetch file paths
882
- parcellation_img_path = fetch_file_via_datalad(
883
- dataset=dataset,
884
- file_path=dataset.pathobj
885
- / "parcellations"
886
- / "SUIT"
887
- / f"SUIT_{space}Space_{resolution}mm.nii",
854
+ path_prefix = Path("parcellations/SUIT")
855
+ parcellation_img_path = get(
856
+ file_path=path_prefix / f"SUIT_{space}Space_{resolution}mm.nii",
857
+ dataset_path=get_dataset_path(),
858
+ tag=JUNIFER_DATA_VERSION,
888
859
  )
889
- parcellation_label_path = fetch_file_via_datalad(
890
- dataset=dataset,
891
- file_path=dataset.pathobj
892
- / "parcellations"
893
- / "SUIT"
894
- / f"SUIT_{space}Space_{resolution}mm.tsv",
860
+ parcellation_label_path = get(
861
+ file_path=path_prefix / f"SUIT_{space}Space_{resolution}mm.tsv",
862
+ dataset_path=get_dataset_path(),
863
+ tag=JUNIFER_DATA_VERSION,
895
864
  )
896
865
 
897
866
  # Load labels
@@ -903,7 +872,6 @@ def _retrieve_suit(
903
872
 
904
873
 
905
874
  def _retrieve_aicha(
906
- dataset: "Dataset",
907
875
  resolution: Optional[float] = None,
908
876
  version: int = 2,
909
877
  ) -> tuple[Path, list[str]]:
@@ -911,8 +879,6 @@ def _retrieve_aicha(
911
879
 
912
880
  Parameters
913
881
  ----------
914
- dataset : datalad.api.Dataset
915
- The datalad dataset to fetch parcellation from.
916
882
  resolution : float, optional
917
883
  The desired resolution of the parcellation to load. If it is not
918
884
  available, the closest resolution will be loaded. Preferably, use a
@@ -968,32 +934,24 @@ def _retrieve_aicha(
968
934
  resolution = closest_resolution(resolution, _valid_resolutions)
969
935
 
970
936
  # Fetch file paths
971
- parcellation_img_path = fetch_file_via_datalad(
972
- dataset=dataset,
973
- file_path=dataset.pathobj
974
- / "parcellations"
975
- / "AICHA"
976
- / f"v{version}"
977
- / "AICHA.nii",
937
+ path_prefix = Path(f"parcellations/AICHA/v{version}")
938
+ parcellation_img_path = get(
939
+ file_path=path_prefix / "AICHA.nii",
940
+ dataset_path=get_dataset_path(),
941
+ tag=JUNIFER_DATA_VERSION,
978
942
  )
979
943
  # Conditional label file fetch
980
944
  if version == 1:
981
- parcellation_label_path = fetch_file_via_datalad(
982
- dataset=dataset,
983
- file_path=dataset.pathobj
984
- / "parcellations"
985
- / "AICHA"
986
- / f"v{version}"
987
- / "AICHA_vol1.txt",
945
+ parcellation_label_path = get(
946
+ file_path=path_prefix / "AICHA_vol1.txt",
947
+ dataset_path=get_dataset_path(),
948
+ tag=JUNIFER_DATA_VERSION,
988
949
  )
989
950
  elif version == 2:
990
- parcellation_label_path = fetch_file_via_datalad(
991
- dataset=dataset,
992
- file_path=dataset.pathobj
993
- / "parcellations"
994
- / "AICHA"
995
- / f"v{version}"
996
- / "AICHA_vol3.txt",
951
+ parcellation_label_path = get(
952
+ file_path=path_prefix / "AICHA_vol3.txt",
953
+ dataset_path=get_dataset_path(),
954
+ tag=JUNIFER_DATA_VERSION,
997
955
  )
998
956
 
999
957
  # Load labels
@@ -1008,7 +966,6 @@ def _retrieve_aicha(
1008
966
 
1009
967
 
1010
968
  def _retrieve_shen(
1011
- dataset: "Dataset",
1012
969
  resolution: Optional[float] = None,
1013
970
  year: int = 2015,
1014
971
  n_rois: int = 268,
@@ -1017,8 +974,6 @@ def _retrieve_shen(
1017
974
 
1018
975
  Parameters
1019
976
  ----------
1020
- dataset : datalad.api.Dataset
1021
- The datalad dataset to fetch parcellation from.
1022
977
  resolution : float, optional
1023
978
  The desired resolution of the parcellation to load. If it is not
1024
979
  available, the closest resolution will be loaded. Preferably, use a
@@ -1095,22 +1050,17 @@ def _retrieve_shen(
1095
1050
  )
1096
1051
 
1097
1052
  # Fetch file paths based on year
1053
+ path_prefix = Path(f"parcellations/Shen/{year}")
1098
1054
  if year == 2013:
1099
- parcellation_img_path = fetch_file_via_datalad(
1100
- dataset=dataset,
1101
- file_path=dataset.pathobj
1102
- / "parcellations"
1103
- / "Shen"
1104
- / "2013"
1105
- / f"fconn_atlas_{n_rois}_{resolution}mm.nii",
1055
+ parcellation_img_path = get(
1056
+ file_path=path_prefix / f"fconn_atlas_{n_rois}_{resolution}mm.nii",
1057
+ dataset_path=get_dataset_path(),
1058
+ tag=JUNIFER_DATA_VERSION,
1106
1059
  )
1107
- parcellation_label_path = fetch_file_via_datalad(
1108
- dataset=dataset,
1109
- file_path=dataset.pathobj
1110
- / "parcellations"
1111
- / "Shen"
1112
- / "2013"
1113
- / f"Group_seg{n_rois}_BAindexing_setA.txt",
1060
+ parcellation_label_path = get(
1061
+ file_path=path_prefix / f"Group_seg{n_rois}_BAindexing_setA.txt",
1062
+ dataset_path=get_dataset_path(),
1063
+ tag=JUNIFER_DATA_VERSION,
1114
1064
  )
1115
1065
  labels = (
1116
1066
  pd.read_csv(
@@ -1123,23 +1073,18 @@ def _retrieve_shen(
1123
1073
  .to_list()
1124
1074
  )
1125
1075
  elif year == 2015:
1126
- parcellation_img_path = fetch_file_via_datalad(
1127
- dataset=dataset,
1128
- file_path=dataset.pathobj
1129
- / "parcellations"
1130
- / "Shen"
1131
- / "2015"
1076
+ parcellation_img_path = get(
1077
+ file_path=path_prefix
1132
1078
  / f"shen_{resolution}mm_268_parcellation.nii.gz",
1079
+ dataset_path=get_dataset_path(),
1080
+ tag=JUNIFER_DATA_VERSION,
1133
1081
  )
1134
1082
  labels = list(range(1, 269))
1135
1083
  elif year == 2019:
1136
- parcellation_img_path = fetch_file_via_datalad(
1137
- dataset=dataset,
1138
- file_path=dataset.pathobj
1139
- / "parcellations"
1140
- / "Shen"
1141
- / "2019"
1142
- / "Shen_1mm_368_parcellation.nii.gz",
1084
+ parcellation_img_path = get(
1085
+ file_path=path_prefix / "Shen_1mm_368_parcellation.nii.gz",
1086
+ dataset_path=get_dataset_path(),
1087
+ tag=JUNIFER_DATA_VERSION,
1143
1088
  )
1144
1089
  labels = list(range(1, 369))
1145
1090
 
@@ -1147,7 +1092,6 @@ def _retrieve_shen(
1147
1092
 
1148
1093
 
1149
1094
  def _retrieve_yan(
1150
- dataset: "Dataset",
1151
1095
  resolution: Optional[float] = None,
1152
1096
  n_rois: Optional[int] = None,
1153
1097
  yeo_networks: Optional[int] = None,
@@ -1157,8 +1101,6 @@ def _retrieve_yan(
1157
1101
 
1158
1102
  Parameters
1159
1103
  ----------
1160
- dataset : datalad.api.Dataset
1161
- The datalad dataset to fetch parcellation from.
1162
1104
  resolution : float, optional
1163
1105
  The desired resolution of the parcellation to load. If it is not
1164
1106
  available, the closest resolution will be loaded. Preferably, use a
@@ -1214,6 +1156,7 @@ def _retrieve_yan(
1214
1156
  )
1215
1157
 
1216
1158
  # Fetch file paths based on networks
1159
+ pre_path_prefix = Path("parcellations/Yan2023")
1217
1160
  if yeo_networks:
1218
1161
  # Check yeo_networks value
1219
1162
  _valid_yeo_networks = [7, 17]
@@ -1223,24 +1166,21 @@ def _retrieve_yan(
1223
1166
  f"one of the following: {_valid_yeo_networks}"
1224
1167
  )
1225
1168
 
1226
- parcellation_img_path = fetch_file_via_datalad(
1227
- dataset=dataset,
1228
- file_path=dataset.pathobj
1229
- / "parcellations"
1230
- / "Yan2023"
1231
- / "Yeo2011"
1169
+ path_prefix = pre_path_prefix / "Yeo2011"
1170
+ parcellation_img_path = get(
1171
+ file_path=path_prefix
1232
1172
  / (
1233
1173
  f"{n_rois}Parcels_Yeo2011_{yeo_networks}Networks_FSLMNI152_"
1234
1174
  f"{resolution}mm.nii.gz"
1235
1175
  ),
1176
+ dataset_path=get_dataset_path(),
1177
+ tag=JUNIFER_DATA_VERSION,
1236
1178
  )
1237
- parcellation_label_path = fetch_file_via_datalad(
1238
- dataset=dataset,
1239
- file_path=dataset.pathobj
1240
- / "parcellations"
1241
- / "Yan2023"
1242
- / "Yeo2011"
1179
+ parcellation_label_path = get(
1180
+ file_path=path_prefix
1243
1181
  / f"{n_rois}Parcels_Yeo2011_{yeo_networks}Networks_LUT.txt",
1182
+ dataset_path=get_dataset_path(),
1183
+ tag=JUNIFER_DATA_VERSION,
1244
1184
  )
1245
1185
  elif kong_networks:
1246
1186
  # Check kong_networks value
@@ -1251,24 +1191,21 @@ def _retrieve_yan(
1251
1191
  f"one of the following: {_valid_kong_networks}"
1252
1192
  )
1253
1193
 
1254
- parcellation_img_path = fetch_file_via_datalad(
1255
- dataset=dataset,
1256
- file_path=dataset.pathobj
1257
- / "parcellations"
1258
- / "Yan2023"
1259
- / "Kong2022"
1194
+ path_prefix = pre_path_prefix / "Kong2022"
1195
+ parcellation_img_path = get(
1196
+ file_path=path_prefix
1260
1197
  / (
1261
1198
  f"{n_rois}Parcels_Kong2022_{kong_networks}Networks_FSLMNI152_"
1262
1199
  f"{resolution}mm.nii.gz"
1263
1200
  ),
1201
+ dataset_path=get_dataset_path(),
1202
+ tag=JUNIFER_DATA_VERSION,
1264
1203
  )
1265
- parcellation_label_path = fetch_file_via_datalad(
1266
- dataset=dataset,
1267
- file_path=dataset.pathobj
1268
- / "parcellations"
1269
- / "Yan2023"
1270
- / "Kong2022"
1204
+ parcellation_label_path = get(
1205
+ file_path=path_prefix
1271
1206
  / f"{n_rois}Parcels_Kong2022_{kong_networks}Networks_LUT.txt",
1207
+ dataset_path=get_dataset_path(),
1208
+ tag=JUNIFER_DATA_VERSION,
1272
1209
  )
1273
1210
 
1274
1211
  # Load label file
@@ -1280,7 +1217,6 @@ def _retrieve_yan(
1280
1217
 
1281
1218
 
1282
1219
  def _retrieve_brainnetome(
1283
- dataset: "Dataset",
1284
1220
  resolution: Optional[float] = None,
1285
1221
  threshold: Optional[int] = None,
1286
1222
  ) -> tuple[Path, list[str]]:
@@ -1288,8 +1224,6 @@ def _retrieve_brainnetome(
1288
1224
 
1289
1225
  Parameters
1290
1226
  ----------
1291
- dataset : datalad.api.Dataset
1292
- The datalad dataset to fetch parcellation from.
1293
1227
  resolution : {1.0, 1.25, 2.0}, optional
1294
1228
  The desired resolution of the parcellation to load. If it is not
1295
1229
  available, the closest resolution will be loaded. Preferably, use a
@@ -1332,12 +1266,13 @@ def _retrieve_brainnetome(
1332
1266
  resolution = int(resolution)
1333
1267
 
1334
1268
  # Fetch file path
1335
- parcellation_img_path = fetch_file_via_datalad(
1336
- dataset=dataset,
1337
- file_path=dataset.pathobj
1338
- / "parcellations"
1339
- / "Brainnetome"
1340
- / f"BNA-maxprob-thr{threshold}-{resolution}mm.nii.gz",
1269
+ parcellation_img_path = get(
1270
+ file_path=Path(
1271
+ "parcellations/Brainnetome/"
1272
+ f"BNA-maxprob-thr{threshold}-{resolution}mm.nii.gz"
1273
+ ),
1274
+ dataset_path=get_dataset_path(),
1275
+ tag=JUNIFER_DATA_VERSION,
1341
1276
  )
1342
1277
 
1343
1278
  # Load labels
@@ -24,7 +24,6 @@ from junifer.data.parcellations._parcellations import (
24
24
  _retrieve_tian,
25
25
  _retrieve_yan,
26
26
  )
27
- from junifer.data.utils import check_dataset
28
27
  from junifer.datareader import DefaultDataReader
29
28
  from junifer.pipeline.utils import _check_ants
30
29
  from junifer.testing.datagrabbers import (
@@ -335,7 +334,6 @@ def test_retrieve_schaefer_incorrect_n_rois() -> None:
335
334
  """Test retrieve Schaefer with incorrect ROIs."""
336
335
  with pytest.raises(ValueError, match=r"The parameter `n_rois`"):
337
336
  _retrieve_schaefer(
338
- dataset=check_dataset(),
339
337
  resolution=1,
340
338
  n_rois=101,
341
339
  yeo_networks=7,
@@ -346,7 +344,6 @@ def test_retrieve_schaefer_incorrect_yeo_networks() -> None:
346
344
  """Test retrieve Schaefer with incorrect Yeo networks."""
347
345
  with pytest.raises(ValueError, match=r"The parameter `yeo_networks`"):
348
346
  _retrieve_schaefer(
349
- dataset=check_dataset(),
350
347
  resolution=1,
351
348
  n_rois=100,
352
349
  yeo_networks=8,
@@ -384,7 +381,7 @@ def test_suit(space_key: str, space: str) -> None:
384
381
  def test_retrieve_suit_incorrect_space() -> None:
385
382
  """Test retrieve SUIT with incorrect space."""
386
383
  with pytest.raises(ValueError, match=r"The parameter `space`"):
387
- _retrieve_suit(dataset=check_dataset(), resolution=1.0, space="wrong")
384
+ _retrieve_suit(resolution=1.0, space="wrong")
388
385
 
389
386
 
390
387
  @pytest.mark.parametrize(
@@ -512,13 +509,10 @@ def test_tian_7T_6thgeneration(scale: int, n_label: int) -> None:
512
509
  def test_retrieve_tian_incorrect_space() -> None:
513
510
  """Test retrieve tian with incorrect space."""
514
511
  with pytest.raises(ValueError, match=r"The parameter `space`"):
515
- _retrieve_tian(
516
- dataset=check_dataset(), resolution=1, scale=1, space="wrong"
517
- )
512
+ _retrieve_tian(resolution=1, scale=1, space="wrong")
518
513
 
519
514
  with pytest.raises(ValueError, match=r"MNI152NLin6Asym"):
520
515
  _retrieve_tian(
521
- dataset=check_dataset(),
522
516
  resolution=1,
523
517
  scale=1,
524
518
  magneticfield="7T",
@@ -530,7 +524,6 @@ def test_retrieve_tian_incorrect_magneticfield() -> None:
530
524
  """Test retrieve tian with incorrect magneticfield."""
531
525
  with pytest.raises(ValueError, match=r"The parameter `magneticfield`"):
532
526
  _retrieve_tian(
533
- dataset=check_dataset(),
534
527
  resolution=1,
535
528
  scale=1,
536
529
  magneticfield="wrong",
@@ -541,7 +534,6 @@ def test_retrieve_tian_incorrect_scale(tmp_path: Path) -> None:
541
534
  """Test retrieve tian with incorrect scale."""
542
535
  with pytest.raises(ValueError, match=r"The parameter `scale`"):
543
536
  _retrieve_tian(
544
- dataset=check_dataset(),
545
537
  resolution=1,
546
538
  scale=5,
547
539
  space="MNI152NLin6Asym",
@@ -577,7 +569,6 @@ def test_retrieve_aicha_incorrect_version() -> None:
577
569
  """Test retrieve AICHA with incorrect version."""
578
570
  with pytest.raises(ValueError, match="The parameter `version`"):
579
571
  _retrieve_aicha(
580
- dataset=check_dataset(),
581
572
  version=100,
582
573
  )
583
574
 
@@ -639,7 +630,6 @@ def test_retrieve_shen_incorrect_year() -> None:
639
630
  """Test retrieve Shen with incorrect year."""
640
631
  with pytest.raises(ValueError, match="The parameter `year`"):
641
632
  _retrieve_shen(
642
- dataset=check_dataset(),
643
633
  year=1969,
644
634
  )
645
635
 
@@ -648,7 +638,6 @@ def test_retrieve_shen_incorrect_n_rois() -> None:
648
638
  """Test retrieve Shen with incorrect ROIs."""
649
639
  with pytest.raises(ValueError, match="The parameter `n_rois`"):
650
640
  _retrieve_shen(
651
- dataset=check_dataset(),
652
641
  year=2015,
653
642
  n_rois=10,
654
643
  )
@@ -691,7 +680,6 @@ def test_retrieve_shen_incorrect_param_combo(
691
680
  """
692
681
  with pytest.raises(ValueError, match="The parameter combination"):
693
682
  _retrieve_shen(
694
- dataset=check_dataset(),
695
683
  resolution=resolution,
696
684
  year=year,
697
685
  n_rois=n_rois,
@@ -819,7 +807,6 @@ def test_retrieve_yan_incorrect_networks() -> None:
819
807
  ValueError, match="Either one of `yeo_networks` or `kong_networks`"
820
808
  ):
821
809
  _retrieve_yan(
822
- dataset=check_dataset(),
823
810
  n_rois=31418,
824
811
  yeo_networks=100,
825
812
  kong_networks=100,
@@ -829,7 +816,6 @@ def test_retrieve_yan_incorrect_networks() -> None:
829
816
  ValueError, match="Either one of `yeo_networks` or `kong_networks`"
830
817
  ):
831
818
  _retrieve_yan(
832
- dataset=check_dataset(),
833
819
  n_rois=31418,
834
820
  yeo_networks=None,
835
821
  kong_networks=None,
@@ -840,7 +826,6 @@ def test_retrieve_yan_incorrect_n_rois() -> None:
840
826
  """Test retrieve Yan with incorrect ROIs."""
841
827
  with pytest.raises(ValueError, match="The parameter `n_rois`"):
842
828
  _retrieve_yan(
843
- dataset=check_dataset(),
844
829
  n_rois=31418,
845
830
  yeo_networks=7,
846
831
  )
@@ -850,7 +835,6 @@ def test_retrieve_yan_incorrect_yeo_networks() -> None:
850
835
  """Test retrieve Yan with incorrect Yeo networks."""
851
836
  with pytest.raises(ValueError, match="The parameter `yeo_networks`"):
852
837
  _retrieve_yan(
853
- dataset=check_dataset(),
854
838
  n_rois=100,
855
839
  yeo_networks=27,
856
840
  )
@@ -860,7 +844,6 @@ def test_retrieve_yan_incorrect_kong_networks() -> None:
860
844
  """Test retrieve Yan with incorrect Kong networks."""
861
845
  with pytest.raises(ValueError, match="The parameter `kong_networks`"):
862
846
  _retrieve_yan(
863
- dataset=check_dataset(),
864
847
  n_rois=100,
865
848
  kong_networks=27,
866
849
  )
@@ -922,7 +905,6 @@ def test_retrieve_brainnetome_incorrect_threshold() -> None:
922
905
  """Test retrieve Brainnetome with incorrect threshold."""
923
906
  with pytest.raises(ValueError, match="The parameter `threshold`"):
924
907
  _retrieve_brainnetome(
925
- dataset=check_dataset(),
926
908
  threshold=100,
927
909
  )
928
910