junifer 0.0.6.dev11__py3-none-any.whl → 0.0.6.dev19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
junifer/_version.py CHANGED
@@ -12,5 +12,5 @@ __version__: str
12
12
  __version_tuple__: VERSION_TUPLE
13
13
  version_tuple: VERSION_TUPLE
14
14
 
15
- __version__ = version = '0.0.6.dev11'
16
- __version_tuple__ = version_tuple = (0, 0, 6, 'dev11')
15
+ __version__ = version = '0.0.6.dev19'
16
+ __version_tuple__ = version_tuple = (0, 0, 6, 'dev19')
@@ -13,7 +13,7 @@ from nilearn.connectome import (
13
13
  prec_to_partial,
14
14
  sym_matrix_to_vec,
15
15
  )
16
- from scipy import linalg
16
+ from scipy import linalg, stats
17
17
  from sklearn.base import clone
18
18
  from sklearn.covariance import EmpiricalCovariance
19
19
 
@@ -314,15 +314,18 @@ class JuniferConnectivityMeasure(ConnectivityMeasure):
314
314
  * default ``cov_estimator`` is
315
315
  :class:`sklearn.covariance.EmpiricalCovariance`
316
316
  * default ``kind`` is ``"correlation"``
317
+ * supports Spearman's correlation via ``kind="spearman correlation"``
317
318
 
318
319
  Parameters
319
320
  ----------
320
321
  cov_estimator : estimator object, optional
321
322
  The covariance estimator
322
323
  (default ``EmpiricalCovariance(store_precision=False)``).
323
- kind : {"covariance", "correlation", "partial correlation", \
324
- "tangent", "precision"}, optional
325
- The matrix kind. For the use of ``"tangent"`` see [1]_
324
+ kind : {"covariance", "correlation", "spearman correlation", \
325
+ "partial correlation", "tangent", "precision"}, optional
326
+ The matrix kind. The default value uses Pearson's correlation.
327
+ If ``"spearman correlation"`` is used, the data will be ranked before
328
+ estimating the covariance. For the use of ``"tangent"`` see [1]_
326
329
  (default "correlation").
327
330
  vectorize : bool, optional
328
331
  If True, connectivity matrices are reshaped into 1D arrays and only
@@ -400,17 +403,22 @@ class JuniferConnectivityMeasure(ConnectivityMeasure):
400
403
  self.cov_estimator_ = clone(self.cov_estimator)
401
404
 
402
405
  # Compute all the matrices, stored in "connectivities"
403
- if self.kind == "correlation":
404
- covariances_std = [
405
- self.cov_estimator_.fit(
406
- signal.standardize_signal(
407
- x,
408
- detrend=False,
409
- standardize=self.standardize,
410
- )
411
- ).covariance_
412
- for x in X
413
- ]
406
+ if self.kind in ["correlation", "spearman correlation"]:
407
+ covariances_std = []
408
+ for x in X:
409
+ x = signal.standardize_signal(
410
+ x,
411
+ detrend=False,
412
+ standardize=self.standardize,
413
+ )
414
+
415
+ # rank data if spearman correlation
416
+ # before calculating covariance
417
+ if self.kind == "spearman correlation":
418
+ x = stats.rankdata(x, axis=0)
419
+
420
+ covariances_std.append(self.cov_estimator_.fit(x).covariance_)
421
+
414
422
  connectivities = [cov_to_corr(cov) for cov in covariances_std]
415
423
  else:
416
424
  covariances = [self.cov_estimator_.fit(x).covariance_ for x in X]
@@ -71,6 +71,7 @@ CONNECTIVITY_KINDS = (
71
71
  "tangent",
72
72
  "precision",
73
73
  "partial correlation",
74
+ "spearman correlation",
74
75
  )
75
76
 
76
77
  N_FEATURES = 49
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: junifer
3
- Version: 0.0.6.dev11
3
+ Version: 0.0.6.dev19
4
4
  Summary: JUelich NeuroImaging FEature extractoR
5
5
  Author-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
6
6
  Maintainer-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
@@ -1,5 +1,5 @@
1
1
  junifer/__init__.py,sha256=-T9XmiCCL0j3YLx-0Pph15sPfL5FlcBDscajjJ-V4sU,604
2
- junifer/_version.py,sha256=mU31Rbo9393TgDvfpsOHnq8SiUzPPQ4wTt9IrlhivXo,426
2
+ junifer/_version.py,sha256=wZWyCHAcc7iLZxm5FymgJmboZgMFn19f87418KPqxDg,426
3
3
  junifer/stats.py,sha256=BjQb2lfTGDP9l4UuQYmJFcJJNRfbJDGlNvC06SJaDDE,6237
4
4
  junifer/api/__init__.py,sha256=lwyIF0hPc7fICuSoddJfay0LPqlTRxHJ_xbtizgFYZA,312
5
5
  junifer/api/cli.py,sha256=53pews3mXkJ7DUDSkV51PbitYnuVAdQRkWG-gjO08Uw,16142
@@ -134,9 +134,9 @@ junifer/external/h5io/h5io/_version.py,sha256=mFY0GwwuN-a3M8w93_mskS6GZIvv9SNdjL
134
134
  junifer/external/h5io/h5io/chunked_array.py,sha256=K1HWf7R2Jc7gCzBqAoBjx0ZnMmUhTe3iAO6RF6PdUO4,3338
135
135
  junifer/external/h5io/h5io/chunked_list.py,sha256=1Y5BbuWzurJlEFQzJNuDdC3fNZ39ENEMba99X_4VeSM,1952
136
136
  junifer/external/nilearn/__init__.py,sha256=UdUKYArx3hvcziln89iaSGZcNGwHvsmbB4E5gS1zvOs,321
137
- junifer/external/nilearn/junifer_connectivity_measure.py,sha256=y6MSWz_7YjRNfahLiS8_ptmEBoSBqhj6J9E0p7cN1Jw,16847
137
+ junifer/external/nilearn/junifer_connectivity_measure.py,sha256=c8aLIlSs2eo6uHj-ZtYAto4szjbj21Zlj5JTQRrAnu8,17322
138
138
  junifer/external/nilearn/junifer_nifti_spheres_masker.py,sha256=DbSK2hKrgpHZ_vCRLbVv3YJpLZNkEAG0HFfQQpG6zdU,16546
139
- junifer/external/nilearn/tests/test_junifer_connectivity_measure.py,sha256=cwm-RMSHLS6GF-z2ioSNln3N9WoSrLf41mGvyYYMd7w,33918
139
+ junifer/external/nilearn/tests/test_junifer_connectivity_measure.py,sha256=yBsi9g_31UDo_oG7K6eKRp36CZ28G5cbNcKM3aTT53s,33946
140
140
  junifer/external/nilearn/tests/test_junifer_nifti_spheres_masker.py,sha256=zpvBYIvaNjUj9fIUg5K78LRzJqbyMYlUo2UQYS9_lo4,12275
141
141
  junifer/markers/__init__.py,sha256=u4BFgS_3GXAwFN2HfqdAhlBkyenLw4IYlMlwXwnjkVQ,1235
142
142
  junifer/markers/base.py,sha256=__Z0owDdjTwb7alQneOeoaUqaeCVbHwFRnaRZERi37M,8364
@@ -267,10 +267,10 @@ junifer/utils/logging.py,sha256=ardaiJkDfZMYvak5UIL5Etxg5Ii7inmVQSBdFLdgtb8,9781
267
267
  junifer/utils/tests/test_fs.py,sha256=WQS7cKlKEZ742CIuiOYYpueeAhY9PqlastfDVpVVtvE,923
268
268
  junifer/utils/tests/test_helpers.py,sha256=k5qqfxK8dFyuewTJyR1Qn6-nFaYNuVr0ysc18bfPjyU,929
269
269
  junifer/utils/tests/test_logging.py,sha256=duO4ou365hxwa_kwihFtKPLaL6LC5XHiyhOijrrngbA,8009
270
- junifer-0.0.6.dev11.dist-info/AUTHORS.rst,sha256=rmULKpchpSol4ExWFdm-qu4fkpSZPYqIESVJBZtGb6E,163
271
- junifer-0.0.6.dev11.dist-info/LICENSE.md,sha256=MqCnOBu8uXsEOzRZWh9EBVfVz-kE9NkXcLCrtGXo2yU,34354
272
- junifer-0.0.6.dev11.dist-info/METADATA,sha256=JERhQXlkyOo07_IQ5HaJksc0Eg9v9IWV45ZyodsOxmU,8279
273
- junifer-0.0.6.dev11.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
274
- junifer-0.0.6.dev11.dist-info/entry_points.txt,sha256=DxFvKq0pOqRunAK0FxwJcoDfV1-dZvsFDpD5HRqSDhw,48
275
- junifer-0.0.6.dev11.dist-info/top_level.txt,sha256=4bAq1R2QFQ4b3hohjys2JBvxrl0GKk5LNFzYvz9VGcA,8
276
- junifer-0.0.6.dev11.dist-info/RECORD,,
270
+ junifer-0.0.6.dev19.dist-info/AUTHORS.rst,sha256=rmULKpchpSol4ExWFdm-qu4fkpSZPYqIESVJBZtGb6E,163
271
+ junifer-0.0.6.dev19.dist-info/LICENSE.md,sha256=MqCnOBu8uXsEOzRZWh9EBVfVz-kE9NkXcLCrtGXo2yU,34354
272
+ junifer-0.0.6.dev19.dist-info/METADATA,sha256=Fqi240THeyTkrkoQLR87j1ybgjdR-_m5DMeWgy1JTHc,8279
273
+ junifer-0.0.6.dev19.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
274
+ junifer-0.0.6.dev19.dist-info/entry_points.txt,sha256=DxFvKq0pOqRunAK0FxwJcoDfV1-dZvsFDpD5HRqSDhw,48
275
+ junifer-0.0.6.dev19.dist-info/top_level.txt,sha256=4bAq1R2QFQ4b3hohjys2JBvxrl0GKk5LNFzYvz9VGcA,8
276
+ junifer-0.0.6.dev19.dist-info/RECORD,,