junifer 0.0.5.dev208__py3-none-any.whl → 0.0.5.dev219__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (22) hide show
  1. junifer/_version.py +2 -2
  2. junifer/external/nilearn/__init__.py +2 -1
  3. junifer/external/nilearn/junifer_connectivity_measure.py +483 -0
  4. junifer/external/nilearn/tests/test_junifer_connectivity_measure.py +1089 -0
  5. junifer/markers/functional_connectivity/crossparcellation_functional_connectivity.py +25 -13
  6. junifer/markers/functional_connectivity/edge_functional_connectivity_parcels.py +26 -22
  7. junifer/markers/functional_connectivity/edge_functional_connectivity_spheres.py +33 -27
  8. junifer/markers/functional_connectivity/functional_connectivity_base.py +42 -30
  9. junifer/markers/functional_connectivity/functional_connectivity_parcels.py +25 -19
  10. junifer/markers/functional_connectivity/functional_connectivity_spheres.py +31 -24
  11. junifer/markers/functional_connectivity/tests/test_crossparcellation_functional_connectivity.py +3 -3
  12. junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_parcels.py +21 -4
  13. junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_spheres.py +22 -9
  14. junifer/markers/functional_connectivity/tests/test_functional_connectivity_parcels.py +29 -8
  15. junifer/markers/functional_connectivity/tests/test_functional_connectivity_spheres.py +30 -61
  16. {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/METADATA +1 -1
  17. {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/RECORD +22 -20
  18. {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/AUTHORS.rst +0 -0
  19. {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/LICENSE.md +0 -0
  20. {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/WHEEL +0 -0
  21. {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/entry_points.txt +0 -0
  22. {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/top_level.txt +0 -0
@@ -5,6 +5,9 @@
5
5
  # License: AGPL
6
6
 
7
7
  from pathlib import Path
8
+ from typing import Dict
9
+
10
+ import pytest
8
11
 
9
12
  from junifer.datareader import DefaultDataReader
10
13
  from junifer.markers.functional_connectivity import EdgeCentricFCSpheres
@@ -12,19 +15,36 @@ from junifer.storage import SQLiteFeatureStorage
12
15
  from junifer.testing.datagrabbers import SPMAuditoryTestingDataGrabber
13
16
 
14
17
 
15
- def test_EdgeCentricFCSpheres(tmp_path: Path) -> None:
18
+ @pytest.mark.parametrize(
19
+ "conn_method_params",
20
+ [
21
+ {"empirical": False},
22
+ {"empirical": True},
23
+ ],
24
+ )
25
+ def test_EdgeCentricFCSpheres(
26
+ tmp_path: Path,
27
+ conn_method_params: Dict[str, bool],
28
+ ) -> None:
16
29
  """Test EdgeCentricFCSpheres.
17
30
 
18
31
  Parameters
19
32
  ----------
20
33
  tmp_path : pathlib.Path
21
34
  The path to the test directory.
35
+ conn_method_params : dict
36
+ The parametrized parameters to connectivity measure method.
22
37
 
23
38
  """
24
39
  with SPMAuditoryTestingDataGrabber() as dg:
40
+ # Get element data
25
41
  element_data = DefaultDataReader().fit_transform(dg["sub001"])
42
+ # Setup marker
26
43
  marker = EdgeCentricFCSpheres(
27
- coords="DMNBuckner", radius=5.0, cor_method="correlation"
44
+ coords="DMNBuckner",
45
+ radius=5.0,
46
+ conn_method="correlation",
47
+ conn_method_params=conn_method_params,
28
48
  )
29
49
  # Check correct output
30
50
  assert "matrix" == marker.get_output_type(
@@ -45,13 +65,6 @@ def test_EdgeCentricFCSpheres(tmp_path: Path) -> None:
45
65
  assert len(set(edge_fc_bold["row_names"])) == n_edges
46
66
  assert len(set(edge_fc_bold["col_names"])) == n_edges
47
67
 
48
- # Check empirical correlation method parameters
49
- marker = EdgeCentricFCSpheres(
50
- coords="DMNBuckner",
51
- radius=5.0,
52
- cor_method="correlation",
53
- cor_method_params={"empirical": True},
54
- )
55
68
  # Store
56
69
  storage = SQLiteFeatureStorage(
57
70
  uri=tmp_path / "test_edge_fc_spheres.sqlite", upsert="ignore"
@@ -6,10 +6,13 @@
6
6
  # License: AGPL
7
7
 
8
8
  from pathlib import Path
9
+ from typing import TYPE_CHECKING, Dict, Type
9
10
 
11
+ import pytest
10
12
  from nilearn.connectome import ConnectivityMeasure
11
13
  from nilearn.maskers import NiftiLabelsMasker
12
14
  from numpy.testing import assert_array_almost_equal
15
+ from sklearn.covariance import EmpiricalCovariance, LedoitWolf
13
16
 
14
17
  from junifer.data import get_parcellation
15
18
  from junifer.datareader import DefaultDataReader
@@ -20,19 +23,42 @@ from junifer.storage import SQLiteFeatureStorage
20
23
  from junifer.testing.datagrabbers import PartlyCloudyTestingDataGrabber
21
24
 
22
25
 
23
- def test_FunctionalConnectivityParcels(tmp_path: Path) -> None:
26
+ if TYPE_CHECKING:
27
+ from sklearn.base import BaseEstimator
28
+
29
+
30
+ @pytest.mark.parametrize(
31
+ "conn_method_params, cov_estimator",
32
+ [
33
+ ({"empirical": False}, LedoitWolf(store_precision=False)),
34
+ ({"empirical": True}, EmpiricalCovariance(store_precision=False)),
35
+ ],
36
+ )
37
+ def test_FunctionalConnectivityParcels(
38
+ tmp_path: Path,
39
+ conn_method_params: Dict[str, bool],
40
+ cov_estimator: Type["BaseEstimator"],
41
+ ) -> None:
24
42
  """Test FunctionalConnectivityParcels.
25
43
 
26
44
  Parameters
27
45
  ----------
28
46
  tmp_path : pathlib.Path
29
47
  The path to the test directory.
48
+ conn_method_params : dict
49
+ The parametrized parameters to connectivity measure method.
50
+ cov_estimator : estimator object
51
+ The parametrized covariance estimator.
30
52
 
31
53
  """
32
54
  with PartlyCloudyTestingDataGrabber() as dg:
55
+ # Get element data
33
56
  element_data = DefaultDataReader().fit_transform(dg["sub-01"])
57
+ # Setup marker
34
58
  marker = FunctionalConnectivityParcels(
35
- parcellation="TianxS1x3TxMNInonlinear2009cAsym"
59
+ parcellation="TianxS1x3TxMNInonlinear2009cAsym",
60
+ conn_method="correlation",
61
+ conn_method_params=conn_method_params,
36
62
  )
37
63
  # Check correct output
38
64
  assert "matrix" == marker.get_output_type(
@@ -65,7 +91,7 @@ def test_FunctionalConnectivityParcels(tmp_path: Path) -> None:
65
91
  )
66
92
  # Compute the connectivity measure
67
93
  connectivity_measure = ConnectivityMeasure(
68
- kind="covariance"
94
+ cov_estimator=cov_estimator, kind="correlation" # type: ignore
69
95
  ).fit_transform([extracted_timeseries])[0]
70
96
 
71
97
  # Check that FC are almost equal
@@ -73,11 +99,6 @@ def test_FunctionalConnectivityParcels(tmp_path: Path) -> None:
73
99
  connectivity_measure, fc_bold["data"], decimal=3
74
100
  )
75
101
 
76
- # Check empirical correlation method parameters
77
- marker = FunctionalConnectivityParcels(
78
- parcellation="TianxS1x3TxMNInonlinear2009cAsym",
79
- cor_method_params={"empirical": True},
80
- )
81
102
  # Store
82
103
  storage = SQLiteFeatureStorage(
83
104
  uri=tmp_path / "test_fc_parcels.sqlite", upsert="ignore"
@@ -7,12 +7,13 @@
7
7
  # License: AGPL
8
8
 
9
9
  from pathlib import Path
10
+ from typing import TYPE_CHECKING, Dict, Type
10
11
 
11
12
  import pytest
12
13
  from nilearn.connectome import ConnectivityMeasure
13
14
  from nilearn.maskers import NiftiSpheresMasker
14
15
  from numpy.testing import assert_array_almost_equal
15
- from sklearn.covariance import EmpiricalCovariance
16
+ from sklearn.covariance import EmpiricalCovariance, LedoitWolf
16
17
 
17
18
  from junifer.data import get_coordinates
18
19
  from junifer.datareader import DefaultDataReader
@@ -23,19 +24,43 @@ from junifer.storage import SQLiteFeatureStorage
23
24
  from junifer.testing.datagrabbers import SPMAuditoryTestingDataGrabber
24
25
 
25
26
 
26
- def test_FunctionalConnectivitySpheres(tmp_path: Path) -> None:
27
+ if TYPE_CHECKING:
28
+ from sklearn.base import BaseEstimator
29
+
30
+
31
+ @pytest.mark.parametrize(
32
+ "conn_method_params, cov_estimator",
33
+ [
34
+ ({"empirical": False}, LedoitWolf(store_precision=False)),
35
+ ({"empirical": True}, EmpiricalCovariance(store_precision=False)),
36
+ ],
37
+ )
38
+ def test_FunctionalConnectivitySpheres(
39
+ tmp_path: Path,
40
+ conn_method_params: Dict[str, bool],
41
+ cov_estimator: Type["BaseEstimator"],
42
+ ) -> None:
27
43
  """Test FunctionalConnectivitySpheres.
28
44
 
29
45
  Parameters
30
46
  ----------
31
47
  tmp_path : pathlib.Path
32
48
  The path to the test directory.
49
+ conn_method_params : dict
50
+ The parametrized parameters to connectivity measure method.
51
+ cov_estimator : estimator object
52
+ The parametrized covariance estimator.
33
53
 
34
54
  """
35
55
  with SPMAuditoryTestingDataGrabber() as dg:
56
+ # Get element data
36
57
  element_data = DefaultDataReader().fit_transform(dg["sub001"])
58
+ # Setup marker
37
59
  marker = FunctionalConnectivitySpheres(
38
- coords="DMNBuckner", radius=5.0, cor_method="correlation"
60
+ coords="DMNBuckner",
61
+ radius=5.0,
62
+ conn_method="correlation",
63
+ conn_method_params=conn_method_params,
39
64
  )
40
65
  # Check correct output
41
66
  assert "matrix" == marker.get_output_type(
@@ -67,7 +92,7 @@ def test_FunctionalConnectivitySpheres(tmp_path: Path) -> None:
67
92
  )
68
93
  # Compute the connectivity measure
69
94
  connectivity_measure = ConnectivityMeasure(
70
- kind="correlation"
95
+ cov_estimator=cov_estimator, kind="correlation" # type: ignore
71
96
  ).fit_transform([extracted_timeseries])[0]
72
97
 
73
98
  # Check that FC are almost equal
@@ -88,65 +113,9 @@ def test_FunctionalConnectivitySpheres(tmp_path: Path) -> None:
88
113
  )
89
114
 
90
115
 
91
- def test_FunctionalConnectivitySpheres_empirical(tmp_path: Path) -> None:
92
- """Test FunctionalConnectivitySpheres with empirical covariance.
93
-
94
- Parameters
95
- ----------
96
- tmp_path : pathlib.Path
97
- The path to the test directory.
98
-
99
- """
100
- with SPMAuditoryTestingDataGrabber() as dg:
101
- element_data = DefaultDataReader().fit_transform(dg["sub001"])
102
- marker = FunctionalConnectivitySpheres(
103
- coords="DMNBuckner",
104
- radius=5.0,
105
- cor_method="correlation",
106
- cor_method_params={"empirical": True},
107
- )
108
- # Check correct output
109
- assert "matrix" == marker.get_output_type(
110
- input_type="BOLD", output_feature="functional_connectivity"
111
- )
112
-
113
- # Fit-transform the data
114
- fc = marker.fit_transform(element_data)
115
- fc_bold = fc["BOLD"]["functional_connectivity"]
116
-
117
- assert "data" in fc_bold
118
- assert "row_names" in fc_bold
119
- assert "col_names" in fc_bold
120
- assert fc_bold["data"].shape == (6, 6)
121
- assert len(set(fc_bold["row_names"])) == 6
122
- assert len(set(fc_bold["col_names"])) == 6
123
-
124
- # Compare with nilearn
125
- # Load testing coordinates for the target data
126
- testing_coords, _ = get_coordinates(
127
- coords="DMNBuckner", target_data=element_data["BOLD"]
128
- )
129
- # Extract timeseries
130
- nifti_spheres_masker = NiftiSpheresMasker(
131
- seeds=testing_coords, radius=5.0
132
- )
133
- extracted_timeseries = nifti_spheres_masker.fit_transform(
134
- element_data["BOLD"]["data"]
135
- )
136
- # Compute the connectivity measure
137
- connectivity_measure = ConnectivityMeasure(
138
- cov_estimator=EmpiricalCovariance(), kind="correlation" # type: ignore
139
- ).fit_transform([extracted_timeseries])[0]
140
-
141
- # Check that FC are almost equal
142
- assert_array_almost_equal(
143
- connectivity_measure, fc_bold["data"], decimal=3
144
- )
145
-
146
-
147
116
  def test_FunctionalConnectivitySpheres_error() -> None:
148
117
  """Test FunctionalConnectivitySpheres errors."""
149
118
  with pytest.raises(ValueError, match="radius should be > 0"):
150
119
  FunctionalConnectivitySpheres(
151
- coords="DMNBuckner", radius=-0.1, cor_method="correlation"
120
+ coords="DMNBuckner", radius=-0.1, conn_method="correlation"
152
121
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: junifer
3
- Version: 0.0.5.dev208
3
+ Version: 0.0.5.dev219
4
4
  Summary: JUelich NeuroImaging FEature extractoR
5
5
  Author-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
6
6
  Maintainer-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
@@ -1,5 +1,5 @@
1
1
  junifer/__init__.py,sha256=-T9XmiCCL0j3YLx-0Pph15sPfL5FlcBDscajjJ-V4sU,604
2
- junifer/_version.py,sha256=kedBS_xvcCpCkX8kxPSz2iA8XWihtXq5SiXQfLsn4PU,428
2
+ junifer/_version.py,sha256=hiqR-OJM-QzJpyrvyRQTuWbgsunJYguuZMuX2R3hfCc,428
3
3
  junifer/stats.py,sha256=BjQb2lfTGDP9l4UuQYmJFcJJNRfbJDGlNvC06SJaDDE,6237
4
4
  junifer/api/__init__.py,sha256=lwyIF0hPc7fICuSoddJfay0LPqlTRxHJ_xbtizgFYZA,312
5
5
  junifer/api/cli.py,sha256=53pews3mXkJ7DUDSkV51PbitYnuVAdQRkWG-gjO08Uw,16142
@@ -133,8 +133,10 @@ junifer/external/h5io/h5io/_h5io.py,sha256=8dWZDYegoPcBkH_fHPdl0eXNWTaRdk9hfIQo8
133
133
  junifer/external/h5io/h5io/_version.py,sha256=mFY0GwwuN-a3M8w93_mskS6GZIvv9SNdjLfJaWNsm-I,22
134
134
  junifer/external/h5io/h5io/chunked_array.py,sha256=K1HWf7R2Jc7gCzBqAoBjx0ZnMmUhTe3iAO6RF6PdUO4,3338
135
135
  junifer/external/h5io/h5io/chunked_list.py,sha256=1Y5BbuWzurJlEFQzJNuDdC3fNZ39ENEMba99X_4VeSM,1952
136
- junifer/external/nilearn/__init__.py,sha256=Cx9SM-AHU2OmyC5n6YmRv2JMEYp3qoVnxl5bk4XYWjc,222
136
+ junifer/external/nilearn/__init__.py,sha256=UdUKYArx3hvcziln89iaSGZcNGwHvsmbB4E5gS1zvOs,321
137
+ junifer/external/nilearn/junifer_connectivity_measure.py,sha256=y6MSWz_7YjRNfahLiS8_ptmEBoSBqhj6J9E0p7cN1Jw,16847
137
138
  junifer/external/nilearn/junifer_nifti_spheres_masker.py,sha256=DbSK2hKrgpHZ_vCRLbVv3YJpLZNkEAG0HFfQQpG6zdU,16546
139
+ junifer/external/nilearn/tests/test_junifer_connectivity_measure.py,sha256=cwm-RMSHLS6GF-z2ioSNln3N9WoSrLf41mGvyYYMd7w,33918
138
140
  junifer/external/nilearn/tests/test_junifer_nifti_spheres_masker.py,sha256=zpvBYIvaNjUj9fIUg5K78LRzJqbyMYlUo2UQYS9_lo4,12275
139
141
  junifer/markers/__init__.py,sha256=u4BFgS_3GXAwFN2HfqdAhlBkyenLw4IYlMlwXwnjkVQ,1235
140
142
  junifer/markers/base.py,sha256=__Z0owDdjTwb7alQneOeoaUqaeCVbHwFRnaRZERi37M,8364
@@ -170,18 +172,18 @@ junifer/markers/falff/falff_spheres.py,sha256=h-A2B8D2KvnvLzBcBeB6Kt3EcXhcfvvIMv
170
172
  junifer/markers/falff/tests/test_falff_parcels.py,sha256=Z3n1i8dkYbdXgouUjfIif9yLv5MubBEdrtAA-a6kRcc,4349
171
173
  junifer/markers/falff/tests/test_falff_spheres.py,sha256=-VLEvFaF8CMCN_7FLYCSfP7MMjy-gm1Zgu13je5Pku8,4373
172
174
  junifer/markers/functional_connectivity/__init__.py,sha256=j7HshYNBjSbjXXM8h_PBKORk--Gb3qw-MSEm0i3XgTI,672
173
- junifer/markers/functional_connectivity/crossparcellation_functional_connectivity.py,sha256=cwq2LzS1z2aHfPOHjFbNQM5KAqmdrBZrfpYNt3PMWhI,5266
174
- junifer/markers/functional_connectivity/edge_functional_connectivity_parcels.py,sha256=GyNMVhwIEAR5qebRaKcV7aiRvgBexZvKhNqmCYX76Oc,4548
175
- junifer/markers/functional_connectivity/edge_functional_connectivity_spheres.py,sha256=FU1GM2Lu6SNK3dmsiWLLvawuYWU1xxYMS7uIbVvXwd4,5157
176
- junifer/markers/functional_connectivity/functional_connectivity_base.py,sha256=XCfq4AabQt0vUpF4rxHtmm_bpKhZ3p-rBibm8RvUTes,5151
177
- junifer/markers/functional_connectivity/functional_connectivity_parcels.py,sha256=O_v5XsdXTadSKy_T6MIrpEeTtvHU6qprZ2qV6E4ypNg,3973
178
- junifer/markers/functional_connectivity/functional_connectivity_spheres.py,sha256=haiTBkye0gCg2Mvcc_lYxGk9ZC4xeDrappQuiHODEpk,4673
179
- junifer/markers/functional_connectivity/tests/test_crossparcellation_functional_connectivity.py,sha256=_cBlWwlgubG-HRcdc7leudNKOk9rDMWaf-KecxiZ6Ec,3252
180
- junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_parcels.py,sha256=Ck0Hu3G9xvELshPrlE-ClaY2taK7rWMF74bpzDXNdpM,2130
181
- junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_spheres.py,sha256=iU_KCv4y7k02xFnHKfqmq1omTzc83aUHqgw89IdS5ms,2335
175
+ junifer/markers/functional_connectivity/crossparcellation_functional_connectivity.py,sha256=V2-WbUOGoCtW32A0VOWO-2G-iBiG5mV88Z2EvTjS3HY,5696
176
+ junifer/markers/functional_connectivity/edge_functional_connectivity_parcels.py,sha256=nAvTT4ZLqW-uDAQ_r5hT__TbxFTqTkjm4BJ-1YD7a7s,4745
177
+ junifer/markers/functional_connectivity/edge_functional_connectivity_spheres.py,sha256=atV7iNjnFbIKbzBkzFYtgF0cbetESvv3a5R-SLzrt6Y,5412
178
+ junifer/markers/functional_connectivity/functional_connectivity_base.py,sha256=dUv-pfgAhkHuz_zSKClEYeOkcIdhjdJ1fiNvvWhATDg,5639
179
+ junifer/markers/functional_connectivity/functional_connectivity_parcels.py,sha256=pefRn1EhYegN1KCs1VvMOe4vj4KO-5kSzXJxoUzHSvw,4213
180
+ junifer/markers/functional_connectivity/functional_connectivity_spheres.py,sha256=-N-OO3vl1Djl1nSTJAey_Re3BH2tpyr4UpXfR38ogWw,4946
181
+ junifer/markers/functional_connectivity/tests/test_crossparcellation_functional_connectivity.py,sha256=CP8ZZoTciMoI9c-VVsLF9mJivyzPB6C4mZE0tlL52pI,3231
182
+ junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_parcels.py,sha256=y0O-eBjOzUp77g6o_II7D5KB2rKtDz_a_hez-MPDU3M,2482
183
+ junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_spheres.py,sha256=NYWe8kdSVVXlluLm074koDE6xw_t0bhPn47kRYMg1vA,2522
182
184
  junifer/markers/functional_connectivity/tests/test_functional_connectivity_base.py,sha256=RmPTrG0uLKb5RgdHXUnH6lon60FxN1JCtr-dsTBaX28,522
183
- junifer/markers/functional_connectivity/tests/test_functional_connectivity_parcels.py,sha256=ORnuc_PKYNCiVN-m1ubtxJ6Xg484i2BDU9_PPX-BJW0,3234
184
- junifer/markers/functional_connectivity/tests/test_functional_connectivity_spheres.py,sha256=PYdebNfwU4ArkpjmxehlLbMF5I_meRMla3yR0CN_4mE,5330
185
+ junifer/markers/functional_connectivity/tests/test_functional_connectivity_parcels.py,sha256=GiRtQ-cbbmM4_oekGjIDtFaNkmYON_eSf3F4jzS0XCo,3876
186
+ junifer/markers/functional_connectivity/tests/test_functional_connectivity_spheres.py,sha256=Bu2vicoxET-eHYqmfiPtYmFOhBCjBsXO7vv9UzLdYJQ,4143
185
187
  junifer/markers/reho/__init__.py,sha256=_6WkTQcg0ksZguSQGi1XuoMKuGwYs5tvDLVZ1h6xB5E,232
186
188
  junifer/markers/reho/_afni_reho.py,sha256=iaZFPJbyB9-QQAZ5-kKxwN0APB5MH85pOAChq-JFLNI,6469
187
189
  junifer/markers/reho/_junifer_reho.py,sha256=7-jD28YQQWb3dfT6SxyYfGugFSq8wi7_2hUA-ryiGAo,9307
@@ -264,10 +266,10 @@ junifer/utils/logging.py,sha256=T9gzk7l1O-dmRiZJHggVDkQGzup_P2_FV3xsaoq0BmI,9369
264
266
  junifer/utils/tests/test_fs.py,sha256=WQS7cKlKEZ742CIuiOYYpueeAhY9PqlastfDVpVVtvE,923
265
267
  junifer/utils/tests/test_helpers.py,sha256=k5qqfxK8dFyuewTJyR1Qn6-nFaYNuVr0ysc18bfPjyU,929
266
268
  junifer/utils/tests/test_logging.py,sha256=l8oo-AiBV7H6_IzlsNcj__cLeZBUvgIGoaMszD9VaJg,7754
267
- junifer-0.0.5.dev208.dist-info/AUTHORS.rst,sha256=rmULKpchpSol4ExWFdm-qu4fkpSZPYqIESVJBZtGb6E,163
268
- junifer-0.0.5.dev208.dist-info/LICENSE.md,sha256=MqCnOBu8uXsEOzRZWh9EBVfVz-kE9NkXcLCrtGXo2yU,34354
269
- junifer-0.0.5.dev208.dist-info/METADATA,sha256=ey1tbudrcwsCfs7GNLwwk_mkcZ62rFXKhNkIpu-XiOY,8280
270
- junifer-0.0.5.dev208.dist-info/WHEEL,sha256=-oYQCr74JF3a37z2nRlQays_SX2MqOANoqVjBBAP2yE,91
271
- junifer-0.0.5.dev208.dist-info/entry_points.txt,sha256=DxFvKq0pOqRunAK0FxwJcoDfV1-dZvsFDpD5HRqSDhw,48
272
- junifer-0.0.5.dev208.dist-info/top_level.txt,sha256=4bAq1R2QFQ4b3hohjys2JBvxrl0GKk5LNFzYvz9VGcA,8
273
- junifer-0.0.5.dev208.dist-info/RECORD,,
269
+ junifer-0.0.5.dev219.dist-info/AUTHORS.rst,sha256=rmULKpchpSol4ExWFdm-qu4fkpSZPYqIESVJBZtGb6E,163
270
+ junifer-0.0.5.dev219.dist-info/LICENSE.md,sha256=MqCnOBu8uXsEOzRZWh9EBVfVz-kE9NkXcLCrtGXo2yU,34354
271
+ junifer-0.0.5.dev219.dist-info/METADATA,sha256=uQSJvuIHH7tXjaAc5fDkW0tZXQ9uGg_cWx_naZkuDf0,8280
272
+ junifer-0.0.5.dev219.dist-info/WHEEL,sha256=-oYQCr74JF3a37z2nRlQays_SX2MqOANoqVjBBAP2yE,91
273
+ junifer-0.0.5.dev219.dist-info/entry_points.txt,sha256=DxFvKq0pOqRunAK0FxwJcoDfV1-dZvsFDpD5HRqSDhw,48
274
+ junifer-0.0.5.dev219.dist-info/top_level.txt,sha256=4bAq1R2QFQ4b3hohjys2JBvxrl0GKk5LNFzYvz9VGcA,8
275
+ junifer-0.0.5.dev219.dist-info/RECORD,,