junifer 0.0.5.dev208__py3-none-any.whl → 0.0.5.dev219__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- junifer/_version.py +2 -2
- junifer/external/nilearn/__init__.py +2 -1
- junifer/external/nilearn/junifer_connectivity_measure.py +483 -0
- junifer/external/nilearn/tests/test_junifer_connectivity_measure.py +1089 -0
- junifer/markers/functional_connectivity/crossparcellation_functional_connectivity.py +25 -13
- junifer/markers/functional_connectivity/edge_functional_connectivity_parcels.py +26 -22
- junifer/markers/functional_connectivity/edge_functional_connectivity_spheres.py +33 -27
- junifer/markers/functional_connectivity/functional_connectivity_base.py +42 -30
- junifer/markers/functional_connectivity/functional_connectivity_parcels.py +25 -19
- junifer/markers/functional_connectivity/functional_connectivity_spheres.py +31 -24
- junifer/markers/functional_connectivity/tests/test_crossparcellation_functional_connectivity.py +3 -3
- junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_parcels.py +21 -4
- junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_spheres.py +22 -9
- junifer/markers/functional_connectivity/tests/test_functional_connectivity_parcels.py +29 -8
- junifer/markers/functional_connectivity/tests/test_functional_connectivity_spheres.py +30 -61
- {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/METADATA +1 -1
- {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/RECORD +22 -20
- {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/AUTHORS.rst +0 -0
- {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/LICENSE.md +0 -0
- {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/WHEEL +0 -0
- {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/entry_points.txt +0 -0
- {junifer-0.0.5.dev208.dist-info → junifer-0.0.5.dev219.dist-info}/top_level.txt +0 -0
@@ -5,6 +5,9 @@
|
|
5
5
|
# License: AGPL
|
6
6
|
|
7
7
|
from pathlib import Path
|
8
|
+
from typing import Dict
|
9
|
+
|
10
|
+
import pytest
|
8
11
|
|
9
12
|
from junifer.datareader import DefaultDataReader
|
10
13
|
from junifer.markers.functional_connectivity import EdgeCentricFCSpheres
|
@@ -12,19 +15,36 @@ from junifer.storage import SQLiteFeatureStorage
|
|
12
15
|
from junifer.testing.datagrabbers import SPMAuditoryTestingDataGrabber
|
13
16
|
|
14
17
|
|
15
|
-
|
18
|
+
@pytest.mark.parametrize(
|
19
|
+
"conn_method_params",
|
20
|
+
[
|
21
|
+
{"empirical": False},
|
22
|
+
{"empirical": True},
|
23
|
+
],
|
24
|
+
)
|
25
|
+
def test_EdgeCentricFCSpheres(
|
26
|
+
tmp_path: Path,
|
27
|
+
conn_method_params: Dict[str, bool],
|
28
|
+
) -> None:
|
16
29
|
"""Test EdgeCentricFCSpheres.
|
17
30
|
|
18
31
|
Parameters
|
19
32
|
----------
|
20
33
|
tmp_path : pathlib.Path
|
21
34
|
The path to the test directory.
|
35
|
+
conn_method_params : dict
|
36
|
+
The parametrized parameters to connectivity measure method.
|
22
37
|
|
23
38
|
"""
|
24
39
|
with SPMAuditoryTestingDataGrabber() as dg:
|
40
|
+
# Get element data
|
25
41
|
element_data = DefaultDataReader().fit_transform(dg["sub001"])
|
42
|
+
# Setup marker
|
26
43
|
marker = EdgeCentricFCSpheres(
|
27
|
-
coords="DMNBuckner",
|
44
|
+
coords="DMNBuckner",
|
45
|
+
radius=5.0,
|
46
|
+
conn_method="correlation",
|
47
|
+
conn_method_params=conn_method_params,
|
28
48
|
)
|
29
49
|
# Check correct output
|
30
50
|
assert "matrix" == marker.get_output_type(
|
@@ -45,13 +65,6 @@ def test_EdgeCentricFCSpheres(tmp_path: Path) -> None:
|
|
45
65
|
assert len(set(edge_fc_bold["row_names"])) == n_edges
|
46
66
|
assert len(set(edge_fc_bold["col_names"])) == n_edges
|
47
67
|
|
48
|
-
# Check empirical correlation method parameters
|
49
|
-
marker = EdgeCentricFCSpheres(
|
50
|
-
coords="DMNBuckner",
|
51
|
-
radius=5.0,
|
52
|
-
cor_method="correlation",
|
53
|
-
cor_method_params={"empirical": True},
|
54
|
-
)
|
55
68
|
# Store
|
56
69
|
storage = SQLiteFeatureStorage(
|
57
70
|
uri=tmp_path / "test_edge_fc_spheres.sqlite", upsert="ignore"
|
@@ -6,10 +6,13 @@
|
|
6
6
|
# License: AGPL
|
7
7
|
|
8
8
|
from pathlib import Path
|
9
|
+
from typing import TYPE_CHECKING, Dict, Type
|
9
10
|
|
11
|
+
import pytest
|
10
12
|
from nilearn.connectome import ConnectivityMeasure
|
11
13
|
from nilearn.maskers import NiftiLabelsMasker
|
12
14
|
from numpy.testing import assert_array_almost_equal
|
15
|
+
from sklearn.covariance import EmpiricalCovariance, LedoitWolf
|
13
16
|
|
14
17
|
from junifer.data import get_parcellation
|
15
18
|
from junifer.datareader import DefaultDataReader
|
@@ -20,19 +23,42 @@ from junifer.storage import SQLiteFeatureStorage
|
|
20
23
|
from junifer.testing.datagrabbers import PartlyCloudyTestingDataGrabber
|
21
24
|
|
22
25
|
|
23
|
-
|
26
|
+
if TYPE_CHECKING:
|
27
|
+
from sklearn.base import BaseEstimator
|
28
|
+
|
29
|
+
|
30
|
+
@pytest.mark.parametrize(
|
31
|
+
"conn_method_params, cov_estimator",
|
32
|
+
[
|
33
|
+
({"empirical": False}, LedoitWolf(store_precision=False)),
|
34
|
+
({"empirical": True}, EmpiricalCovariance(store_precision=False)),
|
35
|
+
],
|
36
|
+
)
|
37
|
+
def test_FunctionalConnectivityParcels(
|
38
|
+
tmp_path: Path,
|
39
|
+
conn_method_params: Dict[str, bool],
|
40
|
+
cov_estimator: Type["BaseEstimator"],
|
41
|
+
) -> None:
|
24
42
|
"""Test FunctionalConnectivityParcels.
|
25
43
|
|
26
44
|
Parameters
|
27
45
|
----------
|
28
46
|
tmp_path : pathlib.Path
|
29
47
|
The path to the test directory.
|
48
|
+
conn_method_params : dict
|
49
|
+
The parametrized parameters to connectivity measure method.
|
50
|
+
cov_estimator : estimator object
|
51
|
+
The parametrized covariance estimator.
|
30
52
|
|
31
53
|
"""
|
32
54
|
with PartlyCloudyTestingDataGrabber() as dg:
|
55
|
+
# Get element data
|
33
56
|
element_data = DefaultDataReader().fit_transform(dg["sub-01"])
|
57
|
+
# Setup marker
|
34
58
|
marker = FunctionalConnectivityParcels(
|
35
|
-
parcellation="TianxS1x3TxMNInonlinear2009cAsym"
|
59
|
+
parcellation="TianxS1x3TxMNInonlinear2009cAsym",
|
60
|
+
conn_method="correlation",
|
61
|
+
conn_method_params=conn_method_params,
|
36
62
|
)
|
37
63
|
# Check correct output
|
38
64
|
assert "matrix" == marker.get_output_type(
|
@@ -65,7 +91,7 @@ def test_FunctionalConnectivityParcels(tmp_path: Path) -> None:
|
|
65
91
|
)
|
66
92
|
# Compute the connectivity measure
|
67
93
|
connectivity_measure = ConnectivityMeasure(
|
68
|
-
kind="
|
94
|
+
cov_estimator=cov_estimator, kind="correlation" # type: ignore
|
69
95
|
).fit_transform([extracted_timeseries])[0]
|
70
96
|
|
71
97
|
# Check that FC are almost equal
|
@@ -73,11 +99,6 @@ def test_FunctionalConnectivityParcels(tmp_path: Path) -> None:
|
|
73
99
|
connectivity_measure, fc_bold["data"], decimal=3
|
74
100
|
)
|
75
101
|
|
76
|
-
# Check empirical correlation method parameters
|
77
|
-
marker = FunctionalConnectivityParcels(
|
78
|
-
parcellation="TianxS1x3TxMNInonlinear2009cAsym",
|
79
|
-
cor_method_params={"empirical": True},
|
80
|
-
)
|
81
102
|
# Store
|
82
103
|
storage = SQLiteFeatureStorage(
|
83
104
|
uri=tmp_path / "test_fc_parcels.sqlite", upsert="ignore"
|
@@ -7,12 +7,13 @@
|
|
7
7
|
# License: AGPL
|
8
8
|
|
9
9
|
from pathlib import Path
|
10
|
+
from typing import TYPE_CHECKING, Dict, Type
|
10
11
|
|
11
12
|
import pytest
|
12
13
|
from nilearn.connectome import ConnectivityMeasure
|
13
14
|
from nilearn.maskers import NiftiSpheresMasker
|
14
15
|
from numpy.testing import assert_array_almost_equal
|
15
|
-
from sklearn.covariance import EmpiricalCovariance
|
16
|
+
from sklearn.covariance import EmpiricalCovariance, LedoitWolf
|
16
17
|
|
17
18
|
from junifer.data import get_coordinates
|
18
19
|
from junifer.datareader import DefaultDataReader
|
@@ -23,19 +24,43 @@ from junifer.storage import SQLiteFeatureStorage
|
|
23
24
|
from junifer.testing.datagrabbers import SPMAuditoryTestingDataGrabber
|
24
25
|
|
25
26
|
|
26
|
-
|
27
|
+
if TYPE_CHECKING:
|
28
|
+
from sklearn.base import BaseEstimator
|
29
|
+
|
30
|
+
|
31
|
+
@pytest.mark.parametrize(
|
32
|
+
"conn_method_params, cov_estimator",
|
33
|
+
[
|
34
|
+
({"empirical": False}, LedoitWolf(store_precision=False)),
|
35
|
+
({"empirical": True}, EmpiricalCovariance(store_precision=False)),
|
36
|
+
],
|
37
|
+
)
|
38
|
+
def test_FunctionalConnectivitySpheres(
|
39
|
+
tmp_path: Path,
|
40
|
+
conn_method_params: Dict[str, bool],
|
41
|
+
cov_estimator: Type["BaseEstimator"],
|
42
|
+
) -> None:
|
27
43
|
"""Test FunctionalConnectivitySpheres.
|
28
44
|
|
29
45
|
Parameters
|
30
46
|
----------
|
31
47
|
tmp_path : pathlib.Path
|
32
48
|
The path to the test directory.
|
49
|
+
conn_method_params : dict
|
50
|
+
The parametrized parameters to connectivity measure method.
|
51
|
+
cov_estimator : estimator object
|
52
|
+
The parametrized covariance estimator.
|
33
53
|
|
34
54
|
"""
|
35
55
|
with SPMAuditoryTestingDataGrabber() as dg:
|
56
|
+
# Get element data
|
36
57
|
element_data = DefaultDataReader().fit_transform(dg["sub001"])
|
58
|
+
# Setup marker
|
37
59
|
marker = FunctionalConnectivitySpheres(
|
38
|
-
coords="DMNBuckner",
|
60
|
+
coords="DMNBuckner",
|
61
|
+
radius=5.0,
|
62
|
+
conn_method="correlation",
|
63
|
+
conn_method_params=conn_method_params,
|
39
64
|
)
|
40
65
|
# Check correct output
|
41
66
|
assert "matrix" == marker.get_output_type(
|
@@ -67,7 +92,7 @@ def test_FunctionalConnectivitySpheres(tmp_path: Path) -> None:
|
|
67
92
|
)
|
68
93
|
# Compute the connectivity measure
|
69
94
|
connectivity_measure = ConnectivityMeasure(
|
70
|
-
kind="correlation"
|
95
|
+
cov_estimator=cov_estimator, kind="correlation" # type: ignore
|
71
96
|
).fit_transform([extracted_timeseries])[0]
|
72
97
|
|
73
98
|
# Check that FC are almost equal
|
@@ -88,65 +113,9 @@ def test_FunctionalConnectivitySpheres(tmp_path: Path) -> None:
|
|
88
113
|
)
|
89
114
|
|
90
115
|
|
91
|
-
def test_FunctionalConnectivitySpheres_empirical(tmp_path: Path) -> None:
|
92
|
-
"""Test FunctionalConnectivitySpheres with empirical covariance.
|
93
|
-
|
94
|
-
Parameters
|
95
|
-
----------
|
96
|
-
tmp_path : pathlib.Path
|
97
|
-
The path to the test directory.
|
98
|
-
|
99
|
-
"""
|
100
|
-
with SPMAuditoryTestingDataGrabber() as dg:
|
101
|
-
element_data = DefaultDataReader().fit_transform(dg["sub001"])
|
102
|
-
marker = FunctionalConnectivitySpheres(
|
103
|
-
coords="DMNBuckner",
|
104
|
-
radius=5.0,
|
105
|
-
cor_method="correlation",
|
106
|
-
cor_method_params={"empirical": True},
|
107
|
-
)
|
108
|
-
# Check correct output
|
109
|
-
assert "matrix" == marker.get_output_type(
|
110
|
-
input_type="BOLD", output_feature="functional_connectivity"
|
111
|
-
)
|
112
|
-
|
113
|
-
# Fit-transform the data
|
114
|
-
fc = marker.fit_transform(element_data)
|
115
|
-
fc_bold = fc["BOLD"]["functional_connectivity"]
|
116
|
-
|
117
|
-
assert "data" in fc_bold
|
118
|
-
assert "row_names" in fc_bold
|
119
|
-
assert "col_names" in fc_bold
|
120
|
-
assert fc_bold["data"].shape == (6, 6)
|
121
|
-
assert len(set(fc_bold["row_names"])) == 6
|
122
|
-
assert len(set(fc_bold["col_names"])) == 6
|
123
|
-
|
124
|
-
# Compare with nilearn
|
125
|
-
# Load testing coordinates for the target data
|
126
|
-
testing_coords, _ = get_coordinates(
|
127
|
-
coords="DMNBuckner", target_data=element_data["BOLD"]
|
128
|
-
)
|
129
|
-
# Extract timeseries
|
130
|
-
nifti_spheres_masker = NiftiSpheresMasker(
|
131
|
-
seeds=testing_coords, radius=5.0
|
132
|
-
)
|
133
|
-
extracted_timeseries = nifti_spheres_masker.fit_transform(
|
134
|
-
element_data["BOLD"]["data"]
|
135
|
-
)
|
136
|
-
# Compute the connectivity measure
|
137
|
-
connectivity_measure = ConnectivityMeasure(
|
138
|
-
cov_estimator=EmpiricalCovariance(), kind="correlation" # type: ignore
|
139
|
-
).fit_transform([extracted_timeseries])[0]
|
140
|
-
|
141
|
-
# Check that FC are almost equal
|
142
|
-
assert_array_almost_equal(
|
143
|
-
connectivity_measure, fc_bold["data"], decimal=3
|
144
|
-
)
|
145
|
-
|
146
|
-
|
147
116
|
def test_FunctionalConnectivitySpheres_error() -> None:
|
148
117
|
"""Test FunctionalConnectivitySpheres errors."""
|
149
118
|
with pytest.raises(ValueError, match="radius should be > 0"):
|
150
119
|
FunctionalConnectivitySpheres(
|
151
|
-
coords="DMNBuckner", radius=-0.1,
|
120
|
+
coords="DMNBuckner", radius=-0.1, conn_method="correlation"
|
152
121
|
)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: junifer
|
3
|
-
Version: 0.0.5.
|
3
|
+
Version: 0.0.5.dev219
|
4
4
|
Summary: JUelich NeuroImaging FEature extractoR
|
5
5
|
Author-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
|
6
6
|
Maintainer-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
|
@@ -1,5 +1,5 @@
|
|
1
1
|
junifer/__init__.py,sha256=-T9XmiCCL0j3YLx-0Pph15sPfL5FlcBDscajjJ-V4sU,604
|
2
|
-
junifer/_version.py,sha256=
|
2
|
+
junifer/_version.py,sha256=hiqR-OJM-QzJpyrvyRQTuWbgsunJYguuZMuX2R3hfCc,428
|
3
3
|
junifer/stats.py,sha256=BjQb2lfTGDP9l4UuQYmJFcJJNRfbJDGlNvC06SJaDDE,6237
|
4
4
|
junifer/api/__init__.py,sha256=lwyIF0hPc7fICuSoddJfay0LPqlTRxHJ_xbtizgFYZA,312
|
5
5
|
junifer/api/cli.py,sha256=53pews3mXkJ7DUDSkV51PbitYnuVAdQRkWG-gjO08Uw,16142
|
@@ -133,8 +133,10 @@ junifer/external/h5io/h5io/_h5io.py,sha256=8dWZDYegoPcBkH_fHPdl0eXNWTaRdk9hfIQo8
|
|
133
133
|
junifer/external/h5io/h5io/_version.py,sha256=mFY0GwwuN-a3M8w93_mskS6GZIvv9SNdjLfJaWNsm-I,22
|
134
134
|
junifer/external/h5io/h5io/chunked_array.py,sha256=K1HWf7R2Jc7gCzBqAoBjx0ZnMmUhTe3iAO6RF6PdUO4,3338
|
135
135
|
junifer/external/h5io/h5io/chunked_list.py,sha256=1Y5BbuWzurJlEFQzJNuDdC3fNZ39ENEMba99X_4VeSM,1952
|
136
|
-
junifer/external/nilearn/__init__.py,sha256=
|
136
|
+
junifer/external/nilearn/__init__.py,sha256=UdUKYArx3hvcziln89iaSGZcNGwHvsmbB4E5gS1zvOs,321
|
137
|
+
junifer/external/nilearn/junifer_connectivity_measure.py,sha256=y6MSWz_7YjRNfahLiS8_ptmEBoSBqhj6J9E0p7cN1Jw,16847
|
137
138
|
junifer/external/nilearn/junifer_nifti_spheres_masker.py,sha256=DbSK2hKrgpHZ_vCRLbVv3YJpLZNkEAG0HFfQQpG6zdU,16546
|
139
|
+
junifer/external/nilearn/tests/test_junifer_connectivity_measure.py,sha256=cwm-RMSHLS6GF-z2ioSNln3N9WoSrLf41mGvyYYMd7w,33918
|
138
140
|
junifer/external/nilearn/tests/test_junifer_nifti_spheres_masker.py,sha256=zpvBYIvaNjUj9fIUg5K78LRzJqbyMYlUo2UQYS9_lo4,12275
|
139
141
|
junifer/markers/__init__.py,sha256=u4BFgS_3GXAwFN2HfqdAhlBkyenLw4IYlMlwXwnjkVQ,1235
|
140
142
|
junifer/markers/base.py,sha256=__Z0owDdjTwb7alQneOeoaUqaeCVbHwFRnaRZERi37M,8364
|
@@ -170,18 +172,18 @@ junifer/markers/falff/falff_spheres.py,sha256=h-A2B8D2KvnvLzBcBeB6Kt3EcXhcfvvIMv
|
|
170
172
|
junifer/markers/falff/tests/test_falff_parcels.py,sha256=Z3n1i8dkYbdXgouUjfIif9yLv5MubBEdrtAA-a6kRcc,4349
|
171
173
|
junifer/markers/falff/tests/test_falff_spheres.py,sha256=-VLEvFaF8CMCN_7FLYCSfP7MMjy-gm1Zgu13je5Pku8,4373
|
172
174
|
junifer/markers/functional_connectivity/__init__.py,sha256=j7HshYNBjSbjXXM8h_PBKORk--Gb3qw-MSEm0i3XgTI,672
|
173
|
-
junifer/markers/functional_connectivity/crossparcellation_functional_connectivity.py,sha256=
|
174
|
-
junifer/markers/functional_connectivity/edge_functional_connectivity_parcels.py,sha256=
|
175
|
-
junifer/markers/functional_connectivity/edge_functional_connectivity_spheres.py,sha256=
|
176
|
-
junifer/markers/functional_connectivity/functional_connectivity_base.py,sha256=
|
177
|
-
junifer/markers/functional_connectivity/functional_connectivity_parcels.py,sha256=
|
178
|
-
junifer/markers/functional_connectivity/functional_connectivity_spheres.py,sha256
|
179
|
-
junifer/markers/functional_connectivity/tests/test_crossparcellation_functional_connectivity.py,sha256=
|
180
|
-
junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_parcels.py,sha256=
|
181
|
-
junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_spheres.py,sha256=
|
175
|
+
junifer/markers/functional_connectivity/crossparcellation_functional_connectivity.py,sha256=V2-WbUOGoCtW32A0VOWO-2G-iBiG5mV88Z2EvTjS3HY,5696
|
176
|
+
junifer/markers/functional_connectivity/edge_functional_connectivity_parcels.py,sha256=nAvTT4ZLqW-uDAQ_r5hT__TbxFTqTkjm4BJ-1YD7a7s,4745
|
177
|
+
junifer/markers/functional_connectivity/edge_functional_connectivity_spheres.py,sha256=atV7iNjnFbIKbzBkzFYtgF0cbetESvv3a5R-SLzrt6Y,5412
|
178
|
+
junifer/markers/functional_connectivity/functional_connectivity_base.py,sha256=dUv-pfgAhkHuz_zSKClEYeOkcIdhjdJ1fiNvvWhATDg,5639
|
179
|
+
junifer/markers/functional_connectivity/functional_connectivity_parcels.py,sha256=pefRn1EhYegN1KCs1VvMOe4vj4KO-5kSzXJxoUzHSvw,4213
|
180
|
+
junifer/markers/functional_connectivity/functional_connectivity_spheres.py,sha256=-N-OO3vl1Djl1nSTJAey_Re3BH2tpyr4UpXfR38ogWw,4946
|
181
|
+
junifer/markers/functional_connectivity/tests/test_crossparcellation_functional_connectivity.py,sha256=CP8ZZoTciMoI9c-VVsLF9mJivyzPB6C4mZE0tlL52pI,3231
|
182
|
+
junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_parcels.py,sha256=y0O-eBjOzUp77g6o_II7D5KB2rKtDz_a_hez-MPDU3M,2482
|
183
|
+
junifer/markers/functional_connectivity/tests/test_edge_functional_connectivity_spheres.py,sha256=NYWe8kdSVVXlluLm074koDE6xw_t0bhPn47kRYMg1vA,2522
|
182
184
|
junifer/markers/functional_connectivity/tests/test_functional_connectivity_base.py,sha256=RmPTrG0uLKb5RgdHXUnH6lon60FxN1JCtr-dsTBaX28,522
|
183
|
-
junifer/markers/functional_connectivity/tests/test_functional_connectivity_parcels.py,sha256=
|
184
|
-
junifer/markers/functional_connectivity/tests/test_functional_connectivity_spheres.py,sha256=
|
185
|
+
junifer/markers/functional_connectivity/tests/test_functional_connectivity_parcels.py,sha256=GiRtQ-cbbmM4_oekGjIDtFaNkmYON_eSf3F4jzS0XCo,3876
|
186
|
+
junifer/markers/functional_connectivity/tests/test_functional_connectivity_spheres.py,sha256=Bu2vicoxET-eHYqmfiPtYmFOhBCjBsXO7vv9UzLdYJQ,4143
|
185
187
|
junifer/markers/reho/__init__.py,sha256=_6WkTQcg0ksZguSQGi1XuoMKuGwYs5tvDLVZ1h6xB5E,232
|
186
188
|
junifer/markers/reho/_afni_reho.py,sha256=iaZFPJbyB9-QQAZ5-kKxwN0APB5MH85pOAChq-JFLNI,6469
|
187
189
|
junifer/markers/reho/_junifer_reho.py,sha256=7-jD28YQQWb3dfT6SxyYfGugFSq8wi7_2hUA-ryiGAo,9307
|
@@ -264,10 +266,10 @@ junifer/utils/logging.py,sha256=T9gzk7l1O-dmRiZJHggVDkQGzup_P2_FV3xsaoq0BmI,9369
|
|
264
266
|
junifer/utils/tests/test_fs.py,sha256=WQS7cKlKEZ742CIuiOYYpueeAhY9PqlastfDVpVVtvE,923
|
265
267
|
junifer/utils/tests/test_helpers.py,sha256=k5qqfxK8dFyuewTJyR1Qn6-nFaYNuVr0ysc18bfPjyU,929
|
266
268
|
junifer/utils/tests/test_logging.py,sha256=l8oo-AiBV7H6_IzlsNcj__cLeZBUvgIGoaMszD9VaJg,7754
|
267
|
-
junifer-0.0.5.
|
268
|
-
junifer-0.0.5.
|
269
|
-
junifer-0.0.5.
|
270
|
-
junifer-0.0.5.
|
271
|
-
junifer-0.0.5.
|
272
|
-
junifer-0.0.5.
|
273
|
-
junifer-0.0.5.
|
269
|
+
junifer-0.0.5.dev219.dist-info/AUTHORS.rst,sha256=rmULKpchpSol4ExWFdm-qu4fkpSZPYqIESVJBZtGb6E,163
|
270
|
+
junifer-0.0.5.dev219.dist-info/LICENSE.md,sha256=MqCnOBu8uXsEOzRZWh9EBVfVz-kE9NkXcLCrtGXo2yU,34354
|
271
|
+
junifer-0.0.5.dev219.dist-info/METADATA,sha256=uQSJvuIHH7tXjaAc5fDkW0tZXQ9uGg_cWx_naZkuDf0,8280
|
272
|
+
junifer-0.0.5.dev219.dist-info/WHEEL,sha256=-oYQCr74JF3a37z2nRlQays_SX2MqOANoqVjBBAP2yE,91
|
273
|
+
junifer-0.0.5.dev219.dist-info/entry_points.txt,sha256=DxFvKq0pOqRunAK0FxwJcoDfV1-dZvsFDpD5HRqSDhw,48
|
274
|
+
junifer-0.0.5.dev219.dist-info/top_level.txt,sha256=4bAq1R2QFQ4b3hohjys2JBvxrl0GKk5LNFzYvz9VGcA,8
|
275
|
+
junifer-0.0.5.dev219.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|