junifer 0.0.4.dev810__py3-none-any.whl → 0.0.4.dev821__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. junifer/_version.py +2 -2
  2. junifer/api/functions.py +2 -0
  3. junifer/api/res/ants/ResampleImage +0 -0
  4. junifer/api/res/ants/antsApplyTransforms +0 -0
  5. junifer/api/res/ants/antsApplyTransformsToPoints +0 -0
  6. junifer/api/res/ants/run_ants_docker.sh +0 -0
  7. junifer/api/res/fsl/img2imgcoord +0 -0
  8. junifer/api/res/run_venv.sh +0 -0
  9. junifer/configs/juseless/datagrabbers/tests/test_ucla.py +8 -8
  10. junifer/configs/juseless/datagrabbers/ucla.py +5 -5
  11. junifer/datagrabber/aomic/id1000.py +5 -5
  12. junifer/datagrabber/aomic/piop1.py +5 -5
  13. junifer/datagrabber/aomic/piop2.py +5 -5
  14. junifer/datagrabber/aomic/tests/test_id1000.py +20 -20
  15. junifer/datagrabber/aomic/tests/test_piop1.py +20 -20
  16. junifer/datagrabber/aomic/tests/test_piop2.py +20 -20
  17. junifer/datagrabber/dmcc13_benchmark.py +5 -5
  18. junifer/datagrabber/tests/test_dmcc13_benchmark.py +13 -13
  19. junifer/datagrabber/utils.py +1 -9
  20. junifer/markers/parcel_aggregation.py +21 -4
  21. junifer/markers/sphere_aggregation.py +21 -4
  22. junifer/preprocess/warping/space_warper.py +13 -3
  23. {junifer-0.0.4.dev810.dist-info → junifer-0.0.4.dev821.dist-info}/METADATA +1 -1
  24. {junifer-0.0.4.dev810.dist-info → junifer-0.0.4.dev821.dist-info}/RECORD +23 -23
  25. {junifer-0.0.4.dev810.dist-info → junifer-0.0.4.dev821.dist-info}/AUTHORS.rst +0 -0
  26. {junifer-0.0.4.dev810.dist-info → junifer-0.0.4.dev821.dist-info}/LICENSE.md +0 -0
  27. {junifer-0.0.4.dev810.dist-info → junifer-0.0.4.dev821.dist-info}/WHEEL +0 -0
  28. {junifer-0.0.4.dev810.dist-info → junifer-0.0.4.dev821.dist-info}/entry_points.txt +0 -0
  29. {junifer-0.0.4.dev810.dist-info → junifer-0.0.4.dev821.dist-info}/top_level.txt +0 -0
junifer/_version.py CHANGED
@@ -12,5 +12,5 @@ __version__: str
12
12
  __version_tuple__: VERSION_TUPLE
13
13
  version_tuple: VERSION_TUPLE
14
14
 
15
- __version__ = version = '0.0.4.dev810'
16
- __version_tuple__ = version_tuple = (0, 0, 4, 'dev810')
15
+ __version__ = version = '0.0.4.dev821'
16
+ __version_tuple__ = version_tuple = (0, 0, 4, 'dev821')
junifer/api/functions.py CHANGED
@@ -165,6 +165,8 @@ def run(
165
165
  preprocessors=built_preprocessors,
166
166
  storage=storage_object,
167
167
  )
168
+ mc.validate(datagrabber_object)
169
+
168
170
  # Fit elements
169
171
  with datagrabber_object:
170
172
  if elements is not None:
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
@@ -29,9 +29,9 @@ def test_JuselessUCLA() -> None:
29
29
  "BOLD",
30
30
  "BOLD_confounds",
31
31
  "T1w",
32
- "probseg_CSF",
33
- "probseg_GM",
34
- "probseg_WM",
32
+ "VBM_CSF",
33
+ "VBM_GM",
34
+ "VBM_WM",
35
35
  ]
36
36
 
37
37
  for t in types:
@@ -45,12 +45,12 @@ def test_JuselessUCLA() -> None:
45
45
  "BOLD",
46
46
  "BOLD_confounds",
47
47
  "T1w",
48
- "probseg_CSF",
49
- "probseg_GM",
50
- "probseg_WM",
48
+ "VBM_CSF",
49
+ "VBM_GM",
50
+ "VBM_WM",
51
51
  ["BOLD", "BOLD_confounds"],
52
- ["T1w", "probseg_CSF"],
53
- ["probseg_GM", "probseg_WM"],
52
+ ["T1w", "VBM_CSF"],
53
+ ["VBM_GM", "VBM_WM"],
54
54
  ["BOLD", "T1w"],
55
55
  ],
56
56
  )
@@ -23,8 +23,8 @@ class JuselessUCLA(PatternDataGrabber):
23
23
  datadir : str or Path, optional
24
24
  The directory where the dataset is stored.
25
25
  (default "/data/project/psychosis_thalamus/data/fmriprep").
26
- types: {"BOLD", "BOLD_confounds", "T1w", "probseg_CSF", "probseg_GM", \
27
- "probseg_WM"} or a list of the options, optional
26
+ types: {"BOLD", "BOLD_confounds", "T1w", "VBM_CSF", "VBM_GM", \
27
+ "VBM_WM"} or a list of the options, optional
28
28
  UCLA data types. If None, all available data types are selected.
29
29
  (default None).
30
30
  tasks : {"rest", "bart", "bht", "pamenc", "pamret", \
@@ -91,21 +91,21 @@ class JuselessUCLA(PatternDataGrabber):
91
91
  ),
92
92
  "space": "MNI152NLin2009cAsym",
93
93
  },
94
- "probseg_CSF": {
94
+ "VBM_CSF": {
95
95
  "pattern": (
96
96
  "sub-{subject}/anat/sub-{subject}_T1w_space-"
97
97
  "MNI152NLin2009cAsym_class-CSF_probtissue.nii.gz"
98
98
  ),
99
99
  "space": "MNI152NLin2009cAsym",
100
100
  },
101
- "probseg_GM": {
101
+ "VBM_GM": {
102
102
  "pattern": (
103
103
  "sub-{subject}/anat/sub-{subject}_T1w_space-"
104
104
  "MNI152NLin2009cAsym_class-GM_probtissue.nii.gz"
105
105
  ),
106
106
  "space": "MNI152NLin2009cAsym",
107
107
  },
108
- "probseg_WM": {
108
+ "VBM_WM": {
109
109
  "pattern": (
110
110
  "sub-{subject}/anat/sub-{subject}_T1w_space"
111
111
  "-MNI152NLin2009cAsym_class-WM_probtissue.nii.gz"
@@ -24,8 +24,8 @@ class DataladAOMICID1000(PatternDataladDataGrabber):
24
24
  The directory where the datalad dataset will be cloned. If None,
25
25
  the datalad dataset will be cloned into a temporary directory
26
26
  (default None).
27
- types: {"BOLD", "BOLD_confounds", "T1w", "probseg_CSF", "probseg_GM", \
28
- "probseg_WM", "DWI"} or a list of the options, optional
27
+ types: {"BOLD", "BOLD_confounds", "T1w", "VBM_CSF", "VBM_GM", \
28
+ "VBM_WM", "DWI"} or a list of the options, optional
29
29
  AOMIC data types. If None, all available data types are selected.
30
30
  (default None).
31
31
  native_t1w : bool, optional
@@ -84,7 +84,7 @@ class DataladAOMICID1000(PatternDataladDataGrabber):
84
84
  ),
85
85
  "space": "MNI152NLin2009cAsym",
86
86
  },
87
- "probseg_CSF": {
87
+ "VBM_CSF": {
88
88
  "pattern": (
89
89
  "derivatives/fmriprep/sub-{subject}/anat/"
90
90
  "sub-{subject}_space-MNI152NLin2009cAsym_label-"
@@ -92,7 +92,7 @@ class DataladAOMICID1000(PatternDataladDataGrabber):
92
92
  ),
93
93
  "space": "MNI152NLin2009cAsym",
94
94
  },
95
- "probseg_GM": {
95
+ "VBM_GM": {
96
96
  "pattern": (
97
97
  "derivatives/fmriprep/sub-{subject}/anat/"
98
98
  "sub-{subject}_space-MNI152NLin2009cAsym_label-"
@@ -100,7 +100,7 @@ class DataladAOMICID1000(PatternDataladDataGrabber):
100
100
  ),
101
101
  "space": "MNI152NLin2009cAsym",
102
102
  },
103
- "probseg_WM": {
103
+ "VBM_WM": {
104
104
  "pattern": (
105
105
  "derivatives/fmriprep/sub-{subject}/anat/"
106
106
  "sub-{subject}_space-MNI152NLin2009cAsym_label-"
@@ -26,8 +26,8 @@ class DataladAOMICPIOP1(PatternDataladDataGrabber):
26
26
  The directory where the datalad dataset will be cloned. If None,
27
27
  the datalad dataset will be cloned into a temporary directory
28
28
  (default None).
29
- types: {"BOLD", "BOLD_confounds", "T1w", "probseg_CSF", "probseg_GM", \
30
- "probseg_WM", "DWI"} or a list of the options, optional
29
+ types: {"BOLD", "BOLD_confounds", "T1w", "VBM_CSF", "VBM_GM", \
30
+ "VBM_WM", "DWI"} or a list of the options, optional
31
31
  AOMIC data types. If None, all available data types are selected.
32
32
  (default None).
33
33
  tasks : {"restingstate", "anticipation", "emomatching", "faces", \
@@ -119,7 +119,7 @@ class DataladAOMICPIOP1(PatternDataladDataGrabber):
119
119
  ),
120
120
  "space": "MNI152NLin2009cAsym",
121
121
  },
122
- "probseg_CSF": {
122
+ "VBM_CSF": {
123
123
  "pattern": (
124
124
  "derivatives/fmriprep/sub-{subject}/anat/"
125
125
  "sub-{subject}_space-MNI152NLin2009cAsym_label-"
@@ -127,7 +127,7 @@ class DataladAOMICPIOP1(PatternDataladDataGrabber):
127
127
  ),
128
128
  "space": "MNI152NLin2009cAsym",
129
129
  },
130
- "probseg_GM": {
130
+ "VBM_GM": {
131
131
  "pattern": (
132
132
  "derivatives/fmriprep/sub-{subject}/anat/"
133
133
  "sub-{subject}_space-MNI152NLin2009cAsym_label-"
@@ -135,7 +135,7 @@ class DataladAOMICPIOP1(PatternDataladDataGrabber):
135
135
  ),
136
136
  "space": "MNI152NLin2009cAsym",
137
137
  },
138
- "probseg_WM": {
138
+ "VBM_WM": {
139
139
  "pattern": (
140
140
  "derivatives/fmriprep/sub-{subject}/anat/"
141
141
  "sub-{subject}_space-MNI152NLin2009cAsym_label-"
@@ -26,8 +26,8 @@ class DataladAOMICPIOP2(PatternDataladDataGrabber):
26
26
  The directory where the datalad dataset will be cloned. If None,
27
27
  the datalad dataset will be cloned into a temporary directory
28
28
  (default None).
29
- types: {"BOLD", "BOLD_confounds", "T1w", "probseg_CSF", "probseg_GM", \
30
- "probseg_WM", "DWI"} or a list of the options, optional
29
+ types: {"BOLD", "BOLD_confounds", "T1w", "VBM_CSF", "VBM_GM", \
30
+ "VBM_WM", "DWI"} or a list of the options, optional
31
31
  AOMIC data types. If None, all available data types are selected.
32
32
  (default None).
33
33
  tasks : {"restingstate", "stopsignal", "workingmemory"} \
@@ -116,7 +116,7 @@ class DataladAOMICPIOP2(PatternDataladDataGrabber):
116
116
  ),
117
117
  "space": "MNI152NLin2009cAsym",
118
118
  },
119
- "probseg_CSF": {
119
+ "VBM_CSF": {
120
120
  "pattern": (
121
121
  "derivatives/fmriprep/sub-{subject}/anat/"
122
122
  "sub-{subject}_space-MNI152NLin2009cAsym_label-"
@@ -124,7 +124,7 @@ class DataladAOMICPIOP2(PatternDataladDataGrabber):
124
124
  ),
125
125
  "space": "MNI152NLin2009cAsym",
126
126
  },
127
- "probseg_GM": {
127
+ "VBM_GM": {
128
128
  "pattern": (
129
129
  "derivatives/fmriprep/sub-{subject}/anat/"
130
130
  "sub-{subject}_space-MNI152NLin2009cAsym_label-"
@@ -132,7 +132,7 @@ class DataladAOMICPIOP2(PatternDataladDataGrabber):
132
132
  ),
133
133
  "space": "MNI152NLin2009cAsym",
134
134
  },
135
- "probseg_WM": {
135
+ "VBM_WM": {
136
136
  "pattern": (
137
137
  "derivatives/fmriprep/sub-{subject}/anat/"
138
138
  "sub-{subject}_space-MNI152NLin2009cAsym_label-"
@@ -71,41 +71,41 @@ def test_DataladAOMICID1000() -> None:
71
71
  # asserts T1w_mask
72
72
  assert out["T1w_mask"]["path"].exists()
73
73
 
74
- # asserts type "probseg_CSF"
75
- assert "probseg_CSF" in out
74
+ # asserts type "VBM_CSF"
75
+ assert "VBM_CSF" in out
76
76
 
77
77
  assert (
78
- out["probseg_CSF"]["path"].name
78
+ out["VBM_CSF"]["path"].name
79
79
  == f"sub-{test_element}_space-MNI152NLin2009cAsym_label-"
80
80
  "CSF_probseg.nii.gz"
81
81
  )
82
82
 
83
- assert out["probseg_CSF"]["path"].exists()
84
- assert out["probseg_CSF"]["path"].is_file()
83
+ assert out["VBM_CSF"]["path"].exists()
84
+ assert out["VBM_CSF"]["path"].is_file()
85
85
 
86
- # asserts type "probseg_GM"
87
- assert "probseg_GM" in out
86
+ # asserts type "VBM_GM"
87
+ assert "VBM_GM" in out
88
88
 
89
89
  assert (
90
- out["probseg_GM"]["path"].name
90
+ out["VBM_GM"]["path"].name
91
91
  == f"sub-{test_element}_space-MNI152NLin2009cAsym_label-"
92
92
  "GM_probseg.nii.gz"
93
93
  )
94
94
 
95
- assert out["probseg_GM"]["path"].exists()
96
- assert out["probseg_GM"]["path"].is_file()
95
+ assert out["VBM_GM"]["path"].exists()
96
+ assert out["VBM_GM"]["path"].is_file()
97
97
 
98
- # asserts type "probseg_WM"
99
- assert "probseg_WM" in out
98
+ # asserts type "VBM_WM"
99
+ assert "VBM_WM" in out
100
100
 
101
101
  assert (
102
- out["probseg_WM"]["path"].name
102
+ out["VBM_WM"]["path"].name
103
103
  == f"sub-{test_element}_space-MNI152NLin2009cAsym_label-"
104
104
  "WM_probseg.nii.gz"
105
105
  )
106
106
 
107
- assert out["probseg_WM"]["path"].exists()
108
- assert out["probseg_WM"]["path"].is_file()
107
+ assert out["VBM_WM"]["path"].exists()
108
+ assert out["VBM_WM"]["path"].is_file()
109
109
 
110
110
  # asserts type "DWI"
111
111
  assert "DWI" in out
@@ -132,13 +132,13 @@ def test_DataladAOMICID1000() -> None:
132
132
  "BOLD",
133
133
  "BOLD_confounds",
134
134
  "T1w",
135
- "probseg_CSF",
136
- "probseg_GM",
137
- "probseg_WM",
135
+ "VBM_CSF",
136
+ "VBM_GM",
137
+ "VBM_WM",
138
138
  "DWI",
139
139
  ["BOLD", "BOLD_confounds"],
140
- ["T1w", "probseg_CSF"],
141
- ["probseg_GM", "probseg_WM"],
140
+ ["T1w", "VBM_CSF"],
141
+ ["VBM_GM", "VBM_WM"],
142
142
  ["DWI", "BOLD"],
143
143
  ],
144
144
  )
@@ -91,41 +91,41 @@ def test_DataladAOMICPIOP1(tasks: Optional[str]) -> None:
91
91
  # asserts T1w_mask
92
92
  assert out["T1w_mask"]["path"].exists()
93
93
 
94
- # asserts type "probseg_CSF"
95
- assert "probseg_CSF" in out
94
+ # asserts type "VBM_CSF"
95
+ assert "VBM_CSF" in out
96
96
 
97
97
  assert (
98
- out["probseg_CSF"]["path"].name
98
+ out["VBM_CSF"]["path"].name
99
99
  == f"sub-{sub}_space-MNI152NLin2009cAsym_label-"
100
100
  "CSF_probseg.nii.gz"
101
101
  )
102
102
 
103
- assert out["probseg_CSF"]["path"].exists()
104
- assert out["probseg_CSF"]["path"].is_file()
103
+ assert out["VBM_CSF"]["path"].exists()
104
+ assert out["VBM_CSF"]["path"].is_file()
105
105
 
106
- # asserts type "probseg_GM"
107
- assert "probseg_GM" in out
106
+ # asserts type "VBM_GM"
107
+ assert "VBM_GM" in out
108
108
 
109
109
  assert (
110
- out["probseg_GM"]["path"].name
110
+ out["VBM_GM"]["path"].name
111
111
  == f"sub-{sub}_space-MNI152NLin2009cAsym_label-"
112
112
  "GM_probseg.nii.gz"
113
113
  )
114
114
 
115
- assert out["probseg_GM"]["path"].exists()
116
- assert out["probseg_GM"]["path"].is_file()
115
+ assert out["VBM_GM"]["path"].exists()
116
+ assert out["VBM_GM"]["path"].is_file()
117
117
 
118
- # asserts type "probseg_WM"
119
- assert "probseg_WM" in out
118
+ # asserts type "VBM_WM"
119
+ assert "VBM_WM" in out
120
120
 
121
121
  assert (
122
- out["probseg_WM"]["path"].name
122
+ out["VBM_WM"]["path"].name
123
123
  == f"sub-{sub}_space-MNI152NLin2009cAsym_label-"
124
124
  "WM_probseg.nii.gz"
125
125
  )
126
126
 
127
- assert out["probseg_WM"]["path"].exists()
128
- assert out["probseg_WM"]["path"].is_file()
127
+ assert out["VBM_WM"]["path"].exists()
128
+ assert out["VBM_WM"]["path"].is_file()
129
129
 
130
130
  # asserts type "DWI"
131
131
  assert "DWI" in out
@@ -149,13 +149,13 @@ def test_DataladAOMICPIOP1(tasks: Optional[str]) -> None:
149
149
  "BOLD",
150
150
  "BOLD_confounds",
151
151
  "T1w",
152
- "probseg_CSF",
153
- "probseg_GM",
154
- "probseg_WM",
152
+ "VBM_CSF",
153
+ "VBM_GM",
154
+ "VBM_WM",
155
155
  "DWI",
156
156
  ["BOLD", "BOLD_confounds"],
157
- ["T1w", "probseg_CSF"],
158
- ["probseg_GM", "probseg_WM"],
157
+ ["T1w", "VBM_CSF"],
158
+ ["VBM_GM", "VBM_WM"],
159
159
  ["DWI", "BOLD"],
160
160
  ],
161
161
  )
@@ -85,41 +85,41 @@ def test_DataladAOMICPIOP2(tasks: Optional[str]) -> None:
85
85
  # asserts T1w_mask
86
86
  assert out["T1w_mask"]["path"].exists()
87
87
 
88
- # asserts type "probseg_CSF"
89
- assert "probseg_CSF" in out
88
+ # asserts type "VBM_CSF"
89
+ assert "VBM_CSF" in out
90
90
 
91
91
  assert (
92
- out["probseg_CSF"]["path"].name
92
+ out["VBM_CSF"]["path"].name
93
93
  == f"sub-{sub}_space-MNI152NLin2009cAsym_label-"
94
94
  "CSF_probseg.nii.gz"
95
95
  )
96
96
 
97
- assert out["probseg_CSF"]["path"].exists()
98
- assert out["probseg_CSF"]["path"].is_file()
97
+ assert out["VBM_CSF"]["path"].exists()
98
+ assert out["VBM_CSF"]["path"].is_file()
99
99
 
100
- # asserts type "probseg_GM"
101
- assert "probseg_GM" in out
100
+ # asserts type "VBM_GM"
101
+ assert "VBM_GM" in out
102
102
 
103
103
  assert (
104
- out["probseg_GM"]["path"].name
104
+ out["VBM_GM"]["path"].name
105
105
  == f"sub-{sub}_space-MNI152NLin2009cAsym_label-"
106
106
  "GM_probseg.nii.gz"
107
107
  )
108
108
 
109
- assert out["probseg_GM"]["path"].exists()
110
- assert out["probseg_GM"]["path"].is_file()
109
+ assert out["VBM_GM"]["path"].exists()
110
+ assert out["VBM_GM"]["path"].is_file()
111
111
 
112
- # asserts type "probseg_WM"
113
- assert "probseg_WM" in out
112
+ # asserts type "VBM_WM"
113
+ assert "VBM_WM" in out
114
114
 
115
115
  assert (
116
- out["probseg_WM"]["path"].name
116
+ out["VBM_WM"]["path"].name
117
117
  == f"sub-{sub}_space-MNI152NLin2009cAsym_label-"
118
118
  "WM_probseg.nii.gz"
119
119
  )
120
120
 
121
- assert out["probseg_WM"]["path"].exists()
122
- assert out["probseg_WM"]["path"].is_file()
121
+ assert out["VBM_WM"]["path"].exists()
122
+ assert out["VBM_WM"]["path"].is_file()
123
123
 
124
124
  # asserts type "DWI"
125
125
  assert "DWI" in out
@@ -143,13 +143,13 @@ def test_DataladAOMICPIOP2(tasks: Optional[str]) -> None:
143
143
  "BOLD",
144
144
  "BOLD_confounds",
145
145
  "T1w",
146
- "probseg_CSF",
147
- "probseg_GM",
148
- "probseg_WM",
146
+ "VBM_CSF",
147
+ "VBM_GM",
148
+ "VBM_WM",
149
149
  "DWI",
150
150
  ["BOLD", "BOLD_confounds"],
151
- ["T1w", "probseg_CSF"],
152
- ["probseg_GM", "probseg_WM"],
151
+ ["T1w", "VBM_CSF"],
152
+ ["VBM_GM", "VBM_WM"],
153
153
  ["DWI", "BOLD"],
154
154
  ],
155
155
  )
@@ -25,8 +25,8 @@ class DMCC13Benchmark(PatternDataladDataGrabber):
25
25
  The directory where the datalad dataset will be cloned. If None,
26
26
  the datalad dataset will be cloned into a temporary directory
27
27
  (default None).
28
- types: {"BOLD", "BOLD_confounds", "T1w", "probseg_CSF", "probseg_GM", \
29
- "probseg_WM"} or a list of the options, optional
28
+ types: {"BOLD", "BOLD_confounds", "T1w", "VBM_CSF", "VBM_GM", \
29
+ "VBM_WM"} or a list of the options, optional
30
30
  DMCC data types. If None, all available data types are selected.
31
31
  (default None).
32
32
  sessions: {"wave1bas", "wave1pro", "wave1rea"} or list of the options, \
@@ -181,21 +181,21 @@ class DMCC13Benchmark(PatternDataladDataGrabber):
181
181
  ),
182
182
  "space": "MNI152NLin2009cAsym",
183
183
  },
184
- "probseg_CSF": {
184
+ "VBM_CSF": {
185
185
  "pattern": (
186
186
  "derivatives/fmriprep-1.3.2/sub-{subject}/anat/"
187
187
  "sub-{subject}_space-MNI152NLin2009cAsym_label-CSF_probseg.nii.gz"
188
188
  ),
189
189
  "space": "MNI152NLin2009cAsym",
190
190
  },
191
- "probseg_GM": {
191
+ "VBM_GM": {
192
192
  "pattern": (
193
193
  "derivatives/fmriprep-1.3.2/sub-{subject}/anat/"
194
194
  "sub-{subject}_space-MNI152NLin2009cAsym_label-GM_probseg.nii.gz"
195
195
  ),
196
196
  "space": "MNI152NLin2009cAsym",
197
197
  },
198
- "probseg_WM": {
198
+ "VBM_WM": {
199
199
  "pattern": (
200
200
  "derivatives/fmriprep-1.3.2/sub-{subject}/anat/"
201
201
  "sub-{subject}_space-MNI152NLin2009cAsym_label-WM_probseg.nii.gz"
@@ -95,9 +95,9 @@ def test_DMCC13Benchmark(
95
95
  "BOLD",
96
96
  "BOLD_confounds",
97
97
  "BOLD_mask",
98
- "probseg_CSF",
99
- "probseg_GM",
100
- "probseg_WM",
98
+ "VBM_CSF",
99
+ "VBM_GM",
100
+ "VBM_WM",
101
101
  "T1w",
102
102
  "T1w_mask",
103
103
  ]
@@ -159,18 +159,18 @@ def test_DMCC13Benchmark(
159
159
  ("BOLD", False),
160
160
  ("T1w", True),
161
161
  ("T1w", False),
162
- ("probseg_CSF", True),
163
- ("probseg_CSF", False),
164
- ("probseg_GM", True),
165
- ("probseg_GM", False),
166
- ("probseg_WM", True),
167
- ("probseg_WM", False),
162
+ ("VBM_CSF", True),
163
+ ("VBM_CSF", False),
164
+ ("VBM_GM", True),
165
+ ("VBM_GM", False),
166
+ ("VBM_WM", True),
167
+ ("VBM_WM", False),
168
168
  (["BOLD", "BOLD_confounds"], True),
169
169
  (["BOLD", "BOLD_confounds"], False),
170
- (["T1w", "probseg_CSF"], True),
171
- (["T1w", "probseg_CSF"], False),
172
- (["probseg_GM", "probseg_WM"], True),
173
- (["probseg_GM", "probseg_WM"], False),
170
+ (["T1w", "VBM_CSF"], True),
171
+ (["T1w", "VBM_CSF"], False),
172
+ (["VBM_GM", "VBM_WM"], True),
173
+ (["VBM_GM", "VBM_WM"], False),
174
174
  ],
175
175
  )
176
176
  def test_DMCC13Benchmark_partial_data_access(
@@ -51,15 +51,7 @@ PATTERNS_SCHEMA = {
51
51
  "mandatory": ["pattern", "space"],
52
52
  "optional": [],
53
53
  },
54
- "probseg_CSF": {
55
- "mandatory": ["pattern", "space"],
56
- "optional": [],
57
- },
58
- "probseg_GM": {
59
- "mandatory": ["pattern", "space"],
60
- "optional": [],
61
- },
62
- "probseg_WM": {
54
+ "VBM_CSF": {
63
55
  "mandatory": ["pattern", "space"],
64
56
  "optional": [],
65
57
  },
@@ -42,8 +42,8 @@ class ParcelAggregation(BaseMarker):
42
42
  The specification of the masks to apply to regions before extracting
43
43
  signals. Check :ref:`Using Masks <using_masks>` for more details.
44
44
  If None, will not apply any mask (default None).
45
- on : {"T1w", "BOLD", "VBM_GM", "VBM_WM", "fALFF", "GCOR", "LCOR"} \
46
- or list of the options, optional
45
+ on : {"T1w", "T2w", "BOLD", "VBM_GM", "VBM_WM", "VBM_CSF", "fALFF", \
46
+ "GCOR", "LCOR"} or list of the options, optional
47
47
  The data types to apply the marker to. If None, will work on all
48
48
  available data (default None).
49
49
  name : str, optional
@@ -102,7 +102,17 @@ class ParcelAggregation(BaseMarker):
102
102
  The list of data types that can be used as input for this marker.
103
103
 
104
104
  """
105
- return ["T1w", "BOLD", "VBM_GM", "VBM_WM", "fALFF", "GCOR", "LCOR"]
105
+ return [
106
+ "T1w",
107
+ "T2w",
108
+ "BOLD",
109
+ "VBM_GM",
110
+ "VBM_WM",
111
+ "VBM_CSF",
112
+ "fALFF",
113
+ "GCOR",
114
+ "LCOR",
115
+ ]
106
116
 
107
117
  def get_output_type(self, input_type: str) -> str:
108
118
  """Get output type.
@@ -124,7 +134,14 @@ class ParcelAggregation(BaseMarker):
124
134
 
125
135
  """
126
136
 
127
- if input_type in ["VBM_GM", "VBM_WM", "fALFF", "GCOR", "LCOR"]:
137
+ if input_type in [
138
+ "VBM_GM",
139
+ "VBM_WM",
140
+ "VBM_CSF",
141
+ "fALFF",
142
+ "GCOR",
143
+ "LCOR",
144
+ ]:
128
145
  return "vector"
129
146
  elif input_type == "BOLD":
130
147
  return "timeseries"
@@ -47,8 +47,8 @@ class SphereAggregation(BaseMarker):
47
47
  The specification of the masks to apply to regions before extracting
48
48
  signals. Check :ref:`Using Masks <using_masks>` for more details.
49
49
  If None, will not apply any mask (default None).
50
- on : {"T1w", "BOLD", "VBM_GM", "VBM_WM", "fALFF", "GCOR", "LCOR"} or \
51
- list of the options, optional
50
+ on : {"T1w", "T2w", "BOLD", "VBM_GM", "VBM_WM", "VBM_CSF", "fALFF", \
51
+ "GCOR", "LCOR"} or list of the options, optional
52
52
  The data types to apply the marker to. If None, will work on all
53
53
  available data (default None).
54
54
  name : str, optional
@@ -109,7 +109,17 @@ class SphereAggregation(BaseMarker):
109
109
  The list of data types that can be used as input for this marker.
110
110
 
111
111
  """
112
- return ["T1w", "BOLD", "VBM_GM", "VBM_WM", "fALFF", "GCOR", "LCOR"]
112
+ return [
113
+ "T1w",
114
+ "T2w",
115
+ "BOLD",
116
+ "VBM_GM",
117
+ "VBM_WM",
118
+ "VBM_CSF",
119
+ "fALFF",
120
+ "GCOR",
121
+ "LCOR",
122
+ ]
113
123
 
114
124
  def get_output_type(self, input_type: str) -> str:
115
125
  """Get output type.
@@ -131,7 +141,14 @@ class SphereAggregation(BaseMarker):
131
141
 
132
142
  """
133
143
 
134
- if input_type in ["VBM_GM", "VBM_WM", "fALFF", "GCOR", "LCOR"]:
144
+ if input_type in [
145
+ "VBM_GM",
146
+ "VBM_WM",
147
+ "VBM_CSF",
148
+ "fALFF",
149
+ "GCOR",
150
+ "LCOR",
151
+ ]:
135
152
  return "vector"
136
153
  elif input_type == "BOLD":
137
154
  return "timeseries"
@@ -34,8 +34,8 @@ class SpaceWarper(BasePreprocessor):
34
34
  type like ``"T1w"`` or a template space like ``"MNI152NLin2009cAsym"``.
35
35
  Use ``"T1w"`` for native space warping and named templates for
36
36
  template space warping.
37
- on : {"T1w", "BOLD", "VBM_GM", "VBM_WM", "fALFF", "GCOR", "LCOR"} or list \
38
- of the options
37
+ on : {"T1w", "T2w", "BOLD", "VBM_GM", "VBM_WM", "VBM_CSF", "fALFF", \
38
+ "GCOR", "LCOR"} or list of the options
39
39
  The data type to warp.
40
40
 
41
41
  Raises
@@ -98,7 +98,17 @@ class SpaceWarper(BasePreprocessor):
98
98
  preprocessor.
99
99
 
100
100
  """
101
- return ["T1w", "BOLD", "VBM_GM", "VBM_WM", "fALFF", "GCOR", "LCOR"]
101
+ return [
102
+ "T1w",
103
+ "T2w",
104
+ "BOLD",
105
+ "VBM_GM",
106
+ "VBM_WM",
107
+ "VBM_CSF",
108
+ "fALFF",
109
+ "GCOR",
110
+ "LCOR",
111
+ ]
102
112
 
103
113
  def get_output_type(self, input_type: str) -> str:
104
114
  """Get output type.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: junifer
3
- Version: 0.0.4.dev810
3
+ Version: 0.0.4.dev821
4
4
  Summary: JUelich NeuroImaging FEature extractoR
5
5
  Author-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
6
6
  Maintainer-email: Fede Raimondo <f.raimondo@fz-juelich.de>, Synchon Mandal <s.mandal@fz-juelich.de>
@@ -1,10 +1,10 @@
1
1
  junifer/__init__.py,sha256=x1UR2jUcrUdm2HNl-3Qvyi4UUrU6ms5qm2qcmNY7zZk,391
2
- junifer/_version.py,sha256=wpjRI9-VO7PV-1Clwfc-ELqAdZFl5dG37458e4_wpfA,428
2
+ junifer/_version.py,sha256=7R70gnPY70g1d5z-hP_oxweFmYhsTV8C7iLa_yffnkI,428
3
3
  junifer/stats.py,sha256=sU5IZ2qFZWbzgSutQS_z42miIVItpSGmQYBn6KkD5fA,6162
4
4
  junifer/api/__init__.py,sha256=YILu9M7SC0Ri4CVd90fELH2OnK_gvCYAXCoqBNCFE8E,257
5
5
  junifer/api/cli.py,sha256=auw38tIH7ipTnaADM7on0or7zauY-BFII8nd-eRUEJs,13664
6
6
  junifer/api/decorators.py,sha256=8bnwHPAe7VgzKxl--M_e0umdAlTVSzaJQHEJZ5kof5k,2580
7
- junifer/api/functions.py,sha256=bH8tkbkpZmU8jiQqvSsbIRp-B__Uie0BNZy_yVwRzs8,11579
7
+ junifer/api/functions.py,sha256=N59KM2GqxIwMU2tXc44oYCqogclgqD45qI_ULrfGYDQ,11616
8
8
  junifer/api/parser.py,sha256=a3SSC2xO-PF1pqXZXFq8Sh9aVd-dmHolJbCkGyOUTAM,4416
9
9
  junifer/api/utils.py,sha256=dyjTdPMwX9qeCrn8SQT2Pjshfnu-y1FEyujV7lCzvm0,3333
10
10
  junifer/api/queue_context/__init__.py,sha256=x0fT0ax-jPI0Fefg2quJ6VCIwhJ9rUQEjCNqxDXw7WM,287
@@ -42,12 +42,12 @@ junifer/configs/juseless/datagrabbers/__init__.py,sha256=tqCLmelWqB1xfElvknnaJ5o
42
42
  junifer/configs/juseless/datagrabbers/aomic_id1000_vbm.py,sha256=HNyfxjU_D7hkwnaeSW1r_PllOlc3phBq2LP25zZGziE,1474
43
43
  junifer/configs/juseless/datagrabbers/camcan_vbm.py,sha256=PtzjrfL2b6nxXLQ4TU8cKftHnD4g7nk4bf2ib6WLqGg,1505
44
44
  junifer/configs/juseless/datagrabbers/ixi_vbm.py,sha256=OE2D311Sfey0DrfoKqWB_hFIBApzP3-r1M9sliKZPC4,2309
45
- junifer/configs/juseless/datagrabbers/ucla.py,sha256=44T9JMJ4usowRib9V6EqdTRQy_2xkAWZpEmmoFWF4Mg,4915
45
+ junifer/configs/juseless/datagrabbers/ucla.py,sha256=QtCA1X2JGv3EJE7kDbmSwkEvAjTm5XwpACPazBXhFqQ,4891
46
46
  junifer/configs/juseless/datagrabbers/ukb_vbm.py,sha256=lb9pLXFnlMOeQUX-BBFD9dKECdaU2bEIHA-iD9KkOAQ,1489
47
47
  junifer/configs/juseless/datagrabbers/tests/test_aomic_id1000_vbm.py,sha256=Y_npFmmj0MN0TYv8jaxVMgFHLMQLZ8vXl8lWQKvOYbc,1001
48
48
  junifer/configs/juseless/datagrabbers/tests/test_camcan_vbm.py,sha256=o0dzptS97pxrWaY7I1m0dpJtsnAwmIXNqdU9ABTWCqI,975
49
49
  junifer/configs/juseless/datagrabbers/tests/test_ixi_vbm.py,sha256=8jxpNZelXwpJGvA5LOfpso2X8yt1chvERAYmv76hS_g,1252
50
- junifer/configs/juseless/datagrabbers/tests/test_ucla.py,sha256=e-jdvcZ9B0mka6_573JJU_cGwSaUV54U8X_n0UadtJY,3351
50
+ junifer/configs/juseless/datagrabbers/tests/test_ucla.py,sha256=fFxllR0yvt7hiQYdSXJkl9_05UwemKfcp1vC6xf0X-U,3315
51
51
  junifer/configs/juseless/datagrabbers/tests/test_ukb_vbm.py,sha256=b9hjc1mgO--PSRC3id2EzzfE2yWNsuZ2UI47a6sfGZU,1025
52
52
  junifer/data/__init__.py,sha256=1E6JtzpnjjA0IutkJkarEik9NhCP9PPI6K0-37XDZVg,602
53
53
  junifer/data/coordinates.py,sha256=Y_-gGCvIqxjArGf-E6LmYzz6ZIbG0ugw5NjgIeirXuA,12850
@@ -85,18 +85,18 @@ junifer/data/tests/test_template_spaces.py,sha256=PJulN7xHpAcSOTY-UzTG_WPywZEBSl
85
85
  junifer/datagrabber/__init__.py,sha256=pZHJIY8nAlbVngsyRScE6a6GKbytiwjJB7SdJNqIbl4,680
86
86
  junifer/datagrabber/base.py,sha256=KgMSKfkwd4yLW4PhoJDoWMgcDkGmDoIs6jkgKyOJd9A,6303
87
87
  junifer/datagrabber/datalad_base.py,sha256=SsGUJdefdDgAJARBG5kHcbLK2CvvnoEto0TpGZUgnWE,10659
88
- junifer/datagrabber/dmcc13_benchmark.py,sha256=ybgjJbl_4MD70FzhWUr_LvUZyjEft2_FYvLXI2kW64I,12896
88
+ junifer/datagrabber/dmcc13_benchmark.py,sha256=vXpMWSFbqAIUm9tNCSrpMZeOzOEjls6YAyoCR0kLZlA,12872
89
89
  junifer/datagrabber/multiple.py,sha256=eXQIsvSNvD8GuEITjMaMoi1GwoeyWXXbQMRi-f2qgc4,4923
90
90
  junifer/datagrabber/pattern.py,sha256=5XQe0k3iiTID5fbUsShjFKaqkueuPU34ZpzOi1JzFEw,12700
91
91
  junifer/datagrabber/pattern_datalad.py,sha256=y9ptDZEhSj41pf05WNySrj8j4kbi5uIXveFXv4dkKpk,4092
92
- junifer/datagrabber/utils.py,sha256=aiaWMBAGsZ5VPgOXeUHralLnAoI3fs0inyHbv8K2Km8,7157
92
+ junifer/datagrabber/utils.py,sha256=NseewPJvhc0h7Ueyfi_KRUwFfs2V7HspBtYL2Xr9Dik,6965
93
93
  junifer/datagrabber/aomic/__init__.py,sha256=R7yrRVBWsBW25CH0fw-KHpFwb_EC-MlPKDzssGfj5A0,281
94
- junifer/datagrabber/aomic/id1000.py,sha256=qO2WRq8CcK-cwohigqRewKHjAB75QZIhlqwK1hXWAs0,6125
95
- junifer/datagrabber/aomic/piop1.py,sha256=kYdDbDqSj-pQ12JY7RfD0OtUEkQS1YNivnzAjOaGaF8,8544
96
- junifer/datagrabber/aomic/piop2.py,sha256=ZHd3smD0pibBGbU170pDufLa1-TM7JlBVzWPjX1Uaq4,8163
97
- junifer/datagrabber/aomic/tests/test_id1000.py,sha256=eejuGiNQdX_s_8klGROd8OD8O5OprQywWN6O-JU3jD4,4824
98
- junifer/datagrabber/aomic/tests/test_piop1.py,sha256=Trp905MCT4jhnCg1leP0PzpEVc_icoKJZrI0TwVCwSE,5578
99
- junifer/datagrabber/aomic/tests/test_piop2.py,sha256=KAMU8eoQbKV3n9qRWbpZ24g-qN9uzZ55ZlofcSB9BIA,5377
94
+ junifer/datagrabber/aomic/id1000.py,sha256=9gRd90joMg9hrgE8b8MCCuelD4IUK8hAVAB4hLxLkC4,6101
95
+ junifer/datagrabber/aomic/piop1.py,sha256=O4NIjohmAMrlm2lniVVUOkIDLq8eSnVA85wA2hek7FY,8520
96
+ junifer/datagrabber/aomic/piop2.py,sha256=grIz2-a4ZjbrejLk5OysOr-0ydKYkBAj6GkxGnu4kIY,8139
97
+ junifer/datagrabber/aomic/tests/test_id1000.py,sha256=JdHxnJOX4xdXzxrICUXcs0w3T4NvCr4HL9vqz9Yvoh0,4740
98
+ junifer/datagrabber/aomic/tests/test_piop1.py,sha256=7_GT1GEItIISiTv2XjY80BtXFw6JsI_5ZjSdQD6y24M,5494
99
+ junifer/datagrabber/aomic/tests/test_piop2.py,sha256=E2F-jAVFUYcJLoUZ7mfw8ittBhk_KwxzBKSONnVsFuw,5293
100
100
  junifer/datagrabber/hcp1200/__init__.py,sha256=zy4Qq1_m3vECEhioG-UDteco2b5cni_8xuElICaRtt4,189
101
101
  junifer/datagrabber/hcp1200/datalad_hcp1200.py,sha256=p5Bbg09qoM46km9eFSlspwLwOe6LMJFSIZ9NC9E2lmc,2432
102
102
  junifer/datagrabber/hcp1200/hcp1200.py,sha256=ohXHmrQHWjqRZSEXI6E5zla1d_t6LZTbv-cAj79w3PU,6091
@@ -104,7 +104,7 @@ junifer/datagrabber/hcp1200/tests/test_hcp1200.py,sha256=KJ-Jq01l0a6TaboG898qjBd
104
104
  junifer/datagrabber/tests/test_base.py,sha256=fZdVhNhvfht9lpTHrAUf5E6mAfNNUP7OTQ5KLaBQ1gI,3506
105
105
  junifer/datagrabber/tests/test_datagrabber_utils.py,sha256=SR2Zc9DJaCtuULhqCz10JCK7zc4VGnAcKT2pxloM1ys,6311
106
106
  junifer/datagrabber/tests/test_datalad_base.py,sha256=SYxUB9_4YPMfrb7iJM-aJCWbGa3EJfYz31wAUCNa03s,16285
107
- junifer/datagrabber/tests/test_dmcc13_benchmark.py,sha256=24T2ioumTTWC2xMrt7hbuasOY_KfFrJ61ztDxa23TFU,8123
107
+ junifer/datagrabber/tests/test_dmcc13_benchmark.py,sha256=5aTfsjfOK1cvhDm2Qb9UtHdkFJbzOezB7czCX6xjsg0,8063
108
108
  junifer/datagrabber/tests/test_multiple.py,sha256=Mx3xfDrQiWG2W5MW24P5L2XiSeALpJ2-jFlzWkKtu9w,5659
109
109
  junifer/datagrabber/tests/test_pattern.py,sha256=Zmwg79f-qs6AEPVoFpooOquK7rm1hsmgkzuo11BG5PE,8019
110
110
  junifer/datagrabber/tests/test_pattern_datalad.py,sha256=hxw_aXBwHjUo-aUrHescBA2dn1bSJxh-0oV8495iIEA,6483
@@ -124,8 +124,8 @@ junifer/markers/__init__.py,sha256=exUUmpDsPkoNa9FK6Y7pDusOYv56_zoci8hiOaxyswE,7
124
124
  junifer/markers/base.py,sha256=Af8TyoNAIHWREZkIgi2su6PUqoloJXVGT-KW13WlWUM,6370
125
125
  junifer/markers/collection.py,sha256=eD6_IJ3y-9lcN4r0ORZqgr2ICjHyTvlAKyh0HKPYqzk,5247
126
126
  junifer/markers/ets_rss.py,sha256=7fr6mmbMM5NKIDV6bUyyu-pwHJH56GwYv6oozK4EX6k,4557
127
- junifer/markers/parcel_aggregation.py,sha256=F059dbrow2v8MREm2l29mbPg2_PcSwfNalbUJOwaFsE,8420
128
- junifer/markers/sphere_aggregation.py,sha256=bnX9aiHf8pon47QVA0BiFOZV1Bgpyy4doPh2K0Nl9OA,8027
127
+ junifer/markers/parcel_aggregation.py,sha256=e0RM8-8Z5G7gdVdkB6GbreRLY2jvrM8rcTDzq65sv5g,8668
128
+ junifer/markers/sphere_aggregation.py,sha256=3gC8-Z0qbX2y_q-YbwpnPll6lmKZY5V-DdQQA7tFzWc,8275
129
129
  junifer/markers/utils.py,sha256=b6Bt_isqsOD2OF7oHvEpHyilauxYZzyz8YcbGWq6J4A,3833
130
130
  junifer/markers/complexity/__init__.py,sha256=nzL6GpVlFhMDaWyJ-ZtpPx940LUSAUmYcyqLoQ7K1-E,818
131
131
  junifer/markers/complexity/complexity_base.py,sha256=Lb8UnWoeplZg1-SdS5GLMq_pY5Qow3JSciQMtZRNhAo,4405
@@ -217,7 +217,7 @@ junifer/preprocess/tests/test_preprocess_base.py,sha256=-0rpe8QjqYES36H6MHuDs3cv
217
217
  junifer/preprocess/warping/__init__.py,sha256=zW4DVt_RPJWT0-AsylGmh9wgFBDPkU-hx4VzV_qPayU,154
218
218
  junifer/preprocess/warping/_ants_warper.py,sha256=Y1UzZ5jy1TvlLEkaQKW7jCNvEHufZMdQFbg2JpY3UaM,5690
219
219
  junifer/preprocess/warping/_fsl_warper.py,sha256=eELmS44LYYANQaWR3VDKv8iwpEC2qnF9kbTYRanR2mE,3204
220
- junifer/preprocess/warping/space_warper.py,sha256=honyMD9e2kK72oBWb4loA6lKZFs5kIjr1AYB4HU3eDQ,6435
220
+ junifer/preprocess/warping/space_warper.py,sha256=BW7ymZdr4h7lJRtPLi3RT7qwgmu-HFJFqzZNUl341YU,6589
221
221
  junifer/preprocess/warping/tests/test_space_warper.py,sha256=ph92dIDOr9ih9tkqT0yo5tnQL3UkOgQRXG3WzP5QLSE,5586
222
222
  junifer/storage/__init__.py,sha256=QlzBw9UrRhmg_f7zQVas9h313u3sfZIBicA3_0Skm4M,337
223
223
  junifer/storage/base.py,sha256=UxDvj81gSmqqHspbSs1X_i9HvW5wXysDippI7HWM7aM,9654
@@ -248,10 +248,10 @@ junifer/utils/logging.py,sha256=furcU3XIUpUvnpe4PEwzWWIWgmH4j2ZA4MQdvSGWjj0,9216
248
248
  junifer/utils/tests/test_fs.py,sha256=WQS7cKlKEZ742CIuiOYYpueeAhY9PqlastfDVpVVtvE,923
249
249
  junifer/utils/tests/test_helpers.py,sha256=k5qqfxK8dFyuewTJyR1Qn6-nFaYNuVr0ysc18bfPjyU,929
250
250
  junifer/utils/tests/test_logging.py,sha256=l8oo-AiBV7H6_IzlsNcj__cLeZBUvgIGoaMszD9VaJg,7754
251
- junifer-0.0.4.dev810.dist-info/AUTHORS.rst,sha256=rmULKpchpSol4ExWFdm-qu4fkpSZPYqIESVJBZtGb6E,163
252
- junifer-0.0.4.dev810.dist-info/LICENSE.md,sha256=MqCnOBu8uXsEOzRZWh9EBVfVz-kE9NkXcLCrtGXo2yU,34354
253
- junifer-0.0.4.dev810.dist-info/METADATA,sha256=njCeW4AU5kfCwCxw8Soc3CYj3RqDpMHua3pvOrjTNBs,8235
254
- junifer-0.0.4.dev810.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
255
- junifer-0.0.4.dev810.dist-info/entry_points.txt,sha256=DxFvKq0pOqRunAK0FxwJcoDfV1-dZvsFDpD5HRqSDhw,48
256
- junifer-0.0.4.dev810.dist-info/top_level.txt,sha256=4bAq1R2QFQ4b3hohjys2JBvxrl0GKk5LNFzYvz9VGcA,8
257
- junifer-0.0.4.dev810.dist-info/RECORD,,
251
+ junifer-0.0.4.dev821.dist-info/AUTHORS.rst,sha256=rmULKpchpSol4ExWFdm-qu4fkpSZPYqIESVJBZtGb6E,163
252
+ junifer-0.0.4.dev821.dist-info/LICENSE.md,sha256=MqCnOBu8uXsEOzRZWh9EBVfVz-kE9NkXcLCrtGXo2yU,34354
253
+ junifer-0.0.4.dev821.dist-info/METADATA,sha256=AFPNBFGNbtVc-0SIzHhTdNHAJQAQtq38g9KvCua_CmQ,8235
254
+ junifer-0.0.4.dev821.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
255
+ junifer-0.0.4.dev821.dist-info/entry_points.txt,sha256=DxFvKq0pOqRunAK0FxwJcoDfV1-dZvsFDpD5HRqSDhw,48
256
+ junifer-0.0.4.dev821.dist-info/top_level.txt,sha256=4bAq1R2QFQ4b3hohjys2JBvxrl0GKk5LNFzYvz9VGcA,8
257
+ junifer-0.0.4.dev821.dist-info/RECORD,,