judgeval 0.6.0__py3-none-any.whl → 0.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- judgeval/cli.py +1 -1
- judgeval/common/api/constants.py +1 -1
- judgeval/common/tracer/core.py +171 -1
- judgeval/common/tracer/trace_manager.py +6 -1
- judgeval/common/trainer/__init__.py +5 -0
- judgeval/common/trainer/config.py +125 -0
- judgeval/common/trainer/console.py +151 -0
- judgeval/common/trainer/trainable_model.py +238 -0
- judgeval/common/trainer/trainer.py +301 -0
- judgeval/judgment_client.py +4 -104
- judgeval/run_evaluation.py +10 -107
- {judgeval-0.6.0.dist-info → judgeval-0.7.1.dist-info}/METADATA +8 -47
- {judgeval-0.6.0.dist-info → judgeval-0.7.1.dist-info}/RECORD +16 -11
- {judgeval-0.6.0.dist-info → judgeval-0.7.1.dist-info}/WHEEL +0 -0
- {judgeval-0.6.0.dist-info → judgeval-0.7.1.dist-info}/entry_points.txt +0 -0
- {judgeval-0.6.0.dist-info → judgeval-0.7.1.dist-info}/licenses/LICENSE.md +0 -0
@@ -0,0 +1,238 @@
|
|
1
|
+
from fireworks import LLM
|
2
|
+
from .config import TrainerConfig, ModelConfig
|
3
|
+
from typing import Optional, Dict, Any, Callable
|
4
|
+
from .console import _model_spinner_progress, _print_model_progress
|
5
|
+
from judgeval.common.exceptions import JudgmentAPIError
|
6
|
+
|
7
|
+
|
8
|
+
class TrainableModel:
|
9
|
+
"""
|
10
|
+
A wrapper class for managing model snapshots during training.
|
11
|
+
|
12
|
+
This class automatically handles model snapshot creation and management
|
13
|
+
during the RFT (Reinforcement Fine-Tuning) process,
|
14
|
+
abstracting away manual snapshot management from users.
|
15
|
+
"""
|
16
|
+
|
17
|
+
def __init__(self, config: TrainerConfig):
|
18
|
+
"""
|
19
|
+
Initialize the TrainableModel.
|
20
|
+
|
21
|
+
Args:
|
22
|
+
config: TrainerConfig instance with model configuration
|
23
|
+
"""
|
24
|
+
try:
|
25
|
+
self.config = config
|
26
|
+
self.current_step = 0
|
27
|
+
self._current_model = None
|
28
|
+
self._tracer_wrapper_func = None
|
29
|
+
|
30
|
+
self._base_model = self._create_base_model()
|
31
|
+
self._current_model = self._base_model
|
32
|
+
except Exception as e:
|
33
|
+
raise JudgmentAPIError(
|
34
|
+
f"Failed to initialize TrainableModel: {str(e)}"
|
35
|
+
) from e
|
36
|
+
|
37
|
+
@classmethod
|
38
|
+
def from_model_config(cls, model_config: ModelConfig) -> "TrainableModel":
|
39
|
+
"""
|
40
|
+
Create a TrainableModel from a saved ModelConfig.
|
41
|
+
|
42
|
+
Args:
|
43
|
+
model_config: ModelConfig instance with saved model state
|
44
|
+
|
45
|
+
Returns:
|
46
|
+
TrainableModel instance configured to use the saved model
|
47
|
+
"""
|
48
|
+
# Create a TrainerConfig from the ModelConfig
|
49
|
+
trainer_config = TrainerConfig(
|
50
|
+
base_model_name=model_config.base_model_name,
|
51
|
+
deployment_id=model_config.deployment_id,
|
52
|
+
user_id=model_config.user_id,
|
53
|
+
model_id=model_config.model_id,
|
54
|
+
enable_addons=model_config.enable_addons,
|
55
|
+
)
|
56
|
+
|
57
|
+
instance = cls(trainer_config)
|
58
|
+
instance.current_step = model_config.current_step
|
59
|
+
|
60
|
+
if model_config.is_trained and model_config.current_model_name:
|
61
|
+
instance._load_trained_model(model_config.current_model_name)
|
62
|
+
|
63
|
+
return instance
|
64
|
+
|
65
|
+
def _create_base_model(self):
|
66
|
+
"""Create and configure the base model."""
|
67
|
+
try:
|
68
|
+
with _model_spinner_progress(
|
69
|
+
"Creating and deploying base model..."
|
70
|
+
) as update_progress:
|
71
|
+
update_progress("Creating base model instance...")
|
72
|
+
base_model = LLM(
|
73
|
+
model=self.config.base_model_name,
|
74
|
+
deployment_type="on-demand",
|
75
|
+
id=self.config.deployment_id,
|
76
|
+
enable_addons=self.config.enable_addons,
|
77
|
+
)
|
78
|
+
update_progress("Applying deployment configuration...")
|
79
|
+
base_model.apply()
|
80
|
+
_print_model_progress("Base model deployment ready")
|
81
|
+
return base_model
|
82
|
+
except Exception as e:
|
83
|
+
raise JudgmentAPIError(
|
84
|
+
f"Failed to create and deploy base model '{self.config.base_model_name}': {str(e)}"
|
85
|
+
) from e
|
86
|
+
|
87
|
+
def _load_trained_model(self, model_name: str):
|
88
|
+
"""Load a trained model by name."""
|
89
|
+
try:
|
90
|
+
with _model_spinner_progress(
|
91
|
+
f"Loading and deploying trained model: {model_name}"
|
92
|
+
) as update_progress:
|
93
|
+
update_progress("Creating trained model instance...")
|
94
|
+
self._current_model = LLM(
|
95
|
+
model=model_name,
|
96
|
+
deployment_type="on-demand-lora",
|
97
|
+
base_id=self.config.deployment_id,
|
98
|
+
)
|
99
|
+
update_progress("Applying deployment configuration...")
|
100
|
+
self._current_model.apply()
|
101
|
+
_print_model_progress("Trained model deployment ready")
|
102
|
+
|
103
|
+
if self._tracer_wrapper_func:
|
104
|
+
self._tracer_wrapper_func(self._current_model)
|
105
|
+
except Exception as e:
|
106
|
+
raise JudgmentAPIError(
|
107
|
+
f"Failed to load and deploy trained model '{model_name}': {str(e)}"
|
108
|
+
) from e
|
109
|
+
|
110
|
+
def get_current_model(self):
|
111
|
+
return self._current_model
|
112
|
+
|
113
|
+
@property
|
114
|
+
def chat(self):
|
115
|
+
"""OpenAI-compatible chat interface."""
|
116
|
+
return self._current_model.chat
|
117
|
+
|
118
|
+
@property
|
119
|
+
def completions(self):
|
120
|
+
"""OpenAI-compatible completions interface."""
|
121
|
+
return self._current_model.completions
|
122
|
+
|
123
|
+
def advance_to_next_step(self, step: int):
|
124
|
+
"""
|
125
|
+
Advance to the next training step and update the current model snapshot.
|
126
|
+
|
127
|
+
Args:
|
128
|
+
step: The current training step number
|
129
|
+
"""
|
130
|
+
try:
|
131
|
+
self.current_step = step
|
132
|
+
|
133
|
+
if step == 0:
|
134
|
+
self._current_model = self._base_model
|
135
|
+
else:
|
136
|
+
model_name = f"accounts/{self.config.user_id}/models/{self.config.model_id}-v{step}"
|
137
|
+
with _model_spinner_progress(
|
138
|
+
f"Creating and deploying model snapshot: {model_name}"
|
139
|
+
) as update_progress:
|
140
|
+
update_progress("Creating model snapshot instance...")
|
141
|
+
self._current_model = LLM(
|
142
|
+
model=model_name,
|
143
|
+
deployment_type="on-demand-lora",
|
144
|
+
base_id=self.config.deployment_id,
|
145
|
+
)
|
146
|
+
update_progress("Applying deployment configuration...")
|
147
|
+
self._current_model.apply()
|
148
|
+
_print_model_progress("Model snapshot deployment ready")
|
149
|
+
|
150
|
+
if self._tracer_wrapper_func:
|
151
|
+
self._tracer_wrapper_func(self._current_model)
|
152
|
+
except Exception as e:
|
153
|
+
raise JudgmentAPIError(
|
154
|
+
f"Failed to advance to training step {step}: {str(e)}"
|
155
|
+
) from e
|
156
|
+
|
157
|
+
def perform_reinforcement_step(self, dataset, step: int):
|
158
|
+
"""
|
159
|
+
Perform a reinforcement learning step using the current model.
|
160
|
+
|
161
|
+
Args:
|
162
|
+
dataset: Training dataset for the reinforcement step
|
163
|
+
step: Current step number for output model naming
|
164
|
+
|
165
|
+
Returns:
|
166
|
+
Training job object
|
167
|
+
"""
|
168
|
+
try:
|
169
|
+
model_name = f"{self.config.model_id}-v{step + 1}"
|
170
|
+
return self._current_model.reinforcement_step(
|
171
|
+
dataset=dataset,
|
172
|
+
output_model=model_name,
|
173
|
+
epochs=self.config.epochs,
|
174
|
+
learning_rate=self.config.learning_rate,
|
175
|
+
accelerator_count=self.config.accelerator_count,
|
176
|
+
accelerator_type=self.config.accelerator_type,
|
177
|
+
)
|
178
|
+
except Exception as e:
|
179
|
+
raise JudgmentAPIError(
|
180
|
+
f"Failed to start reinforcement learning step {step + 1}: {str(e)}"
|
181
|
+
) from e
|
182
|
+
|
183
|
+
def get_model_config(
|
184
|
+
self, training_params: Optional[Dict[str, Any]] = None
|
185
|
+
) -> ModelConfig:
|
186
|
+
"""
|
187
|
+
Get the current model configuration for persistence.
|
188
|
+
|
189
|
+
Args:
|
190
|
+
training_params: Optional training parameters to include in config
|
191
|
+
|
192
|
+
Returns:
|
193
|
+
ModelConfig instance with current model state
|
194
|
+
"""
|
195
|
+
current_model_name = None
|
196
|
+
is_trained = False
|
197
|
+
|
198
|
+
if self.current_step > 0:
|
199
|
+
current_model_name = f"accounts/{self.config.user_id}/models/{self.config.model_id}-v{self.current_step}"
|
200
|
+
is_trained = True
|
201
|
+
|
202
|
+
return ModelConfig(
|
203
|
+
base_model_name=self.config.base_model_name,
|
204
|
+
deployment_id=self.config.deployment_id,
|
205
|
+
user_id=self.config.user_id,
|
206
|
+
model_id=self.config.model_id,
|
207
|
+
enable_addons=self.config.enable_addons,
|
208
|
+
current_step=self.current_step,
|
209
|
+
total_steps=self.config.num_steps,
|
210
|
+
current_model_name=current_model_name,
|
211
|
+
is_trained=is_trained,
|
212
|
+
training_params=training_params,
|
213
|
+
)
|
214
|
+
|
215
|
+
def save_model_config(
|
216
|
+
self, filepath: str, training_params: Optional[Dict[str, Any]] = None
|
217
|
+
):
|
218
|
+
"""
|
219
|
+
Save the current model configuration to a file.
|
220
|
+
|
221
|
+
Args:
|
222
|
+
filepath: Path to save the configuration file
|
223
|
+
training_params: Optional training parameters to include in config
|
224
|
+
"""
|
225
|
+
model_config = self.get_model_config(training_params)
|
226
|
+
model_config.save_to_file(filepath)
|
227
|
+
|
228
|
+
def _register_tracer_wrapper(self, wrapper_func: Callable):
|
229
|
+
"""
|
230
|
+
Register a tracer wrapper function to be reapplied when models change.
|
231
|
+
|
232
|
+
This is called internally by the tracer's wrap() function to ensure
|
233
|
+
that new model instances created during training are automatically wrapped.
|
234
|
+
|
235
|
+
Args:
|
236
|
+
wrapper_func: Function that wraps a model instance with tracing
|
237
|
+
"""
|
238
|
+
self._tracer_wrapper_func = wrapper_func
|
@@ -0,0 +1,301 @@
|
|
1
|
+
import asyncio
|
2
|
+
import time
|
3
|
+
from typing import Optional, Callable, Any, List, Union
|
4
|
+
from fireworks import Dataset
|
5
|
+
from .config import TrainerConfig, ModelConfig
|
6
|
+
from .trainable_model import TrainableModel
|
7
|
+
from judgeval.tracer import Tracer
|
8
|
+
from judgeval.judgment_client import JudgmentClient
|
9
|
+
from judgeval.scorers import BaseScorer, APIScorerConfig
|
10
|
+
from judgeval.data import Example
|
11
|
+
from .console import _spinner_progress, _print_progress, _print_progress_update
|
12
|
+
from judgeval.common.exceptions import JudgmentAPIError
|
13
|
+
|
14
|
+
|
15
|
+
class JudgmentTrainer:
|
16
|
+
"""
|
17
|
+
A reinforcement learning trainer for Judgment models using Fine-Tuning.
|
18
|
+
|
19
|
+
This class handles the iterative training process where models are improved
|
20
|
+
through reinforcement learning fine-tuning based on generated rollouts and rewards.
|
21
|
+
"""
|
22
|
+
|
23
|
+
def __init__(
|
24
|
+
self,
|
25
|
+
config: TrainerConfig,
|
26
|
+
trainable_model: TrainableModel,
|
27
|
+
tracer: Tracer,
|
28
|
+
project_name: Optional[str] = None,
|
29
|
+
):
|
30
|
+
"""
|
31
|
+
Initialize the JudgmentTrainer.
|
32
|
+
|
33
|
+
Args:
|
34
|
+
config: TrainerConfig instance with training parameters. If None, uses default config.
|
35
|
+
tracer: Optional tracer for observability
|
36
|
+
trainable_model: Optional trainable model instance
|
37
|
+
project_name: Project name for organizing training runs and evaluations
|
38
|
+
"""
|
39
|
+
try:
|
40
|
+
self.config = config
|
41
|
+
self.tracer = tracer
|
42
|
+
self.tracer.show_trace_urls = False
|
43
|
+
self.project_name = project_name or "judgment_training"
|
44
|
+
|
45
|
+
if trainable_model is None:
|
46
|
+
self.trainable_model = TrainableModel(self.config)
|
47
|
+
else:
|
48
|
+
self.trainable_model = trainable_model
|
49
|
+
|
50
|
+
self.judgment_client = JudgmentClient()
|
51
|
+
except Exception as e:
|
52
|
+
raise JudgmentAPIError(
|
53
|
+
f"Failed to initialize JudgmentTrainer: {str(e)}"
|
54
|
+
) from e
|
55
|
+
|
56
|
+
async def generate_rollouts_and_rewards(
|
57
|
+
self,
|
58
|
+
agent_function: Callable[[Any], Any],
|
59
|
+
scorers: List[Union[APIScorerConfig, BaseScorer]],
|
60
|
+
prompts: List[Any],
|
61
|
+
num_prompts_per_step: Optional[int] = None,
|
62
|
+
num_generations_per_prompt: Optional[int] = None,
|
63
|
+
concurrency: Optional[int] = None,
|
64
|
+
):
|
65
|
+
"""
|
66
|
+
Generate rollouts and compute rewards using the current model snapshot.
|
67
|
+
Each sample contains multiple generations for reinforcement learning optimization.
|
68
|
+
|
69
|
+
Args:
|
70
|
+
agent_function: Function/agent to call for generating responses
|
71
|
+
scorers: List of scorer objects to evaluate responses
|
72
|
+
prompts: List of prompts to use for training
|
73
|
+
num_prompts_per_step: Number of prompts to use per step (defaults to config value, limited by prompts list length)
|
74
|
+
num_generations_per_prompt: Generations per prompt (defaults to config value)
|
75
|
+
concurrency: Concurrency limit (defaults to config value)
|
76
|
+
|
77
|
+
Returns:
|
78
|
+
List of dataset rows containing samples with messages and evaluations
|
79
|
+
"""
|
80
|
+
num_prompts_per_step = min(
|
81
|
+
num_prompts_per_step or self.config.num_prompts_per_step, len(prompts)
|
82
|
+
)
|
83
|
+
num_generations_per_prompt = (
|
84
|
+
num_generations_per_prompt or self.config.num_generations_per_prompt
|
85
|
+
)
|
86
|
+
concurrency = concurrency or self.config.concurrency
|
87
|
+
|
88
|
+
semaphore = asyncio.Semaphore(concurrency)
|
89
|
+
|
90
|
+
@self.tracer.observe(span_type="function")
|
91
|
+
async def generate_single_response(prompt_id, generation_id):
|
92
|
+
async with semaphore:
|
93
|
+
prompt_input = prompts[prompt_id]
|
94
|
+
response_data = await agent_function(**prompt_input)
|
95
|
+
messages = response_data.get("messages", [])
|
96
|
+
|
97
|
+
try:
|
98
|
+
traced_messages = self.tracer.get_current_message_history()
|
99
|
+
if traced_messages:
|
100
|
+
messages = traced_messages
|
101
|
+
except Exception as e:
|
102
|
+
print(f"Warning: Failed to get message history from trace: {e}")
|
103
|
+
pass
|
104
|
+
|
105
|
+
example = Example(
|
106
|
+
input=prompt_input,
|
107
|
+
messages=messages,
|
108
|
+
actual_output=response_data,
|
109
|
+
)
|
110
|
+
|
111
|
+
scoring_results = self.judgment_client.run_evaluation(
|
112
|
+
examples=[example],
|
113
|
+
scorers=scorers,
|
114
|
+
project_name=self.project_name,
|
115
|
+
eval_run_name=f"training_step_{self.trainable_model.current_step}_prompt_{prompt_id}_gen_{generation_id}",
|
116
|
+
show_url=False,
|
117
|
+
)
|
118
|
+
|
119
|
+
if scoring_results and scoring_results[0].scorers_data:
|
120
|
+
reward = sum(
|
121
|
+
scorer_data.score
|
122
|
+
for scorer_data in scoring_results[0].scorers_data
|
123
|
+
) / len(scoring_results[0].scorers_data)
|
124
|
+
else:
|
125
|
+
reward = 0.0
|
126
|
+
|
127
|
+
return {
|
128
|
+
"prompt_id": prompt_id,
|
129
|
+
"generation_id": generation_id,
|
130
|
+
"messages": messages,
|
131
|
+
"evals": {"score": reward},
|
132
|
+
}
|
133
|
+
|
134
|
+
coros = []
|
135
|
+
for prompt_id in range(num_prompts_per_step):
|
136
|
+
for generation_id in range(num_generations_per_prompt):
|
137
|
+
coro = generate_single_response(prompt_id, generation_id)
|
138
|
+
coros.append(coro)
|
139
|
+
|
140
|
+
with _spinner_progress(f"Generating {len(coros)} rollouts..."):
|
141
|
+
num_completed = 0
|
142
|
+
results = []
|
143
|
+
|
144
|
+
for coro in asyncio.as_completed(coros):
|
145
|
+
result = await coro
|
146
|
+
results.append(result)
|
147
|
+
num_completed += 1
|
148
|
+
|
149
|
+
_print_progress(f"Generated {len(results)} rollouts successfully")
|
150
|
+
|
151
|
+
dataset_rows = []
|
152
|
+
for prompt_id in range(num_prompts_per_step):
|
153
|
+
prompt_generations = [r for r in results if r["prompt_id"] == prompt_id]
|
154
|
+
sample_generations = [
|
155
|
+
{"messages": gen["messages"], "evals": gen["evals"]}
|
156
|
+
for gen in prompt_generations
|
157
|
+
]
|
158
|
+
dataset_rows.append({"samples": sample_generations})
|
159
|
+
|
160
|
+
return dataset_rows
|
161
|
+
|
162
|
+
async def run_reinforcement_learning(
|
163
|
+
self,
|
164
|
+
agent_function: Callable[[Any], Any],
|
165
|
+
scorers: List[Union[APIScorerConfig, BaseScorer]],
|
166
|
+
prompts: List[Any],
|
167
|
+
) -> ModelConfig:
|
168
|
+
"""
|
169
|
+
Run the iterative reinforcement learning fine-tuning loop.
|
170
|
+
|
171
|
+
This method performs multiple steps of reinforcement learning, where each step:
|
172
|
+
1. Advances to the appropriate model snapshot
|
173
|
+
2. Generates rollouts and computes rewards using scorers
|
174
|
+
3. Trains a new model using reinforcement learning
|
175
|
+
4. Waits for training completion
|
176
|
+
|
177
|
+
Args:
|
178
|
+
agent_function: Function/agent to call for generating responses
|
179
|
+
scorers: List of scorer objects to evaluate responses
|
180
|
+
prompts: List of prompts to use for training
|
181
|
+
|
182
|
+
Returns:
|
183
|
+
ModelConfig: Configuration of the trained model for inference and future training
|
184
|
+
"""
|
185
|
+
|
186
|
+
_print_progress("Starting reinforcement learning training")
|
187
|
+
|
188
|
+
training_params = {
|
189
|
+
"num_steps": self.config.num_steps,
|
190
|
+
"num_prompts_per_step": self.config.num_prompts_per_step,
|
191
|
+
"num_generations_per_prompt": self.config.num_generations_per_prompt,
|
192
|
+
"epochs": self.config.epochs,
|
193
|
+
"learning_rate": self.config.learning_rate,
|
194
|
+
"accelerator_count": self.config.accelerator_count,
|
195
|
+
"accelerator_type": self.config.accelerator_type,
|
196
|
+
"temperature": self.config.temperature,
|
197
|
+
"max_tokens": self.config.max_tokens,
|
198
|
+
}
|
199
|
+
|
200
|
+
start_step = self.trainable_model.current_step
|
201
|
+
|
202
|
+
for step in range(start_step, self.config.num_steps):
|
203
|
+
step_num = step + 1
|
204
|
+
_print_progress(
|
205
|
+
f"Starting training step {step_num}", step_num, self.config.num_steps
|
206
|
+
)
|
207
|
+
|
208
|
+
self.trainable_model.advance_to_next_step(step)
|
209
|
+
|
210
|
+
dataset_rows = await self.generate_rollouts_and_rewards(
|
211
|
+
agent_function, scorers, prompts
|
212
|
+
)
|
213
|
+
|
214
|
+
with _spinner_progress(
|
215
|
+
"Preparing training dataset", step_num, self.config.num_steps
|
216
|
+
):
|
217
|
+
dataset = Dataset.from_list(dataset_rows)
|
218
|
+
dataset.sync()
|
219
|
+
|
220
|
+
_print_progress(
|
221
|
+
"Starting reinforcement training", step_num, self.config.num_steps
|
222
|
+
)
|
223
|
+
job = self.trainable_model.perform_reinforcement_step(dataset, step)
|
224
|
+
|
225
|
+
last_state = None
|
226
|
+
with _spinner_progress(
|
227
|
+
"Training job in progress", step_num, self.config.num_steps
|
228
|
+
):
|
229
|
+
while not job.is_completed:
|
230
|
+
job.raise_if_bad_state()
|
231
|
+
current_state = job.state
|
232
|
+
|
233
|
+
if current_state != last_state:
|
234
|
+
if current_state in ["uploading", "validating"]:
|
235
|
+
_print_progress_update(
|
236
|
+
f"Training job: {current_state} data"
|
237
|
+
)
|
238
|
+
elif current_state == "training":
|
239
|
+
_print_progress_update(
|
240
|
+
"Training job: model training in progress"
|
241
|
+
)
|
242
|
+
else:
|
243
|
+
_print_progress_update(f"Training job: {current_state}")
|
244
|
+
last_state = current_state
|
245
|
+
|
246
|
+
time.sleep(10)
|
247
|
+
job = job.get()
|
248
|
+
if job is None:
|
249
|
+
raise JudgmentAPIError(
|
250
|
+
"Training job was deleted while waiting for completion"
|
251
|
+
)
|
252
|
+
|
253
|
+
_print_progress(
|
254
|
+
f"Training completed! New model: {job.output_model}",
|
255
|
+
step_num,
|
256
|
+
self.config.num_steps,
|
257
|
+
)
|
258
|
+
|
259
|
+
dataset.delete()
|
260
|
+
|
261
|
+
_print_progress("All training steps completed!")
|
262
|
+
|
263
|
+
with _spinner_progress("Deploying final trained model"):
|
264
|
+
self.trainable_model.advance_to_next_step(self.config.num_steps)
|
265
|
+
|
266
|
+
return self.trainable_model.get_model_config(training_params)
|
267
|
+
|
268
|
+
async def train(
|
269
|
+
self,
|
270
|
+
agent_function: Callable[[Any], Any],
|
271
|
+
scorers: List[Union[APIScorerConfig, BaseScorer]],
|
272
|
+
prompts: List[Any],
|
273
|
+
rft_provider: Optional[str] = None,
|
274
|
+
) -> ModelConfig:
|
275
|
+
"""
|
276
|
+
Start the reinforcement learning fine-tuning process.
|
277
|
+
|
278
|
+
This is the main entry point for running the reinforcement learning training.
|
279
|
+
|
280
|
+
Args:
|
281
|
+
agent_function: Function/agent to call for generating responses.
|
282
|
+
scorers: List of scorer objects to evaluate responses
|
283
|
+
prompts: List of prompts to use for training
|
284
|
+
rft_provider: RFT provider to use for training. Currently only "fireworks" is supported.
|
285
|
+
Support for other providers is planned for future releases.
|
286
|
+
|
287
|
+
Returns:
|
288
|
+
ModelConfig: Configuration of the trained model for future loading
|
289
|
+
"""
|
290
|
+
try:
|
291
|
+
if rft_provider is not None:
|
292
|
+
self.config.rft_provider = rft_provider
|
293
|
+
|
294
|
+
return await self.run_reinforcement_learning(
|
295
|
+
agent_function, scorers, prompts
|
296
|
+
)
|
297
|
+
except JudgmentAPIError:
|
298
|
+
# Re-raise JudgmentAPIError as-is
|
299
|
+
raise
|
300
|
+
except Exception as e:
|
301
|
+
raise JudgmentAPIError(f"Training process failed: {str(e)}") from e
|