judgeval 0.0.44__py3-none-any.whl → 0.0.46__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- judgeval/__init__.py +5 -4
- judgeval/clients.py +6 -6
- judgeval/common/__init__.py +7 -2
- judgeval/common/exceptions.py +2 -3
- judgeval/common/logger.py +74 -49
- judgeval/common/s3_storage.py +30 -23
- judgeval/common/tracer.py +1273 -939
- judgeval/common/utils.py +416 -244
- judgeval/constants.py +73 -61
- judgeval/data/__init__.py +1 -1
- judgeval/data/custom_example.py +3 -2
- judgeval/data/datasets/dataset.py +80 -54
- judgeval/data/datasets/eval_dataset_client.py +131 -181
- judgeval/data/example.py +67 -43
- judgeval/data/result.py +11 -9
- judgeval/data/scorer_data.py +4 -2
- judgeval/data/tool.py +25 -16
- judgeval/data/trace.py +57 -29
- judgeval/data/trace_run.py +5 -11
- judgeval/evaluation_run.py +22 -82
- judgeval/integrations/langgraph.py +546 -184
- judgeval/judges/base_judge.py +1 -2
- judgeval/judges/litellm_judge.py +33 -11
- judgeval/judges/mixture_of_judges.py +128 -78
- judgeval/judges/together_judge.py +22 -9
- judgeval/judges/utils.py +14 -5
- judgeval/judgment_client.py +259 -271
- judgeval/rules.py +169 -142
- judgeval/run_evaluation.py +462 -305
- judgeval/scorers/api_scorer.py +20 -11
- judgeval/scorers/exceptions.py +1 -0
- judgeval/scorers/judgeval_scorer.py +77 -58
- judgeval/scorers/judgeval_scorers/api_scorers/__init__.py +46 -15
- judgeval/scorers/judgeval_scorers/api_scorers/answer_correctness.py +3 -2
- judgeval/scorers/judgeval_scorers/api_scorers/answer_relevancy.py +3 -2
- judgeval/scorers/judgeval_scorers/api_scorers/classifier_scorer.py +12 -11
- judgeval/scorers/judgeval_scorers/api_scorers/comparison.py +7 -5
- judgeval/scorers/judgeval_scorers/api_scorers/contextual_precision.py +3 -2
- judgeval/scorers/judgeval_scorers/api_scorers/contextual_recall.py +3 -2
- judgeval/scorers/judgeval_scorers/api_scorers/contextual_relevancy.py +5 -2
- judgeval/scorers/judgeval_scorers/api_scorers/derailment_scorer.py +2 -1
- judgeval/scorers/judgeval_scorers/api_scorers/execution_order.py +17 -8
- judgeval/scorers/judgeval_scorers/api_scorers/faithfulness.py +3 -2
- judgeval/scorers/judgeval_scorers/api_scorers/groundedness.py +3 -2
- judgeval/scorers/judgeval_scorers/api_scorers/hallucination.py +3 -2
- judgeval/scorers/judgeval_scorers/api_scorers/instruction_adherence.py +3 -2
- judgeval/scorers/judgeval_scorers/api_scorers/json_correctness.py +8 -9
- judgeval/scorers/judgeval_scorers/api_scorers/summarization.py +4 -4
- judgeval/scorers/judgeval_scorers/api_scorers/tool_dependency.py +5 -5
- judgeval/scorers/judgeval_scorers/api_scorers/tool_order.py +5 -2
- judgeval/scorers/judgeval_scorers/classifiers/text2sql/text2sql_scorer.py +9 -10
- judgeval/scorers/prompt_scorer.py +48 -37
- judgeval/scorers/score.py +86 -53
- judgeval/scorers/utils.py +11 -7
- judgeval/tracer/__init__.py +1 -1
- judgeval/utils/alerts.py +23 -12
- judgeval/utils/{data_utils.py → file_utils.py} +5 -9
- judgeval/utils/requests.py +29 -0
- judgeval/version_check.py +5 -2
- {judgeval-0.0.44.dist-info → judgeval-0.0.46.dist-info}/METADATA +79 -135
- judgeval-0.0.46.dist-info/RECORD +69 -0
- judgeval-0.0.44.dist-info/RECORD +0 -68
- {judgeval-0.0.44.dist-info → judgeval-0.0.46.dist-info}/WHEEL +0 -0
- {judgeval-0.0.44.dist-info → judgeval-0.0.46.dist-info}/licenses/LICENSE.md +0 -0
judgeval/judges/base_judge.py
CHANGED
judgeval/judges/litellm_judge.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1
1
|
import pydantic
|
2
2
|
from typing import List, Union, Mapping
|
3
3
|
|
4
|
-
from judgeval import *
|
5
4
|
from judgeval.judges import JudgevalJudge
|
6
|
-
from judgeval.common.utils import
|
5
|
+
from judgeval.common.utils import (
|
6
|
+
afetch_litellm_api_response,
|
7
|
+
fetch_litellm_api_response,
|
8
|
+
)
|
7
9
|
from judgeval.common.logger import debug, error
|
8
10
|
|
9
11
|
BASE_CONVERSATION = [
|
@@ -18,30 +20,50 @@ class LiteLLMJudge(JudgevalJudge):
|
|
18
20
|
self.kwargs = kwargs
|
19
21
|
super().__init__(model_name=model)
|
20
22
|
|
21
|
-
def generate(
|
23
|
+
def generate(
|
24
|
+
self,
|
25
|
+
input: Union[str, List[Mapping[str, str]]],
|
26
|
+
schema: pydantic.BaseModel = None,
|
27
|
+
) -> str:
|
22
28
|
debug(f"Generating response for input type: {type(input)}")
|
23
29
|
if isinstance(input, str):
|
24
30
|
convo = BASE_CONVERSATION + [{"role": "user", "content": input}]
|
25
|
-
return fetch_litellm_api_response(
|
31
|
+
return fetch_litellm_api_response(
|
32
|
+
model=self.model, messages=convo, response_format=schema
|
33
|
+
)
|
26
34
|
elif isinstance(input, list):
|
27
|
-
return fetch_litellm_api_response(
|
35
|
+
return fetch_litellm_api_response(
|
36
|
+
model=self.model, messages=input, response_format=schema
|
37
|
+
)
|
28
38
|
else:
|
29
39
|
error(f"Invalid input type received: {type(input)}")
|
30
|
-
raise TypeError(
|
40
|
+
raise TypeError(
|
41
|
+
f"Input must be a string or a list of dictionaries. Input type of: {type(input)}"
|
42
|
+
)
|
31
43
|
|
32
|
-
async def a_generate(
|
44
|
+
async def a_generate(
|
45
|
+
self,
|
46
|
+
input: Union[str, List[Mapping[str, str]]],
|
47
|
+
schema: pydantic.BaseModel = None,
|
48
|
+
) -> str:
|
33
49
|
debug(f"Async generating response for input type: {type(input)}")
|
34
50
|
if isinstance(input, str):
|
35
51
|
convo = BASE_CONVERSATION + [{"role": "user", "content": input}]
|
36
|
-
response = await afetch_litellm_api_response(
|
52
|
+
response = await afetch_litellm_api_response(
|
53
|
+
model=self.model, messages=convo, response_format=schema
|
54
|
+
)
|
37
55
|
return response
|
38
56
|
elif isinstance(input, list):
|
39
|
-
response = await afetch_litellm_api_response(
|
57
|
+
response = await afetch_litellm_api_response(
|
58
|
+
model=self.model, messages=input, response_format=schema
|
59
|
+
)
|
40
60
|
return response
|
41
61
|
else:
|
42
62
|
error(f"Invalid input type received: {type(input)}")
|
43
|
-
raise TypeError(
|
44
|
-
|
63
|
+
raise TypeError(
|
64
|
+
f"Input must be a string or a list of dictionaries. Input type of: {type(input)}"
|
65
|
+
)
|
66
|
+
|
45
67
|
def load_model(self):
|
46
68
|
return self.model
|
47
69
|
|
@@ -3,23 +3,24 @@ Implementation for Mixture of Judges model through Judgeval
|
|
3
3
|
|
4
4
|
Enables client to use multiple models to generate responses and then aggregate them into a single response.
|
5
5
|
"""
|
6
|
-
|
6
|
+
|
7
7
|
import pydantic
|
8
|
-
from typing import List, Union
|
8
|
+
from typing import List, Union
|
9
9
|
from judgeval.judges import JudgevalJudge
|
10
10
|
from judgeval.common.utils import (
|
11
|
-
get_completion_multiple_models,
|
12
|
-
get_chat_completion,
|
13
|
-
aget_completion_multiple_models,
|
14
|
-
aget_chat_completion
|
11
|
+
get_completion_multiple_models,
|
12
|
+
get_chat_completion,
|
13
|
+
aget_completion_multiple_models,
|
14
|
+
aget_chat_completion,
|
15
15
|
)
|
16
16
|
from judgeval.common.logger import debug, error
|
17
17
|
|
18
|
+
|
18
19
|
def build_dynamic_mixture_prompt(
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
20
|
+
judge_responses: List[str],
|
21
|
+
custom_system_prompt: str | None = None,
|
22
|
+
custom_conversation_history: List[dict] | None = None,
|
23
|
+
) -> List[dict]:
|
23
24
|
"""
|
24
25
|
Dynamically builds a prompt to mix judge responses together for the Mixture of Judges model.
|
25
26
|
|
@@ -29,10 +30,15 @@ def build_dynamic_mixture_prompt(
|
|
29
30
|
Args:
|
30
31
|
judge_responses (List[str]): List of responses from individual judges to be synthesized
|
31
32
|
custom_system_prompt (str, optional): Custom system prompt to override the default one. Defaults to None.
|
32
|
-
custom_conversation_history (List[
|
33
|
+
custom_conversation_history (List[dict], optional): Custom conversation history to override the default one. Defaults to None.
|
33
34
|
"""
|
34
|
-
formatted_responses = "\n".join(
|
35
|
-
|
35
|
+
formatted_responses = "\n".join(
|
36
|
+
[
|
37
|
+
f"# Judge {i + 1}'s response: #\n{response}"
|
38
|
+
for i, response in enumerate(judge_responses)
|
39
|
+
]
|
40
|
+
)
|
41
|
+
|
36
42
|
# This is the default prompt for the Mixture of Judges model
|
37
43
|
"""
|
38
44
|
You are tasked with synthesizing responses from multiple expert judges. You will receive N individual answers on the same topic. Your job is to:
|
@@ -51,75 +57,99 @@ def build_dynamic_mixture_prompt(
|
|
51
57
|
|
52
58
|
default_conversation = [ # inject the judge responses into the default prompt
|
53
59
|
{
|
54
|
-
|
55
|
-
|
56
|
-
},
|
60
|
+
"role": "system",
|
61
|
+
"content": "You are tasked with synthesizing responses from multiple expert judges. You will receive N individual answers on the same topic. Your job is to:\n1. Analyze and compare the key points, patterns, and agreements between the answers.\n2. Identify the consensus by focusing on areas where most or all of the answers align. Consider common reasoning and frequently mentioned conclusions.\n3. Condense the responses into a single, coherent, and concise answer that represents the collective judgment of the group.\n4. When opinions differ or contradict, highlight the most supported viewpoint while briefly acknowledging the dissenting perspectives.\n5. Ensure the final answer is balanced and clear, providing a comprehensive summary that captures the wisdom of all judges while avoiding repetition.\n\n**IMPORTANT**: IF THE JUDGE RESPONSES ARE IN JSON FORMAT, YOU MUST RESPOND USING THE SAME JSON FORMAT THAT THE RESPONSES ARE IN. If the judge responses are in JSON, you MUST RESPOND IN VALID JSON FORMAT. ",
|
62
|
+
},
|
57
63
|
{
|
58
|
-
|
59
|
-
|
60
|
-
},
|
64
|
+
"role": "user",
|
65
|
+
"content": '## Start of Judge Responses ## \n# Judge 1\'s response: #\n{\n"claims": [\n{\n"claim": "A 30-day full refund is offered.",\n"quote": "We offer a 30-day full refund at no extra cost."\n},\n{\n"claim": "The 30-day full refund comes at no extra cost.",\n"quote": "We offer a 30-day full refund at no extra cost."\n}\n]\n}\n\n# Judge 2\'s response: #\n{\n "claims": [\n {\n "claim": "A full refund is offered within 30 days.",\n "quote": "We offer a 30-day full refund at no extra cost."\n },\n {\n "claim": "The 30-day full refund is offered at no extra cost.",\n "quote": "We offer a 30-day full refund at no extra cost."\n }\n ]\n}\n# Judge 3\'s response: #\n {\n "claims": [\n {\n "claim": "A 30-day full refund is offered.",\n "quote": "We offer a 30-day full refund at no extra cost."\n },\n {\n "claim": "The 30-day full refund is offered at no extra cost.",\n "quote": "We offer a 30-day full refund at no extra cost."\n }\n ]\n}\n## End of Judge Responses ##\nSynthesized response:',
|
66
|
+
},
|
61
67
|
{
|
62
|
-
|
63
|
-
|
68
|
+
"role": "assistant",
|
69
|
+
"content": 'The consensus among the judges is clear and unanimous. All three judges agree that a 30-day full refund is offered, and this refund is available at no extra cost. This conclusion is consistently supported by their statements, as each of their claims is directly quoted as: "We offer a 30-day full refund at no extra cost." There are no dissenting perspectives or opposing views provided in any of the responses, indicating complete alignment on this topic.\n\nJSON:\n{\n "claims": [\n {\n "claim": "A full refund is offered within 30 days.",\n "quote": "We offer a 30-day full refund at no extra cost."\n },\n {\n "claim": "The 30-day full refund is offered at no extra cost.",\n "quote": "We offer a 30-day full refund at no extra cost."\n }\n ]\n}',
|
64
70
|
},
|
65
71
|
{
|
66
|
-
|
67
|
-
|
72
|
+
"role": "user",
|
73
|
+
"content": "## Start of Judge Responses ##\n# Judge 1's response: # \nThe capital of France is Paris.\n\n# Judge 2's response: #\nThe capital of France is Paris.\n\n# Judge 3's response: # \nThe capital of France is Paris. It's one of the most popular tourist destinations in the world, known for its art, culture, and history. It's also famous for its iconic landmarks such as the Eiffel Tower, Louvre Museum, and Notre-Dame Cathedral.\n\n## End of Judge Responses ##\nSynthesized response:",
|
68
74
|
},
|
69
75
|
{
|
70
|
-
|
71
|
-
|
72
|
-
},
|
76
|
+
"role": "assistant",
|
77
|
+
"content": "The capital of France is Paris. It is widely recognized as one of the world's most popular tourist destinations, celebrated for its rich art, culture, and history. Paris is renowned for its iconic landmarks, including the Eiffel Tower, Louvre Museum, and Notre-Dame Cathedral.",
|
78
|
+
},
|
73
79
|
{
|
74
|
-
|
75
|
-
|
76
|
-
}
|
80
|
+
"role": "user",
|
81
|
+
"content": f"## Start of Judge Responses ##\n{formatted_responses}\n## End of Judge Responses ##\nSynthesized response:\n",
|
82
|
+
},
|
77
83
|
]
|
78
|
-
|
84
|
+
|
79
85
|
# If a custom system prompt is provided, validate and use it
|
80
86
|
if custom_system_prompt is not None:
|
81
87
|
if not isinstance(custom_system_prompt, str):
|
82
|
-
error(
|
83
|
-
|
88
|
+
error(
|
89
|
+
f"TypeError: Custom system prompt must be a string. Received: {type(custom_system_prompt)}."
|
90
|
+
)
|
91
|
+
raise TypeError(
|
92
|
+
f"Custom system prompt must be a string. Received: {type(custom_system_prompt)}."
|
93
|
+
)
|
84
94
|
if not custom_system_prompt:
|
85
95
|
error("ValueError: Custom system prompt cannot be empty")
|
86
96
|
raise ValueError("Custom system prompt cannot be empty")
|
87
97
|
# Override the default system prompt, but also add special instructions for handling JSON
|
88
|
-
default_conversation[0][
|
89
|
-
|
98
|
+
default_conversation[0]["content"] = (
|
99
|
+
custom_system_prompt
|
100
|
+
+ "\n\n**IMPORTANT**: IF THE JUDGE RESPONSES ARE IN JSON FORMAT, YOU MUST RESPOND USING THE SAME JSON FORMAT THAT THE RESPONSES ARE IN. If the judge responses are in JSON, you MUST RESPOND IN VALID JSON FORMAT."
|
101
|
+
)
|
102
|
+
|
90
103
|
# If a custom conversation history is provided, append the judge responses to it
|
91
104
|
if custom_conversation_history is not None:
|
92
105
|
# Validate custom conversation history format
|
93
106
|
for message in custom_conversation_history:
|
94
107
|
if not isinstance(message, dict):
|
95
|
-
error(
|
96
|
-
|
97
|
-
|
98
|
-
|
108
|
+
error(
|
109
|
+
f"TypeError: Custom conversation history must be a list of dictionaries. Received: {message}."
|
110
|
+
)
|
111
|
+
raise TypeError(
|
112
|
+
f"Custom conversation history must be a list of dictionaries. Received: {message}."
|
113
|
+
)
|
114
|
+
|
115
|
+
if "role" not in message or "content" not in message:
|
99
116
|
error("ValueError: Each message must have 'role' and 'content' keys")
|
100
117
|
raise ValueError("Each message must have 'role' and 'content' keys")
|
101
|
-
|
102
|
-
if not isinstance(message[
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
raise
|
109
|
-
|
118
|
+
|
119
|
+
if not isinstance(message["role"], str) or not isinstance(
|
120
|
+
message["content"], str
|
121
|
+
):
|
122
|
+
error(
|
123
|
+
f"TypeError: Message role and content must be strings. Received: {type(message['role'])}, {type(message['content'])}."
|
124
|
+
)
|
125
|
+
raise TypeError(
|
126
|
+
f"Message role and content must be strings. Received: {type(message['role'])}, {type(message['content'])}."
|
127
|
+
)
|
128
|
+
|
129
|
+
if message["role"] not in ["system", "user", "assistant"]:
|
130
|
+
error(
|
131
|
+
f"ValueError: Message role must be one of: 'system', 'user', 'assistant'. Received: {message['role']}."
|
132
|
+
)
|
133
|
+
raise ValueError(
|
134
|
+
f"Message role must be one of: 'system', 'user', 'assistant'. Received: {message['role']}."
|
135
|
+
)
|
136
|
+
|
110
137
|
judge_responses_prompt = {
|
111
|
-
|
112
|
-
|
138
|
+
"role": "user",
|
139
|
+
"content": f"## Start of Judge Responses ##\n{formatted_responses}\n## End of Judge Responses ##\nSynthesized response:\n",
|
113
140
|
}
|
114
141
|
return custom_conversation_history + [judge_responses_prompt]
|
115
|
-
|
142
|
+
|
116
143
|
# Otherwise return the default conversation with system prompt and examples
|
117
144
|
# No customization, return the default conversation with system prompt and examples
|
118
145
|
return default_conversation
|
119
146
|
|
147
|
+
|
120
148
|
BASE_CONVERSATION = [
|
121
149
|
{"role": "system", "content": "You are a helpful assistant."},
|
122
150
|
] # for string inputs, we need to add the user query to a base conversation, since LiteLLM only accepts a list of dictionaries as a chat history
|
151
|
+
|
152
|
+
|
123
153
|
class MixtureOfJudges(JudgevalJudge):
|
124
154
|
"""
|
125
155
|
IMPORTANT: When supplying custom prompts and conversation histories for aggregation, supply them in the following format:
|
@@ -134,10 +164,17 @@ class MixtureOfJudges(JudgevalJudge):
|
|
134
164
|
]
|
135
165
|
}
|
136
166
|
"""
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
167
|
+
|
168
|
+
def __init__(
|
169
|
+
self,
|
170
|
+
models: List[str] = [
|
171
|
+
"QWEN",
|
172
|
+
"LLAMA3_70B_INSTRUCT_TURBO",
|
173
|
+
"MISTRAL_8x22B_INSTRUCT",
|
174
|
+
],
|
175
|
+
aggregator: str = "gpt-4.1",
|
176
|
+
**kwargs,
|
177
|
+
):
|
141
178
|
"""
|
142
179
|
`models` are the individual judge models to be used for generating responses.
|
143
180
|
`aggregator` is the model that will aggregate the responses from the individual judges.
|
@@ -150,11 +187,12 @@ class MixtureOfJudges(JudgevalJudge):
|
|
150
187
|
super().__init__(model_name=models)
|
151
188
|
|
152
189
|
def generate(
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
190
|
+
self,
|
191
|
+
input: Union[str, List[dict]],
|
192
|
+
response_schema: pydantic.BaseModel = None,
|
193
|
+
aggregation_schema: pydantic.BaseModel = None,
|
194
|
+
**kwargs,
|
195
|
+
) -> str:
|
158
196
|
"""
|
159
197
|
Args:
|
160
198
|
input (Union[str, List[Mapping[str, str]]]): Input query or conversation history to the model.
|
@@ -163,7 +201,7 @@ class MixtureOfJudges(JudgevalJudge):
|
|
163
201
|
kwargs: Additional keyword arguments.
|
164
202
|
"""
|
165
203
|
debug(f"Generating response for input type: {type(input)}")
|
166
|
-
|
204
|
+
|
167
205
|
# Convert input to conversation format if needed
|
168
206
|
if isinstance(input, str):
|
169
207
|
convo = BASE_CONVERSATION + [{"role": "user", "content": input}]
|
@@ -171,20 +209,26 @@ class MixtureOfJudges(JudgevalJudge):
|
|
171
209
|
convo = input
|
172
210
|
else:
|
173
211
|
error(f"Invalid input type received: {type(input)}")
|
174
|
-
raise TypeError(
|
212
|
+
raise TypeError(
|
213
|
+
f"Input must be a string or a list of dictionaries. Input type of: {type(input)}"
|
214
|
+
)
|
175
215
|
|
176
216
|
try:
|
177
217
|
responses = get_completion_multiple_models(
|
178
218
|
models=self.models,
|
179
219
|
messages=[convo] * len(self.models),
|
180
|
-
response_formats=[response_schema] * len(self.models)
|
220
|
+
response_formats=[response_schema] * len(self.models),
|
181
221
|
)
|
182
222
|
except Exception as e:
|
183
223
|
error(f"Error getting completions from multiple models: {str(e)}")
|
184
224
|
raise
|
185
225
|
|
186
|
-
compiled_mixture_prompt = build_dynamic_mixture_prompt(
|
187
|
-
|
226
|
+
compiled_mixture_prompt = build_dynamic_mixture_prompt(
|
227
|
+
responses,
|
228
|
+
self.kwargs.get("custom_prompt"),
|
229
|
+
self.kwargs.get("custom_conversation"),
|
230
|
+
)
|
231
|
+
|
188
232
|
try:
|
189
233
|
mixed_response = get_chat_completion(
|
190
234
|
model_type=self.aggregator,
|
@@ -194,16 +238,16 @@ class MixtureOfJudges(JudgevalJudge):
|
|
194
238
|
except Exception as e:
|
195
239
|
error(f"Error getting chat completion from aggregator: {str(e)}")
|
196
240
|
raise
|
197
|
-
|
241
|
+
|
198
242
|
return mixed_response
|
199
243
|
|
200
244
|
async def a_generate(
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
245
|
+
self,
|
246
|
+
input: Union[str, List[dict]],
|
247
|
+
response_schema: pydantic.BaseModel = None,
|
248
|
+
aggregation_schema: pydantic.BaseModel = None,
|
249
|
+
**kwargs,
|
250
|
+
) -> str:
|
207
251
|
"""
|
208
252
|
Args:
|
209
253
|
input (Union[str, List[Mapping[str, str]]]): Input query or conversation history to the model.
|
@@ -212,7 +256,7 @@ class MixtureOfJudges(JudgevalJudge):
|
|
212
256
|
kwargs: Additional keyword arguments.
|
213
257
|
"""
|
214
258
|
debug(f"Generating response for input type: {type(input)}")
|
215
|
-
|
259
|
+
|
216
260
|
# Convert input to conversation format if needed
|
217
261
|
if isinstance(input, str):
|
218
262
|
convo = BASE_CONVERSATION + [{"role": "user", "content": input}]
|
@@ -220,20 +264,26 @@ class MixtureOfJudges(JudgevalJudge):
|
|
220
264
|
convo = input
|
221
265
|
else:
|
222
266
|
error(f"Invalid input type received: {type(input)}")
|
223
|
-
raise TypeError(
|
267
|
+
raise TypeError(
|
268
|
+
f"Input must be a string or a list of dictionaries. Input type of: {type(input)}"
|
269
|
+
)
|
224
270
|
|
225
271
|
try:
|
226
272
|
responses = await aget_completion_multiple_models(
|
227
273
|
models=self.models,
|
228
274
|
messages=[convo] * len(self.models),
|
229
|
-
response_formats=[response_schema] * len(self.models)
|
275
|
+
response_formats=[response_schema] * len(self.models),
|
230
276
|
)
|
231
277
|
except Exception as e:
|
232
278
|
error(f"Error getting async completions from multiple models: {str(e)}")
|
233
279
|
raise
|
234
280
|
|
235
|
-
compiled_mixture_prompt = build_dynamic_mixture_prompt(
|
236
|
-
|
281
|
+
compiled_mixture_prompt = build_dynamic_mixture_prompt(
|
282
|
+
responses,
|
283
|
+
self.kwargs.get("custom_prompt"),
|
284
|
+
self.kwargs.get("custom_conversation"),
|
285
|
+
)
|
286
|
+
|
237
287
|
try:
|
238
288
|
mixed_response = await aget_chat_completion(
|
239
289
|
model_type=self.aggregator,
|
@@ -243,9 +293,9 @@ class MixtureOfJudges(JudgevalJudge):
|
|
243
293
|
except Exception as e:
|
244
294
|
error(f"Error getting async chat completion from aggregator: {str(e)}")
|
245
295
|
raise
|
246
|
-
|
296
|
+
|
247
297
|
return mixed_response
|
248
|
-
|
298
|
+
|
249
299
|
def load_model(self):
|
250
300
|
return self.models
|
251
301
|
|
@@ -3,16 +3,20 @@ Implementation of using TogetherAI inference for judges.
|
|
3
3
|
"""
|
4
4
|
|
5
5
|
from pydantic import BaseModel
|
6
|
-
from typing import List, Union
|
6
|
+
from typing import List, Union
|
7
7
|
from judgeval.common.logger import debug, error
|
8
8
|
|
9
9
|
from judgeval.judges import JudgevalJudge
|
10
|
-
from judgeval.common.utils import
|
10
|
+
from judgeval.common.utils import (
|
11
|
+
fetch_together_api_response,
|
12
|
+
afetch_together_api_response,
|
13
|
+
)
|
11
14
|
|
12
15
|
BASE_CONVERSATION = [
|
13
16
|
{"role": "system", "content": "You are a helpful assistant."},
|
14
17
|
]
|
15
18
|
|
19
|
+
|
16
20
|
class TogetherJudge(JudgevalJudge):
|
17
21
|
def __init__(self, model: str = "Qwen/Qwen2.5-72B-Instruct-Turbo", **kwargs):
|
18
22
|
debug(f"Initializing TogetherJudge with model={model}")
|
@@ -21,27 +25,37 @@ class TogetherJudge(JudgevalJudge):
|
|
21
25
|
super().__init__(model_name=model)
|
22
26
|
|
23
27
|
# TODO: Fix cost for generate and a_generate
|
24
|
-
def generate(self, input: Union[str, List[
|
28
|
+
def generate(self, input: Union[str, List[dict]], schema: BaseModel = None) -> str:
|
25
29
|
debug(f"Generating response for input type: {type(input)}")
|
26
30
|
if isinstance(input, str):
|
27
31
|
convo = BASE_CONVERSATION + [{"role": "user", "content": input}]
|
28
|
-
return fetch_together_api_response(
|
32
|
+
return fetch_together_api_response(
|
33
|
+
self.model, convo, response_format=schema
|
34
|
+
)
|
29
35
|
elif isinstance(input, list):
|
30
36
|
convo = input
|
31
|
-
return fetch_together_api_response(
|
37
|
+
return fetch_together_api_response(
|
38
|
+
self.model, convo, response_format=schema
|
39
|
+
)
|
32
40
|
else:
|
33
41
|
error(f"Invalid input type received: {type(input)}")
|
34
42
|
raise TypeError("Input must be a string or a list of dictionaries.")
|
35
43
|
|
36
|
-
async def a_generate(
|
44
|
+
async def a_generate(
|
45
|
+
self, input: Union[str, List[dict]], schema: BaseModel = None
|
46
|
+
) -> str:
|
37
47
|
debug(f"Async generating response for input type: {type(input)}")
|
38
48
|
if isinstance(input, str):
|
39
49
|
convo = BASE_CONVERSATION + [{"role": "user", "content": input}]
|
40
|
-
res = await afetch_together_api_response(
|
50
|
+
res = await afetch_together_api_response(
|
51
|
+
self.model, convo, response_format=schema
|
52
|
+
)
|
41
53
|
return res
|
42
54
|
elif isinstance(input, list):
|
43
55
|
convo = input
|
44
|
-
res = await afetch_together_api_response(
|
56
|
+
res = await afetch_together_api_response(
|
57
|
+
self.model, convo, response_format=schema
|
58
|
+
)
|
45
59
|
return res
|
46
60
|
else:
|
47
61
|
error(f"Invalid input type received: {type(input)}")
|
@@ -52,4 +66,3 @@ class TogetherJudge(JudgevalJudge):
|
|
52
66
|
|
53
67
|
def get_model_name(self) -> str:
|
54
68
|
return self.model
|
55
|
-
|
judgeval/judges/utils.py
CHANGED
@@ -1,23 +1,30 @@
|
|
1
1
|
"""
|
2
2
|
This module contains utility functions for judge models.
|
3
3
|
"""
|
4
|
+
|
4
5
|
import litellm
|
5
6
|
from typing import Optional, Union, Tuple, List
|
6
7
|
|
7
8
|
from judgeval.common.exceptions import InvalidJudgeModelError
|
8
9
|
from judgeval.judges import JudgevalJudge, LiteLLMJudge, TogetherJudge, MixtureOfJudges
|
9
|
-
from judgeval.constants import
|
10
|
+
from judgeval.constants import (
|
11
|
+
TOGETHER_SUPPORTED_MODELS,
|
12
|
+
JUDGMENT_SUPPORTED_MODELS,
|
13
|
+
ACCEPTABLE_MODELS,
|
14
|
+
)
|
10
15
|
|
11
16
|
LITELLM_SUPPORTED_MODELS = set(litellm.model_list)
|
12
17
|
|
18
|
+
|
13
19
|
def create_judge(
|
14
|
-
model: Optional[Union[str, List[str], JudgevalJudge]] = None
|
20
|
+
model: Optional[Union[str, List[str], JudgevalJudge]] = None,
|
21
|
+
) -> Tuple[JudgevalJudge, bool]:
|
15
22
|
"""
|
16
23
|
Creates a judge model from string(s) or a judgeval judge object.
|
17
24
|
|
18
25
|
If `model` is a single string, it is assumed to be a judge model name.
|
19
26
|
If `model` is a list of strings, it is assumed to be a list of judge model names (for MixtureOfJudges).
|
20
|
-
If `model` is a judgeval judge object, it is returned as is.
|
27
|
+
If `model` is a judgeval judge object, it is returned as is.
|
21
28
|
|
22
29
|
Returns a tuple of (initialized judgevalBaseLLM, using_native_model boolean)
|
23
30
|
If no model is provided, uses GPT4o as the default judge.
|
@@ -25,10 +32,12 @@ def create_judge(
|
|
25
32
|
if model is None: # default option
|
26
33
|
return LiteLLMJudge(model="gpt-4.1"), True
|
27
34
|
if not isinstance(model, (str, list, JudgevalJudge)):
|
28
|
-
raise InvalidJudgeModelError(
|
35
|
+
raise InvalidJudgeModelError(
|
36
|
+
f"Model must be a string, list of strings, or a judgeval judge object. Got: {type(model)} instead."
|
37
|
+
)
|
29
38
|
# If model is already a valid judge type, return it and mark native
|
30
39
|
if isinstance(model, (JudgevalJudge, LiteLLMJudge, TogetherJudge, MixtureOfJudges)):
|
31
|
-
return model, True
|
40
|
+
return model, True
|
32
41
|
|
33
42
|
# Either string or List[str]
|
34
43
|
if isinstance(model, list):
|