judgeval 0.0.2__py3-none-any.whl → 0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. judgeval/__init__.py +0 -71
  2. judgeval/common/tracer.py +57 -31
  3. judgeval/constants.py +1 -0
  4. judgeval/data/__init__.py +2 -1
  5. judgeval/data/scorer_data.py +2 -2
  6. judgeval/evaluation_run.py +16 -15
  7. judgeval/judges/__init__.py +2 -2
  8. judgeval/judges/base_judge.py +1 -1
  9. judgeval/judges/litellm_judge.py +2 -2
  10. judgeval/judges/mixture_of_judges.py +2 -2
  11. judgeval/judges/together_judge.py +2 -2
  12. judgeval/judges/utils.py +4 -4
  13. judgeval/judgment_client.py +67 -15
  14. judgeval/run_evaluation.py +79 -14
  15. judgeval/scorers/__init__.py +8 -4
  16. judgeval/scorers/api_scorer.py +64 -0
  17. judgeval/scorers/base_scorer.py +3 -2
  18. judgeval/scorers/exceptions.py +11 -0
  19. judgeval/scorers/{custom_scorer.py → judgeval_scorer.py} +9 -5
  20. judgeval/scorers/judgeval_scorers/__init__.py +132 -9
  21. judgeval/scorers/judgeval_scorers/api_scorers/__init__.py +23 -0
  22. judgeval/scorers/judgeval_scorers/api_scorers/answer_correctness.py +19 -0
  23. judgeval/scorers/judgeval_scorers/{answer_relevancy.py → api_scorers/answer_relevancy.py} +2 -2
  24. judgeval/scorers/judgeval_scorers/{contextual_precision.py → api_scorers/contextual_precision.py} +2 -2
  25. judgeval/scorers/judgeval_scorers/{contextual_recall.py → api_scorers/contextual_recall.py} +2 -2
  26. judgeval/scorers/judgeval_scorers/{contextual_relevancy.py → api_scorers/contextual_relevancy.py} +2 -2
  27. judgeval/scorers/judgeval_scorers/{faithfulness.py → api_scorers/faithfulness.py} +2 -2
  28. judgeval/scorers/judgeval_scorers/{hallucination.py → api_scorers/hallucination.py} +2 -2
  29. judgeval/scorers/judgeval_scorers/{json_correctness.py → api_scorers/json_correctness.py} +7 -7
  30. judgeval/scorers/judgeval_scorers/{summarization.py → api_scorers/summarization.py} +2 -2
  31. judgeval/scorers/judgeval_scorers/{tool_correctness.py → api_scorers/tool_correctness.py} +2 -2
  32. judgeval/scorers/judgeval_scorers/local_implementations/__init__.py +24 -0
  33. judgeval/scorers/judgeval_scorers/local_implementations/answer_correctness/__init__.py +4 -0
  34. judgeval/scorers/judgeval_scorers/local_implementations/answer_correctness/answer_correctness_scorer.py +272 -0
  35. judgeval/scorers/judgeval_scorers/local_implementations/answer_correctness/prompts.py +169 -0
  36. judgeval/scorers/judgeval_scorers/local_implementations/answer_relevancy/__init__.py +4 -0
  37. judgeval/scorers/judgeval_scorers/local_implementations/answer_relevancy/answer_relevancy_scorer.py +292 -0
  38. judgeval/scorers/judgeval_scorers/local_implementations/answer_relevancy/prompts.py +174 -0
  39. judgeval/scorers/judgeval_scorers/local_implementations/contextual_precision/__init__.py +3 -0
  40. judgeval/scorers/judgeval_scorers/local_implementations/contextual_precision/contextual_precision_scorer.py +259 -0
  41. judgeval/scorers/judgeval_scorers/local_implementations/contextual_precision/prompts.py +106 -0
  42. judgeval/scorers/judgeval_scorers/local_implementations/contextual_recall/__init__.py +3 -0
  43. judgeval/scorers/judgeval_scorers/local_implementations/contextual_recall/contextual_recall_scorer.py +249 -0
  44. judgeval/scorers/judgeval_scorers/local_implementations/contextual_recall/prompts.py +142 -0
  45. judgeval/scorers/judgeval_scorers/local_implementations/contextual_relevancy/__init__.py +3 -0
  46. judgeval/scorers/judgeval_scorers/local_implementations/contextual_relevancy/contextual_relevancy_scorer.py +240 -0
  47. judgeval/scorers/judgeval_scorers/local_implementations/contextual_relevancy/prompts.py +121 -0
  48. judgeval/scorers/judgeval_scorers/local_implementations/faithfulness/__init__.py +3 -0
  49. judgeval/scorers/judgeval_scorers/local_implementations/faithfulness/faithfulness_scorer.py +318 -0
  50. judgeval/scorers/judgeval_scorers/local_implementations/faithfulness/prompts.py +265 -0
  51. judgeval/scorers/judgeval_scorers/local_implementations/hallucination/__init__.py +3 -0
  52. judgeval/scorers/judgeval_scorers/local_implementations/hallucination/hallucination_scorer.py +258 -0
  53. judgeval/scorers/judgeval_scorers/local_implementations/hallucination/prompts.py +104 -0
  54. judgeval/scorers/judgeval_scorers/local_implementations/json_correctness/json_correctness_scorer.py +127 -0
  55. judgeval/scorers/judgeval_scorers/local_implementations/summarization/__init__.py +3 -0
  56. judgeval/scorers/judgeval_scorers/local_implementations/summarization/prompts.py +247 -0
  57. judgeval/scorers/judgeval_scorers/local_implementations/summarization/summarization_scorer.py +541 -0
  58. judgeval/scorers/judgeval_scorers/local_implementations/tool_correctness/__init__.py +3 -0
  59. judgeval/scorers/judgeval_scorers/local_implementations/tool_correctness/tool_correctness_scorer.py +151 -0
  60. judgeval/scorers/prompt_scorer.py +4 -4
  61. judgeval/scorers/score.py +14 -14
  62. judgeval/scorers/utils.py +40 -6
  63. {judgeval-0.0.2.dist-info → judgeval-0.0.4.dist-info}/METADATA +11 -12
  64. judgeval-0.0.4.dist-info/RECORD +78 -0
  65. judgeval-0.0.2.dist-info/RECORD +0 -46
  66. {judgeval-0.0.2.dist-info → judgeval-0.0.4.dist-info}/WHEEL +0 -0
  67. {judgeval-0.0.2.dist-info → judgeval-0.0.4.dist-info}/licenses/LICENSE.md +0 -0
@@ -0,0 +1,258 @@
1
+ """
2
+ Metric that evaluates hallucinations in model outputs
3
+
4
+ The hallucination metric determines whether your LLM generates factually correct information by comparing
5
+ the actual_output to the provided context.
6
+
7
+ If you're looking to evaluate hallucination for a RAG system, refer to the faithfulness metric instead.
8
+
9
+ The HallucinationMetric uses an LLM to determine, for each context in contexts, whether there are any
10
+ contradictions to the actual_output.
11
+
12
+ Although extremely similar to the FaithfulnessMetric, the HallucinationMetric is calculated differently
13
+ since it uses contexts as the source of truth instead. Since contexts is the ideal segment of your
14
+ knowledge base relevant to a specific input, the degree of hallucination can be measured by the degree
15
+ of which the contexts is disagreed upon.
16
+
17
+ Faithfulness is measuring the number of statements in output that agree with contexts.
18
+ Hallucination is measuring the fraction of contexts that agree with output (do not contradict == agree)
19
+ """
20
+
21
+ from typing import Optional, Union, List
22
+
23
+ from judgeval.scorers.utils import (get_or_create_event_loop,
24
+ scorer_progress_meter,
25
+ create_verbose_logs,
26
+ parse_response_json,
27
+ check_example_params,
28
+ )
29
+ from judgeval.scorers import JudgevalScorer
30
+ from judgeval.judges import JudgevalJudge
31
+ from judgeval.judges.utils import create_judge
32
+ from judgeval.data import Example, ExampleParams
33
+ from judgeval.scorers.judgeval_scorers.local_implementations.hallucination.prompts import *
34
+
35
+
36
+ required_params = [
37
+ ExampleParams.INPUT,
38
+ ExampleParams.ACTUAL_OUTPUT,
39
+ ExampleParams.CONTEXT,
40
+ ]
41
+
42
+
43
+ class HallucinationScorer(JudgevalScorer):
44
+ def __init__(
45
+ self,
46
+ threshold: float = 0.5,
47
+ model: Optional[Union[str, JudgevalJudge]] = None,
48
+ include_reason: bool = True,
49
+ async_mode: bool = False,
50
+ strict_mode: bool = False,
51
+ verbose_mode: bool = False,
52
+ ):
53
+ self.threshold = 1 if strict_mode else threshold
54
+ self.model, self.using_native_model = create_judge(model)
55
+ self.evaluation_model = self.model.get_model_name()
56
+ self.include_reason = include_reason
57
+ self.async_mode = async_mode
58
+ self.strict_mode = strict_mode
59
+ self.verbose_mode = verbose_mode
60
+
61
+ def score_example(
62
+ self,
63
+ example: Example,
64
+ _show_indicator: bool = True,
65
+ ) -> float:
66
+ check_example_params(example, required_params, self)
67
+
68
+ with scorer_progress_meter(self, display_meter=_show_indicator):
69
+ if self.async_mode:
70
+ loop = get_or_create_event_loop()
71
+ loop.run_until_complete(
72
+ self.a_score_example(example, _show_indicator=False)
73
+ )
74
+ else:
75
+ self.verdicts: List[HallucinationVerdict] = (
76
+ self._generate_verdicts(
77
+ example.actual_output, example.context
78
+ )
79
+ )
80
+ self.score = self._calculate_score()
81
+ self.reason = self._generate_reason()
82
+ self.success = self.score <= self.threshold
83
+ self.verbose_logs = create_verbose_logs(
84
+ self,
85
+ steps=[
86
+ f"Verdicts:\n{[v.model_dump() for v in self.verdicts]}",
87
+ f"Score: {self.score}\nReason: {self.reason}",
88
+ ],
89
+ )
90
+
91
+ return self.score
92
+
93
+ async def a_score_example(
94
+ self,
95
+ example: Example,
96
+ _show_indicator: bool = True,
97
+ ) -> float:
98
+ check_example_params(example, required_params, self)
99
+
100
+ with scorer_progress_meter(
101
+ self, async_mode=True, display_meter=_show_indicator
102
+ ):
103
+ self.verdicts: List[HallucinationVerdict] = (
104
+ await self._a_generate_verdicts(
105
+ example.actual_output, example.context
106
+ )
107
+ )
108
+ self.score = self._calculate_score()
109
+ self.reason = await self._a_generate_reason()
110
+ self.success = self.score <= self.threshold
111
+ self.verbose_logs = create_verbose_logs(
112
+ self,
113
+ steps=[
114
+ f"Verdicts:\n{[v.model_dump() for v in self.verdicts]}",
115
+ f"Score: {self.score}\nReason: {self.reason}",
116
+ ],
117
+ )
118
+
119
+ return self.score
120
+
121
+ async def _a_generate_reason(self):
122
+ if self.include_reason is False:
123
+ return None
124
+
125
+ contradictions = []
126
+ for verdict in self.verdicts:
127
+ if verdict.verdict.strip().lower() == "no":
128
+ contradictions.append(verdict.reason)
129
+
130
+ prompt: dict = HallucinationTemplate.generate_reason(
131
+ contradictions=contradictions,
132
+ score=format(self.score, ".2f"),
133
+ )
134
+
135
+ if self.using_native_model:
136
+ res = await self.model.a_generate(prompt)
137
+ data = parse_response_json(res, self)
138
+ return data["reason"]
139
+ else:
140
+ try:
141
+ res: Reason = await self.model.a_generate(prompt, schema=Reason)
142
+ return res.reason
143
+ except TypeError:
144
+ res = await self.model.a_generate(prompt)
145
+ data = parse_response_json(res, self)
146
+ return data["reason"]
147
+
148
+ def _generate_reason(self):
149
+ if self.include_reason is False:
150
+ return None
151
+
152
+ factual_alignments = []
153
+ contradictions = []
154
+ for verdict in self.verdicts:
155
+ if verdict.verdict.strip().lower() == "no":
156
+ contradictions.append(verdict.reason)
157
+
158
+ prompt: dict = HallucinationTemplate.generate_reason(
159
+ factual_alignments=factual_alignments,
160
+ contradictions=contradictions,
161
+ score=format(self.score, ".2f"),
162
+ )
163
+
164
+ if self.using_native_model:
165
+ res = self.model.generate(prompt)
166
+ data = parse_response_json(res, self)
167
+ return data["reason"]
168
+ else:
169
+ try:
170
+ res: Reason = self.model.generate(prompt, schema=Reason)
171
+ return res.reason
172
+ except TypeError:
173
+ res = self.model.generate(prompt)
174
+ data = parse_response_json(res, self)
175
+ return data["reason"]
176
+
177
+ async def _a_generate_verdicts(
178
+ self, actual_output: str, contexts: List[str]
179
+ ) -> List[HallucinationVerdict]:
180
+ verdicts: List[HallucinationVerdict] = []
181
+ prompt = HallucinationTemplate.generate_verdicts(
182
+ actual_output=actual_output, contexts=contexts
183
+ )
184
+ if self.using_native_model:
185
+ res = await self.model.a_generate(prompt)
186
+ data = parse_response_json(res, self)
187
+ verdicts = [
188
+ HallucinationVerdict(**item) for item in data["verdicts"]
189
+ ]
190
+ return verdicts
191
+ else:
192
+ try:
193
+ res: Verdicts = await self.model.a_generate(
194
+ prompt, schema=Verdicts
195
+ )
196
+ verdicts = [item for item in res.verdicts]
197
+ return verdicts
198
+ except TypeError:
199
+ res = await self.model.a_generate(prompt)
200
+ data = parse_response_json(res, self)
201
+ verdicts = [
202
+ HallucinationVerdict(**item) for item in data["verdicts"]
203
+ ]
204
+ return verdicts
205
+
206
+ def _generate_verdicts(
207
+ self, actual_output: str, contexts: List[str]
208
+ ) -> List[HallucinationVerdict]:
209
+ verdicts: List[HallucinationVerdict] = []
210
+ prompt = HallucinationTemplate.generate_verdicts(
211
+ actual_output=actual_output, contexts=contexts
212
+ )
213
+ if self.using_native_model:
214
+ res = self.model.generate(prompt)
215
+ data = parse_response_json(res, self)
216
+ verdicts = [
217
+ HallucinationVerdict(**item) for item in data["verdicts"]
218
+ ]
219
+ return verdicts
220
+ else:
221
+ try:
222
+ res: Verdicts = self.model.generate(prompt, schema=Verdicts)
223
+ verdicts = [item for item in res.verdicts]
224
+ return verdicts
225
+ except TypeError:
226
+ res = self.model.generate(prompt)
227
+ data = parse_response_json(res, self)
228
+ verdicts = [
229
+ HallucinationVerdict(**item) for item in data["verdicts"]
230
+ ]
231
+ return verdicts
232
+
233
+ def _calculate_score(self) -> float:
234
+ number_of_verdicts = len(self.verdicts)
235
+ if number_of_verdicts == 0:
236
+ return 0
237
+
238
+ hallucination_count = 0
239
+ for verdict in self.verdicts:
240
+ if verdict.verdict.strip().lower() == "no":
241
+ hallucination_count += 1
242
+
243
+ score = hallucination_count / number_of_verdicts
244
+ return 1 if self.strict_mode and score > self.threshold else score
245
+
246
+ def _success_check(self) -> bool:
247
+ if self.error is not None:
248
+ self.success = False
249
+ else:
250
+ try:
251
+ self.success = self.score <= self.threshold
252
+ except:
253
+ self.success = False
254
+ return self.success
255
+
256
+ @property
257
+ def __name__(self):
258
+ return "Hallucination"
@@ -0,0 +1,104 @@
1
+ from typing import List, Optional
2
+ from pydantic import BaseModel, Field
3
+
4
+
5
+ class HallucinationVerdict(BaseModel):
6
+ verdict: str
7
+ reason: str
8
+
9
+
10
+ class Verdicts(BaseModel):
11
+ verdicts: List[HallucinationVerdict]
12
+
13
+
14
+ class Reason(BaseModel):
15
+ reason: str
16
+
17
+
18
+ class HallucinationTemplate:
19
+ @staticmethod
20
+ def generate_verdicts(actual_output, contexts):
21
+ return f"""==== TASK INSTRUCTIONS ====
22
+ You will be provided with an `actual output` (the response of an LLM to a particular query) and `contexts` (ground truth contextual information from a knowledge base).
23
+ Your task is to take each context in contexts and determine whether the `actual output` factually agrees with the context.
24
+
25
+ Additional notes:
26
+ You should NOT use any prior knowledge you have in your decision making process; take each context at face value.
27
+ Since you will determine a verdict for EACH context, the number of 'verdicts' is EXACTLY EQUAL TO the number of contexts.
28
+ You should be lenient in your judgment when the actual output lacks detail with respect to the context segment; you should ONLY provide a 'no' answer if the context contradicts the actual output.
29
+
30
+ ==== FORMATTING INSTRUCTIONS ====
31
+ You should return a JSON object with a key 'verdicts', which is a list of JSON objects. Each JSON object corresponds to a context in `contexts`, and should have 2 fields: 'verdict' and 'reason'.
32
+ The 'verdict' key should be EXACTLY one of 'yes' or 'no', representing whether the `actual output` factually agrees with the context segment.
33
+ The 'reason' is the justification for the verdict. If your verdict is 'no', try to provide a correction in the reason.
34
+
35
+ ==== EXAMPLE ====
36
+ Example contexts: ["Einstein won the Nobel Prize for his discovery of the photoelectric effect.", "Einstein won the Nobel Prize in 1968."]
37
+ Example actual output: "Einstein won the Nobel Prize in 1969 for his discovery of the photoelectric effect."
38
+
39
+ Example:
40
+ {{
41
+ "verdicts": [
42
+ {{
43
+ "verdict": "yes",
44
+ "reason": "The actual output agrees with the provided context which states that Einstein won the Nobel Prize for his discovery of the photoelectric effect."
45
+ }},
46
+ {{
47
+ "verdict": "no",
48
+ "reason": "The actual output contradicts the provided context which states that Einstein won the Nobel Prize in 1968, not 1969."
49
+ }}
50
+ ]
51
+ }}
52
+
53
+ ==== YOUR TURN ====
54
+ Contexts:
55
+ {contexts}
56
+
57
+ Actual Output:
58
+ {actual_output}
59
+
60
+ JSON:
61
+ """
62
+
63
+ @staticmethod
64
+ def generate_reason(contradictions, score):
65
+ return f"""==== TASK INSTRUCTIONS ====
66
+ An LLM has been provided with a list of `contexts` (ground truth contextual information from a knowledge base) and `actual output` (the response of an LLM to a particular query).
67
+ You will be provided with a list of `contradictions`, which are factual discrepancies between the context segments and the actual output.
68
+ Additionally, you will be provided with a hallucination score, which is a float (0 - 1, where 0 is the best score) indicating the fraction of context segments that contradict the actual output.
69
+
70
+ Your task is to provide a CLEAR and CONCISE reason for the hallucination score.
71
+ If the hallucination score is 0 (no contradictions), you should instead respond with a positive remark with an upbeat encouraging tone (but don't overblow the kind attitude).
72
+
73
+ ==== FORMATTING INSTRUCTIONS ====
74
+ Please make sure to only return in JSON format, with the 'reason' key providing the reason.
75
+ Example JSON:
76
+ {{
77
+ "reason": "The score is <hallucination_score> because <your_reason>."
78
+ }}
79
+
80
+ ==== EXAMPLE ====
81
+ Example Contradictions:
82
+ [
83
+ "The actual output claims Einstein won the Nobel Prize in 1969, which contradicts the context stating he won it in 1968.",
84
+ "The actual output states Einstein was a chemist, but the context indicates he was a physicist.",
85
+ "The actual output claims Einstein was born in Switzerland, while the context states he was born in Germany."
86
+ ]
87
+
88
+ Example Hallucination Score:
89
+ 0.75
90
+
91
+ Example Response:
92
+ {{
93
+ "reason": "The score is 0.75 because the actual output made multiple factual errors: incorrectly stating Einstein's Nobel Prize year (1969 vs 1968), his profession (chemist vs physicist), and birthplace (Switzerland vs Germany)."
94
+ }}
95
+
96
+ ==== YOUR TURN ====
97
+ Contradictions:
98
+ {contradictions}
99
+
100
+ Hallucination Score:
101
+ {score}
102
+
103
+ JSON:
104
+ """
@@ -0,0 +1,127 @@
1
+ from typing import List, Optional, Union, Any
2
+ from pydantic import BaseModel, ValidationError, create_model
3
+
4
+ from judgeval.judges import JudgevalJudge
5
+ from judgeval.scorers.utils import (get_or_create_event_loop,
6
+ scorer_progress_meter,
7
+ create_verbose_logs,
8
+ parse_response_json,
9
+ check_example_params
10
+ )
11
+ from judgeval.scorers import JudgevalScorer
12
+ from judgeval.data import Example, ExampleParams
13
+
14
+
15
+ required_params = [
16
+ ExampleParams.INPUT,
17
+ ExampleParams.ACTUAL_OUTPUT
18
+ ]
19
+
20
+
21
+ class JsonCorrectnessScorer(JudgevalScorer):
22
+
23
+ def __init__(
24
+ self,
25
+ json_schema: Union[BaseModel, dict],
26
+ model: Optional[Union[str, JudgevalJudge]] = None,
27
+ threshold: float = 0.5,
28
+ async_mode: bool = True,
29
+ strict_mode: bool = False,
30
+ verbose_mode: bool = False,
31
+ user: Optional[str] = None
32
+ ):
33
+ self.score_type = "json_correctness"
34
+ self.model = model
35
+ self.threshold = threshold
36
+ self.async_mode = async_mode
37
+ self.strict_mode = strict_mode
38
+ self.verbose_mode = verbose_mode
39
+ self.user = user
40
+
41
+ if isinstance(json_schema, dict):
42
+ # Convert to BaseModel
43
+ fields = {
44
+ key: (str if prop["type"] == "string" else Any, ...)
45
+ for key, prop in json_schema["properties"].items()
46
+ }
47
+
48
+ # Dynamically create the model
49
+ DynamicModel = create_model(json_schema["title"], **fields)
50
+
51
+ self.json_schema = DynamicModel
52
+ else:
53
+ self.json_schema = json_schema
54
+
55
+ def score_example(self, example: Example, _show_indicator: bool = True) -> float:
56
+ check_example_params(example, required_params, self)
57
+ with scorer_progress_meter(
58
+ self,
59
+ async_mode=self.async_mode,
60
+ display_meter=_show_indicator,
61
+ ):
62
+ if self.async_mode:
63
+ loop = get_or_create_event_loop()
64
+ loop.run_until_complete(
65
+ self.a_measure(example, _show_indicator=False)
66
+ )
67
+ else:
68
+ valid_json = True
69
+ try:
70
+ self.json_schema.model_validate_json(
71
+ example.actual_output
72
+ )
73
+ except ValidationError as e:
74
+ valid_json = False
75
+
76
+ self.score = 1.0 if valid_json else 0
77
+ self.success = self.score >= self.threshold
78
+ self.verbose_logs = create_verbose_logs(
79
+ self,
80
+ steps=[
81
+ f"LLM outputed Json:\n{example.actual_output}",
82
+ f"Score: {self.score}",
83
+ ],
84
+ )
85
+
86
+ return self.score
87
+
88
+ async def a_score_example(self, example: Example, _show_indicator: bool = True) -> float:
89
+ check_example_params(example, required_params, self)
90
+ with scorer_progress_meter(
91
+ self,
92
+ async_mode=self.async_mode,
93
+ display_meter=_show_indicator,
94
+ ):
95
+ valid_json = True
96
+ try:
97
+ self.json_schema.model_validate_json(
98
+ example.actual_output
99
+ )
100
+ except ValidationError as e:
101
+ valid_json = False
102
+
103
+ self.score = 1.0 if valid_json else 0
104
+ self.success = self.score >= self.threshold
105
+ self.verbose_logs = create_verbose_logs(
106
+ self,
107
+ steps=[
108
+ f"LLM outputed Json:\n{example.actual_output}",
109
+ f"Score: {self.score}",
110
+ ],
111
+ )
112
+ return self.score
113
+
114
+ def _success_check(self):
115
+ if self.error is not None:
116
+ self.success = False
117
+ else:
118
+ try:
119
+ self.success = self.score >= self.threshold
120
+ except:
121
+ self.success = False
122
+ return self.success
123
+
124
+ @property
125
+ def __name__(self):
126
+ return "JSON Correctness"
127
+
@@ -0,0 +1,3 @@
1
+ from .summarization_scorer import SummarizationScorer
2
+
3
+ __all__ = ["SummarizationScorer"]