jquantstats 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
File without changes
jquantstats/_plots.py ADDED
@@ -0,0 +1,308 @@
1
+ import calendar
2
+ import dataclasses
3
+
4
+ import numpy as np
5
+ import plotly.graph_objects as go
6
+ import polars as pl
7
+ from plotly.subplots import make_subplots
8
+
9
+
10
+ @dataclasses.dataclass(frozen=True)
11
+ class Plots:
12
+ data: "_Data" # type: ignore
13
+
14
+ _FLATUI_COLORS = [
15
+ "#FEDD78", # Yellow
16
+ "#348DC1", # Blue
17
+ "#BA516B", # Rose
18
+ "#4FA487", # Green
19
+ "#9B59B6", # Purple
20
+ "#613F66", # Dark Purple
21
+ "#84B082", # Light Green
22
+ "#DC136C", # Pink
23
+ "#559CAD", # Light Blue
24
+ "#4A5899", # Navy Blue
25
+ ]
26
+
27
+ @staticmethod
28
+ def _get_colors():
29
+ """
30
+ Returns the default color palette and styling parameters for plots.
31
+
32
+ Returns:
33
+ tuple: A tuple containing:
34
+ - colors (list): List of hex color codes
35
+ - ls (str): Line style ("-" for solid)
36
+ - alpha (float): Opacity value (0.8)
37
+ """
38
+ colors = Plots._FLATUI_COLORS
39
+ ls = "-" # Line style
40
+ alpha = 0.8 # Opacity
41
+ return colors, ls, alpha
42
+
43
+ @staticmethod
44
+ def _compsum(returns):
45
+ """Calculates rolling compounded returns"""
46
+ return returns.add(1).cumprod(axis=0) - 1
47
+
48
+ def plot_returns_bars(self):
49
+ """
50
+ Creates a bar chart of returns for each asset in the data.
51
+
52
+ This function visualizes the returns of each asset as bars, making it easy
53
+ to compare performance across different time periods.
54
+
55
+ Args:
56
+ data (_Data): A Data object containing returns data to plot.
57
+
58
+ Returns:
59
+ plotly.graph_objects.Figure: A Plotly figure object containing the bar chart.
60
+ The figure shows returns for each asset with a horizontal line at y=0.
61
+
62
+ Example:
63
+ >>> from jquantstats.api import _Data
64
+ >>> import pandas as pd
65
+ >>> returns = pd.DataFrame(...)
66
+ >>> data = _Data(returns=returns)
67
+ >>> fig = data.plots.plot_returns_bars()
68
+ >>> fig.show()
69
+ """
70
+ # Get color palette
71
+ colors, _, _ = Plots._get_colors()
72
+
73
+ # Create figure
74
+ fig = go.Figure()
75
+
76
+ # Add a bar trace for each asset
77
+ for idx, col in enumerate(self.data.returns.columns):
78
+ fig.add_trace(
79
+ go.Bar(
80
+ x=self.data.index,
81
+ y=self.data.returns[col],
82
+ name=col,
83
+ marker_color=colors[idx % len(colors)], # Cycle through colors if more assets than colors
84
+ )
85
+ )
86
+
87
+ # Update layout for better readability
88
+ fig.update_layout(
89
+ plot_bgcolor="white",
90
+ paper_bgcolor="white",
91
+ xaxis=dict(
92
+ tickformat="%Y", # Format x-axis as years
93
+ showgrid=False,
94
+ ),
95
+ yaxis=dict(
96
+ tickformat=".0%", # Format y-axis as percentages
97
+ showgrid=True,
98
+ gridcolor="lightgray",
99
+ ),
100
+ )
101
+
102
+ # Add horizontal line at y=0 to distinguish positive and negative returns
103
+ fig.add_hline(y=0, line=dict(color="black", width=1, dash="dash"))
104
+
105
+ return fig
106
+
107
+ def plot_snapshot(self, title="Portfolio Summary", compounded=True, log_scale=False):
108
+ """
109
+ Creates a comprehensive dashboard with multiple plots for portfolio analysis.
110
+
111
+ This function generates a three-panel plot showing:
112
+ 1. Cumulative returns over time
113
+ 2. Drawdowns over time
114
+ 3. Daily returns over time
115
+
116
+ This provides a complete visual summary of portfolio performance.
117
+
118
+ Args:
119
+ data (_Data): A Data object containing returns data.
120
+ title (str, optional): Title of the plot. Defaults to "Portfolio Summary".
121
+ compounded (bool, optional): Whether to use compounded returns. Defaults to True.
122
+ log_scale (bool, optional): Whether to use logarithmic scale for cumulative returns.
123
+ Defaults to False.
124
+
125
+ Returns:
126
+ plotly.graph_objects.Figure: A Plotly figure object containing the dashboard.
127
+
128
+ Example:
129
+ >>> from jquantstats.api import _Data
130
+ >>> import pandas as pd
131
+ >>> returns = pd.DataFrame(...)
132
+ >>> data = _Data(returns=returns)
133
+ >>> fig = snapshot_plotly(data, title="My Portfolio Performance")
134
+ >>> fig.show()
135
+ """
136
+ # Calculate drawdowns
137
+ dd = self.data.stats.drawdown(compounded=compounded, initial=100)
138
+
139
+ # Create subplot structure
140
+ fig = make_subplots(
141
+ rows=3,
142
+ cols=1,
143
+ shared_xaxes=True, # Share x-axis across all subplots
144
+ row_heights=[0.5, 0.25, 0.25], # Allocate more space to cumulative returns
145
+ vertical_spacing=0.03,
146
+ subplot_titles=["Cumulative Return", "Drawdown", "Daily Return"],
147
+ )
148
+
149
+ # Plot cumulative returns for each asset
150
+ for col in self.data.returns.columns:
151
+ cum_returns = 100 * ((1 + self.data.returns[col]).cum_prod()) # Convert to percentage
152
+ fig.add_trace(
153
+ go.Scatter(
154
+ x=self.data.index[self.data.index.columns[0]],
155
+ y=cum_returns,
156
+ name=col,
157
+ mode="lines",
158
+ ),
159
+ row=1,
160
+ col=1,
161
+ )
162
+
163
+ # Plot drawdowns for each asset
164
+ for col in self.data.returns.columns:
165
+ fig.add_trace(
166
+ go.Scatter(
167
+ x=self.data.index[self.data.index.columns[0]],
168
+ y=dd[col],
169
+ name=f"DD: {col}",
170
+ mode="lines",
171
+ ),
172
+ row=2,
173
+ col=1,
174
+ )
175
+
176
+ # Plot daily returns for each asset
177
+ for col in self.data.assets:
178
+ fig.add_trace(
179
+ go.Scatter(
180
+ x=self.data.index[self.data.index.columns[0]],
181
+ y=self.data.all[col] * 100, # Convert to percentage
182
+ name=f"{col} Return",
183
+ mode="lines",
184
+ ),
185
+ row=3,
186
+ col=1,
187
+ )
188
+
189
+ # Configure layout
190
+ fig.update_layout(
191
+ height=800, # Taller figure for better visibility
192
+ title_text=title,
193
+ showlegend=True,
194
+ template="plotly_white", # Clean white template
195
+ legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
196
+ )
197
+
198
+ # Apply log scale to cumulative returns if requested
199
+ if log_scale:
200
+ fig.update_yaxes(type="log", row=1, col=1)
201
+
202
+ # Format y-axes
203
+ fig.update_yaxes(title="Cumulative Return (%)", row=1, col=1)
204
+ fig.update_yaxes(title="Drawdown", tickformat=".1%", row=2, col=1)
205
+ fig.update_yaxes(title="Daily Return (%)", row=3, col=1)
206
+
207
+ return fig
208
+
209
+ def monthly_heatmap(
210
+ self,
211
+ col,
212
+ annot_size=13,
213
+ cbar=True,
214
+ returns_label="Strategy",
215
+ compounded=False,
216
+ fontname="Arial",
217
+ ylabel=True,
218
+ ):
219
+ """
220
+ Creates a heatmap of monthly returns by year using Polars only.
221
+ """
222
+
223
+ cmap = "RdYlGn"
224
+ date_col = self.data.index.columns[0]
225
+
226
+ # Resample monthly
227
+ data = self.data.resample(every="1mo", compounded=compounded)
228
+
229
+ # Prepare DataFrame with Year, Month, Return (%)
230
+ result = data.all.with_columns(
231
+ pl.col(date_col).dt.year().alias("Year"),
232
+ pl.col(date_col).dt.month().alias("Month"),
233
+ (pl.col(col) * 100).alias("Return"),
234
+ )
235
+
236
+ # Pivot table (Year x Month)
237
+ pivot = result.pivot(
238
+ values="Return",
239
+ index="Year",
240
+ columns="Month",
241
+ aggregate_function="first", # Should be fine with monthly data
242
+ ).sort("Year", descending=True)
243
+
244
+ # Sort columns by calendar month
245
+ month_cols = [str(m) for m in range(1, 13)]
246
+ pivot = pivot.select("Year", *month_cols)
247
+
248
+ # Rename columns to month abbreviations
249
+ new_col_names = ["Year"] + [calendar.month_abbr[int(m)] for m in month_cols]
250
+ pivot.columns = new_col_names
251
+
252
+ # Extract z-matrix for heatmap
253
+ z = np.round(pivot.drop("Year").to_numpy(), 2)
254
+ y = pivot["Year"].to_numpy().astype(str)
255
+ x = new_col_names[1:]
256
+
257
+ zmin = -np.nanmax(np.abs(z))
258
+ zmax = np.nanmax(np.abs(z))
259
+
260
+ fig = go.Figure(
261
+ data=go.Heatmap(
262
+ z=z,
263
+ x=x,
264
+ y=y,
265
+ text=z,
266
+ texttemplate="%{text:.2f}%",
267
+ colorscale=cmap,
268
+ zmid=0,
269
+ zmin=zmin,
270
+ zmax=zmax,
271
+ colorbar=dict(
272
+ title="Return (%)",
273
+ ticksuffix="%",
274
+ tickfont=dict(size=annot_size),
275
+ )
276
+ if cbar
277
+ else None,
278
+ hovertemplate="Year: %{y}<br>Month: %{x}<br>Return: %{z:.2f}%",
279
+ )
280
+ )
281
+
282
+ fig.update_layout(
283
+ title={
284
+ "text": f"{returns_label} - Monthly Returns (%)",
285
+ "y": 0.95,
286
+ "x": 0.5,
287
+ "xanchor": "center",
288
+ "yanchor": "top",
289
+ "font": dict(family=fontname, size=16, color="black"),
290
+ },
291
+ xaxis=dict(
292
+ title="",
293
+ side="top",
294
+ showgrid=False,
295
+ tickfont=dict(family=fontname, size=annot_size),
296
+ ),
297
+ yaxis=dict(
298
+ title="Years" if ylabel else "",
299
+ autorange="reversed",
300
+ showgrid=False,
301
+ tickfont=dict(family=fontname, size=annot_size),
302
+ ),
303
+ plot_bgcolor="white",
304
+ paper_bgcolor="white",
305
+ margin=dict(l=0, r=0, t=80, b=0),
306
+ )
307
+
308
+ return fig
jquantstats/_stats.py ADDED
@@ -0,0 +1,450 @@
1
+ import dataclasses
2
+ from collections.abc import Callable
3
+ from functools import wraps
4
+
5
+ import numpy as np
6
+ import polars as pl
7
+
8
+
9
+ @dataclasses.dataclass(frozen=True)
10
+ class Stats:
11
+ data: "_Data" # type: ignore
12
+ all: pl.DataFrame = None # Default is None; will be set in __post_init__
13
+
14
+ def __post_init__(self):
15
+ object.__setattr__(self, "all", self.data.all)
16
+
17
+ @staticmethod
18
+ def _quantile_expr(series, q):
19
+ return series.quantile(q)
20
+
21
+ @staticmethod
22
+ def _mean_positive_expr(series):
23
+ return series.filter(series >= 0).mean()
24
+
25
+ @staticmethod
26
+ def _mean_negative_expr(series):
27
+ return series.filter(series < 0).mean()
28
+
29
+ @staticmethod
30
+ def _quantile_expr(series, cutoff):
31
+ return series.quantile(cutoff)
32
+
33
+ @staticmethod
34
+ def columnwise_stat(func):
35
+ """
36
+ Decorator that applies a column-wise statistical function to all numeric columns
37
+ of `self.data` and returns a dictionary with keys named appropriately.
38
+ """
39
+
40
+ @wraps(func)
41
+ def wrapper(self, *args, **kwargs):
42
+ return {col: func(self, self.all[col], *args, **kwargs) for col in self.data.assets}
43
+
44
+ return wrapper
45
+
46
+ @staticmethod
47
+ def to_frame(func: Callable) -> Callable:
48
+ """Decorator: Applies per-column expressions and evaluates with .with_columns(...)"""
49
+
50
+ @wraps(func)
51
+ def wrapper(self, *args, **kwargs):
52
+ return self.all.select(
53
+ [pl.col(name) for name in self.data.date_col]
54
+ + [func(self, pl.col(name), *args, **kwargs).alias(name) for name in self.data.assets]
55
+ )
56
+
57
+ return wrapper
58
+
59
+ @columnwise_stat
60
+ def skew(self, series):
61
+ """
62
+ Calculates skewness (asymmetry) for each numeric column.
63
+ """
64
+ return series.skew(bias=False)
65
+
66
+ @columnwise_stat
67
+ def kurtosis(self, series):
68
+ """
69
+ Calculates returns' kurtosis
70
+ (the degree to which a distribution peak compared to a normal distribution)
71
+ """
72
+ return series.kurtosis(bias=False)
73
+
74
+ @columnwise_stat
75
+ def avg_return(self, series):
76
+ """Average return per non-zero, non-null value."""
77
+ return series.filter(series.is_not_null() & (series != 0)).mean()
78
+
79
+ @columnwise_stat
80
+ def avg_win(self, series):
81
+ """
82
+ Calculates the average winning
83
+ return/trade for an asset
84
+ """
85
+ return self._mean_positive_expr(series)
86
+
87
+ @columnwise_stat
88
+ def avg_loss(self, series):
89
+ """
90
+ Calculates the average low if
91
+ return/trade return for a period
92
+ """
93
+ return self._mean_negative_expr(series)
94
+
95
+ @columnwise_stat
96
+ def volatility(self, series, periods=252, annualize=True):
97
+ """
98
+ Calculates the volatility of returns:
99
+ - Std dev of returns
100
+ - Annualized by sqrt(periods) if `annualize` is True
101
+ """
102
+ factor = np.sqrt(periods) if annualize else 1
103
+ return series.std() * factor
104
+
105
+ @to_frame
106
+ def rolling_volatility(self, series: pl.Expr, rolling_period=126, periods_per_year=252) -> pl.Expr:
107
+ return series.rolling_std(window_size=rolling_period) * np.sqrt(periods_per_year)
108
+
109
+ @to_frame
110
+ def price(self, series: pl.Expr, compounded=False, initial=1.0) -> pl.Expr:
111
+ if compounded:
112
+ # First compute cumulative compounded returns
113
+ cum = initial * (1 + series).cum_prod()
114
+ else:
115
+ # Simple cumulative sum of returns
116
+ cum = initial + series.cum_sum()
117
+
118
+ return cum
119
+
120
+ @to_frame
121
+ def drawdown(self, series: pl.Expr, compounded=False, initial=1.0) -> pl.Expr:
122
+ """
123
+ Computes drawdown from the high-water mark.
124
+
125
+ Args:
126
+ series (pl.Expr): Polars expression for the return series.
127
+ compounded (bool): Whether to use compounded returns.
128
+ initial (float): Initial portfolio value (default is 1).
129
+
130
+ Returns:
131
+ pl.Expr: A Polars expression representing the drawdown.
132
+ """
133
+ if compounded:
134
+ # First compute cumulative compounded returns
135
+ equity = initial * (1 + series).cum_prod()
136
+ else:
137
+ # Simple cumulative sum of returns
138
+ equity = initial + series.cum_sum()
139
+
140
+ # equity = self.price(series, compounded, initial=initial)
141
+ return -100 * ((equity / equity.cum_max()) - 1)
142
+
143
+ @columnwise_stat
144
+ def autocorr(self, series: pl.Series):
145
+ """
146
+ Metric to account for autocorrelation.
147
+ Applies autocorrelation penalty to each numeric series (column).
148
+ """
149
+ corr = pl.corr(series, series.shift(1)).cast(pl.Float64)
150
+ return corr
151
+
152
+ @columnwise_stat
153
+ def payoff_ratio(self, series):
154
+ """
155
+ Measures the payoff ratio: average win / abs(average loss).
156
+ """
157
+ avg_win = series.filter(series > 0).mean()
158
+ # avg_win = self.avg_win(series)
159
+ avg_loss = np.abs(series.filter(series < 0).mean())
160
+ return avg_win / avg_loss
161
+
162
+ def win_loss_ratio(self):
163
+ """Shorthand for payoff_ratio()"""
164
+ return self.payoff_ratio()
165
+
166
+ @columnwise_stat
167
+ def profit_ratio(self, series):
168
+ """Measures the profit ratio (win ratio / loss ratio)"""
169
+ wins = series.filter(series > 0)
170
+ losses = series.filter(series < 0)
171
+
172
+ try:
173
+ win_ratio = np.abs(wins.mean() / wins.count())
174
+ loss_ratio = np.abs(losses.mean() / losses.count())
175
+
176
+ return win_ratio / loss_ratio
177
+
178
+ except TypeError:
179
+ return np.nan
180
+
181
+ @columnwise_stat
182
+ def profit_factor(self, series):
183
+ """Measures the profit ratio (wins / loss)"""
184
+ wins = series.filter(series > 0)
185
+ losses = series.filter(series < 0)
186
+
187
+ return np.abs(wins.sum() / losses.sum())
188
+
189
+ def common_sense_ratio(self):
190
+ """Measures the common sense ratio (profit factor * tail ratio)"""
191
+ profit_factor = self.profit_factor()
192
+ tail_ratio = self.tail_ratio()
193
+
194
+ return {name: profit_factor[name] * tail_ratio[name] for name in profit_factor.keys()}
195
+
196
+ @columnwise_stat
197
+ def value_at_risk(self, series: pl.Series, alpha: float = 0.05):
198
+ """
199
+ Calculates the daily value-at-risk
200
+ (variance-covariance calculation with confidence level)
201
+ """
202
+ # Ensure returns are sorted and drop nulls
203
+ cleaned_returns = series.drop_nulls()
204
+
205
+ # Compute VaR using quantile; note that VaR is typically a negative number (i.e. loss)
206
+ return cleaned_returns.quantile(alpha, interpolation="nearest")
207
+
208
+ def var(self, alpha: float = 0.05):
209
+ """Shorthand for value_at_risk()"""
210
+ return self.value_at_risk(alpha)
211
+
212
+ @columnwise_stat
213
+ def conditional_value_at_risk(self, series, alpha=0.05):
214
+ """
215
+ Calculates the conditional value-at-risk (CVaR / expected shortfall)
216
+ for each numeric column.
217
+ """
218
+ # Ensure returns are sorted and drop nulls
219
+ cleaned_returns = series.drop_nulls()
220
+
221
+ # Compute VaR using quantile; note that VaR is typically a negative number (i.e. loss)
222
+ var = cleaned_returns.quantile(alpha, interpolation="nearest")
223
+
224
+ # Compute mean of returns less than or equal to VaR
225
+ cvar = cleaned_returns.filter(cleaned_returns <= var).mean()
226
+
227
+ return cvar
228
+
229
+ # Compute CVaR: mean of values less than the VaR threshold
230
+ # return pl.when(series < var_expr).then(series).otherwise(None).mean()
231
+
232
+ def cvar(self, alpha=0.05):
233
+ """Shorthand for conditional_value_at_risk()"""
234
+ return self.conditional_value_at_risk(alpha)
235
+
236
+ def expected_shortfall(self, alpha=0.05):
237
+ """Shorthand for conditional_value_at_risk()"""
238
+ return self.conditional_value_at_risk(alpha)
239
+
240
+ @columnwise_stat
241
+ def tail_ratio(self, series, cutoff=0.95):
242
+ """Calculates the ratio of the right (95%) and left (5%) tails."""
243
+ left_tail = self._quantile_expr(series, 1 - cutoff)
244
+ right_tail = self._quantile_expr(series, cutoff)
245
+ return abs(right_tail / left_tail) # .alias(series.meta.output_name)
246
+
247
+ @columnwise_stat
248
+ def win_rate(self, series):
249
+ """Calculates the win ratio for a period."""
250
+ num_pos = series.filter(series > 0).count()
251
+ num_nonzero = series.filter(series != 0).count()
252
+ return num_pos / num_nonzero
253
+
254
+ @columnwise_stat
255
+ def gain_to_pain_ratio(self, series):
256
+ """
257
+ Jack Schwager's Gain-to-Pain Ratio:
258
+ total return / sum of losses (in absolute value).
259
+ """
260
+ total_gain = series.sum()
261
+ total_pain = series.filter(series < 0).abs().sum()
262
+ try:
263
+ return total_gain / total_pain
264
+ except ZeroDivisionError:
265
+ return np.nan
266
+
267
+ @columnwise_stat
268
+ def outlier_win_ratio(self, series: pl.Series, quantile: float = 0.99):
269
+ """
270
+ Calculates the outlier winners ratio:
271
+ 99th percentile of returns / mean positive return
272
+ """
273
+ q = series.quantile(quantile, interpolation="nearest")
274
+ mean_positive = series.filter(series > 0).mean()
275
+ return q / mean_positive
276
+
277
+ @columnwise_stat
278
+ def outlier_loss_ratio(self, series: pl.Series, quantile: float = 0.01):
279
+ """
280
+ Calculates the outlier losers ratio
281
+ 1st percentile of returns / mean negative return
282
+ """
283
+ q = series.quantile(quantile, interpolation="nearest")
284
+ mean_negative = series.filter(series < 0).mean()
285
+ return q / mean_negative
286
+
287
+ @columnwise_stat
288
+ def risk_return_ratio(self, series):
289
+ """
290
+ Calculates the return/risk ratio (Sharpe ratio w/o risk-free rate).
291
+ """
292
+ return series.mean() / series.std()
293
+
294
+ def kelly_criterion(self):
295
+ """
296
+ Calculates the optimal capital allocation (Kelly Criterion) per column:
297
+ f* = [(b * p) - q] / b
298
+ where:
299
+ - b = payoff ratio
300
+ - p = win rate
301
+ - q = 1 - p
302
+ """
303
+ b = self.payoff_ratio()
304
+ p = self.win_rate()
305
+
306
+ return {
307
+ col: ((b[col] * p[col]) - (1 - p[col])) / b[col]
308
+ # if b[col] not in (None, 0) and p[col] is not None else None
309
+ for col in b
310
+ }
311
+
312
+ @columnwise_stat
313
+ def best(self, series):
314
+ """Returns the maximum return per column (best period)."""
315
+ return series.max() # .alias(series.meta.output_name)
316
+
317
+ @columnwise_stat
318
+ def worst(self, series):
319
+ """Returns the minimum return per column (worst period)."""
320
+ return series.min() # .alias(series.meta.output_name)
321
+
322
+ @columnwise_stat
323
+ def exposure(self, series):
324
+ """Returns the market exposure time (returns != 0)"""
325
+ return np.round((series.filter(series != 0).count() / self.all.height), decimals=2)
326
+
327
+ @columnwise_stat
328
+ def sharpe(self, series, periods=252):
329
+ """
330
+ Calculates the Sharpe ratio of asset returns.
331
+ """
332
+ divisor = series.std(ddof=1)
333
+
334
+ res = series.mean() / divisor
335
+ factor = periods or 1
336
+ return res * np.sqrt(factor)
337
+
338
+ @to_frame
339
+ def rolling_sharpe(self, series: pl.Expr, rolling_period=126, periods_per_year=252) -> pl.Expr:
340
+ res = series.rolling_mean(window_size=rolling_period) / series.rolling_std(window_size=rolling_period)
341
+ factor = periods_per_year or 1
342
+ return res * np.sqrt(factor)
343
+
344
+ @columnwise_stat
345
+ def sortino(self, series: pl.Series, periods=252):
346
+ """
347
+ Calculates the Sortino ratio: mean return divided by downside deviation.
348
+ Based on Red Rock Capital's Sortino ratio paper.
349
+ """
350
+
351
+ downside_deviation = np.sqrt(((series.filter(series < 0)) ** 2).mean())
352
+
353
+ ratio = series.mean() / downside_deviation
354
+ return ratio * np.sqrt(periods)
355
+
356
+ @to_frame
357
+ def rolling_sortino(self, series, rolling_period=126, periods_per_year=252):
358
+ mean_ret = series.rolling_mean(window_size=rolling_period)
359
+
360
+ # Rolling downside deviation (squared negative returns averaged over window)
361
+ downside = series.map_elements(lambda x: x**2 if x < 0 else 0.0).rolling_mean(window_size=rolling_period)
362
+
363
+ # Avoid division by zero
364
+ sortino = mean_ret / downside.sqrt().fill_nan(0).fill_null(0)
365
+ return sortino * (periods_per_year**0.5)
366
+
367
+ def adjusted_sortino(self, periods=252):
368
+ """
369
+ Jack Schwager's adjusted Sortino ratio for direct comparison to Sharpe.
370
+ See: https://archive.is/wip/2rwFW
371
+ """
372
+ sortino_data = self.sortino(periods=periods)
373
+ return {k: v / np.sqrt(2) for k, v in sortino_data.items()}
374
+
375
+ @columnwise_stat
376
+ def r_squared(self, series, benchmark=None):
377
+ """Measures the straight line fit of the equity curve"""
378
+ if self.data.benchmark is None:
379
+ raise AttributeError("No benchmark data available")
380
+
381
+ benchmark_col = benchmark or self.data.benchmark.columns[0]
382
+
383
+ # if self.data.benchmark is None:
384
+ # raise AttributeError("No benchmark data available")
385
+ # Evaluate both series and benchmark as Series
386
+ df = self.all.select([series, pl.col(benchmark_col).alias("benchmark")])
387
+
388
+ # Drop nulls
389
+ df = df.drop_nulls()
390
+ print(df)
391
+
392
+ matrix = df.to_numpy()
393
+ # Get actual Series
394
+
395
+ strategy_np = matrix[:, 0]
396
+ benchmark_np = matrix[:, 1]
397
+
398
+ corr_matrix = np.corrcoef(strategy_np, benchmark_np)
399
+ r = corr_matrix[0, 1]
400
+ return r**2
401
+
402
+ def r2(self):
403
+ """Shorthand for r_squared()"""
404
+ return self.r_squared()
405
+
406
+ @columnwise_stat
407
+ def information_ratio(self, series, periods_per_year=252, benchmark=None):
408
+ """
409
+ Calculates the information ratio
410
+ (basically the risk return ratio of the net profits)
411
+ """
412
+ benchmark_col = benchmark or self.data.benchmark.columns[0]
413
+
414
+ active = series - self.data.benchmark[benchmark_col]
415
+
416
+ mean = active.mean()
417
+ std = active.std()
418
+
419
+ try:
420
+ return (mean / std) * (periods_per_year**0.5)
421
+ except ZeroDivisionError:
422
+ return 0.0
423
+
424
+ @columnwise_stat
425
+ def greeks(self, series, periods_per_year=252, benchmark=None):
426
+ """Calculates alpha and beta of the portfolio"""
427
+ # find covariance
428
+ benchmark_col = benchmark or self.data.benchmark.columns[0]
429
+
430
+ # Evaluate both series and benchmark as Series
431
+ df = self.all.select([series, pl.col(benchmark_col).alias("benchmark")])
432
+
433
+ # Drop nulls
434
+ df = df.drop_nulls()
435
+ matrix = df.to_numpy()
436
+
437
+ # Get actual Series
438
+ strategy_np = matrix[:, 0]
439
+ benchmark_np = matrix[:, 1]
440
+
441
+ # 2x2 covariance matrix: [[var_strategy, cov], [cov, var_benchmark]]
442
+ cov_matrix = np.cov(strategy_np, benchmark_np)
443
+
444
+ cov = cov_matrix[0, 1]
445
+ var_benchmark = cov_matrix[1, 1]
446
+
447
+ beta = cov / var_benchmark if var_benchmark != 0 else float("nan")
448
+ alpha = np.mean(strategy_np) - beta * np.mean(benchmark_np)
449
+
450
+ return {"alpha": alpha * periods_per_year, "beta": beta}
jquantstats/api.py ADDED
@@ -0,0 +1,222 @@
1
+ # QuantStats: Portfolio analytics for quants
2
+ # https://github.com/tschm/jquantstats
3
+ #
4
+ # Copyright 2019-2024 Ran Aroussi
5
+ # Copyright 2025 Thomas Schmelzer
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+
19
+ """
20
+ QuantStats API module.
21
+
22
+ This module provides the core API for the QuantStats library,
23
+ including the Data class
24
+ for handling financial returns data and benchmarks.
25
+ """
26
+
27
+ import dataclasses
28
+
29
+ import polars as pl
30
+
31
+ from ._plots import Plots
32
+ from ._stats import Stats
33
+
34
+
35
+ def build_data(
36
+ returns: pl.DataFrame, rf: float | pl.DataFrame = 0.0, benchmark: pl.DataFrame = None, date_col: str = "Date"
37
+ ) -> "_Data":
38
+ """
39
+ Build a _Data object from returns and optional benchmark using Polars.
40
+
41
+ Parameters:
42
+ returns (pl.DataFrame): Financial returns.
43
+ rf (float | pl.DataFrame): Risk-free rate (scalar or time series).
44
+ benchmark (pl.DataFrame, optional): Benchmark returns.
45
+ date_col (str): Name of the date column.
46
+
47
+ Returns:
48
+ _Data: Object containing excess returns and benchmark (if any).
49
+ """
50
+
51
+ def subtract_risk_free(df: pl.DataFrame, rf: float | pl.DataFrame, date_col: str) -> pl.DataFrame:
52
+ if df is None:
53
+ return None
54
+
55
+ # Handle scalar rf case
56
+ if isinstance(rf, float):
57
+ rf_df = df.select([pl.col(date_col), pl.lit(rf).alias("rf")])
58
+ else:
59
+ rf_df = rf.rename({rf.columns[1]: "rf"}) if rf.columns[1] != "rf" else rf
60
+
61
+ # Join and subtract
62
+ df = df.join(rf_df, on=date_col, how="inner")
63
+ return df.select(
64
+ [pl.col(date_col)]
65
+ + [
66
+ (pl.col(col) - pl.col("rf")).alias(col)
67
+ for col in df.columns
68
+ if col not in {date_col, "rf"} and df.schema[col] in pl.NUMERIC_DTYPES
69
+ ]
70
+ )
71
+
72
+ # Align returns and benchmark if both provided
73
+ if benchmark is not None:
74
+ joined_dates = returns.join(benchmark, on=date_col, how="inner").select(date_col)
75
+ if joined_dates.is_empty():
76
+ raise ValueError("No overlapping dates between returns and benchmark.")
77
+ returns = returns.join(joined_dates, on=date_col, how="inner")
78
+ benchmark = benchmark.join(joined_dates, on=date_col, how="inner")
79
+
80
+ # Subtract risk-free rate
81
+ index = returns.select(date_col)
82
+ excess_returns = subtract_risk_free(returns, rf, date_col).drop(date_col)
83
+ excess_benchmark = subtract_risk_free(benchmark, rf, date_col).drop(date_col) if benchmark is not None else None
84
+
85
+ return _Data(returns=excess_returns, benchmark=excess_benchmark, index=index)
86
+
87
+
88
+ @dataclasses.dataclass(frozen=True)
89
+ class _Data:
90
+ """
91
+ A container for financial returns data and an optional benchmark.
92
+
93
+ This class provides methods for analyzing and manipulating financial returns data,
94
+ including converting returns to prices, calculating drawdowns, and resampling data
95
+ to different time periods.
96
+
97
+ Attributes:
98
+ returns (pd.DataFrame): DataFrame containing returns data, typically with dates as index
99
+ and assets as columns.
100
+ #benchmark (pd.Series, optional): Series containing benchmark returns data with the same
101
+ # index as returns. Defaults to None.
102
+ """
103
+
104
+ returns: pl.DataFrame
105
+ benchmark: pl.DataFrame | None = None
106
+ index: pl.DataFrame | None = None
107
+
108
+ @property
109
+ def plots(self):
110
+ return Plots(self)
111
+
112
+ @property
113
+ def stats(self):
114
+ return Stats(self)
115
+
116
+ @property
117
+ def date_col(self):
118
+ return self.index.columns
119
+
120
+ @property
121
+ def assets(self):
122
+ try:
123
+ return self.returns.columns + self.benchmark.columns
124
+ except AttributeError:
125
+ return self.returns.columns
126
+
127
+ def __post_init__(self) -> None:
128
+ """
129
+ Validates that the benchmark index matches the returns index if benchmark is provided.
130
+
131
+ Raises:
132
+ AssertionError: If benchmark is provided and its index doesn't match returns index.
133
+ """
134
+
135
+ @property
136
+ def all(self) -> pl.DataFrame:
137
+ """
138
+ Combines returns and benchmark data into a single DataFrame.
139
+
140
+ Returns:
141
+ pd.DataFrame: A DataFrame containing all returns data and benchmark (if available),
142
+ with NaN values filled with 0.0.
143
+ """
144
+ if self.benchmark is None:
145
+ return pl.concat([self.index, self.returns], how="horizontal")
146
+ else:
147
+ return pl.concat([self.index, self.returns, self.benchmark], how="horizontal")
148
+
149
+ def resample(self, every: str = "1mo", compounded: bool = False) -> "_Data":
150
+ """
151
+ Resamples returns and benchmark to a different frequency using Polars.
152
+
153
+ Args:
154
+ every (str, optional): Resampling frequency (e.g., '1mo', '1y'). Defaults to '1mo'.
155
+ compounded (bool, optional): Whether to compound returns. Defaults to False.
156
+
157
+ Returns:
158
+ _Data: Resampled data.
159
+ """
160
+
161
+ def resample_frame(df: pl.DataFrame) -> pl.DataFrame:
162
+ if df is None:
163
+ return None
164
+
165
+ df = self.index.hstack(df) # Add the date column for resampling
166
+
167
+ return df.group_by_dynamic(
168
+ index_column=self.index.columns[0], every=every, period=every, closed="right", label="right"
169
+ ).agg(
170
+ [
171
+ pl.col(col).sum().alias(col) if not compounded else ((pl.col(col) + 1.0).product() - 1.0).alias(col)
172
+ for col in df.columns
173
+ if col != self.index.columns[0]
174
+ ]
175
+ )
176
+
177
+ resampled_returns = resample_frame(self.returns)
178
+ resampled_benchmark = resample_frame(self.benchmark) if self.benchmark is not None else None
179
+ resampled_index = resampled_returns.select(self.index.columns[0])
180
+
181
+ return _Data(
182
+ returns=resampled_returns.drop(self.index.columns[0]),
183
+ benchmark=resampled_benchmark.drop(self.index.columns[0]) if resampled_benchmark is not None else None,
184
+ index=resampled_index,
185
+ )
186
+
187
+ def copy(self) -> "_Data":
188
+ """
189
+ Creates a deep copy of the Data object.
190
+
191
+ Returns:
192
+ _Data: A new Data object with copies of the returns and benchmark.
193
+ """
194
+ try:
195
+ return _Data(returns=self.returns.clone(), benchmark=self.benchmark.clone(), index=self.index.clone())
196
+ except AttributeError:
197
+ # Handle case where benchmark is None
198
+ return _Data(returns=self.returns.clone(), index=self.index.clone())
199
+
200
+ def head(self, n: int = 5) -> "_Data":
201
+ """
202
+ Returns the first n rows of the combined returns and benchmark data.
203
+
204
+ Args:
205
+ n (int, optional): Number of rows to return. Defaults to 5.
206
+
207
+ Returns:
208
+ _Data: A new Data object containing the first n rows of the combined data.
209
+ """
210
+ return _Data(returns=self.returns.head(n), benchmark=self.benchmark.head(n), index=self.index.head(n))
211
+
212
+ def tail(self, n: int = 5) -> "_Data":
213
+ """
214
+ Returns the last n rows of the combined returns and benchmark data.
215
+
216
+ Args:
217
+ n (int, optional): Number of rows to return. Defaults to 5.
218
+
219
+ Returns:
220
+ _Data: A new Data object containing the last n rows of the combined data.
221
+ """
222
+ return _Data(returns=self.returns.tail(n), benchmark=self.benchmark.tail(n), index=self.index.tail(n))
@@ -0,0 +1,150 @@
1
+ Metadata-Version: 2.4
2
+ Name: jquantstats
3
+ Version: 0.0.2
4
+ Summary: Toying with quantstats
5
+ Project-URL: repository, https://github.com/tschm/jquantstats
6
+ Author-email: tschm <thomas.schmelzer@gmail.com>
7
+ License-File: LICENSE.txt
8
+ Requires-Python: >=3.10
9
+ Requires-Dist: kaleido==0.2.1
10
+ Requires-Dist: numpy>=2.2.3
11
+ Requires-Dist: plotly>=6.0.0
12
+ Requires-Dist: polars==1.29.0
13
+ Provides-Extra: dev
14
+ Requires-Dist: pre-commit==4.2.0; extra == 'dev'
15
+ Requires-Dist: pytest-cov==6.1.1; extra == 'dev'
16
+ Requires-Dist: pytest==8.3.5; extra == 'dev'
17
+ Requires-Dist: yfinance==0.2.58; extra == 'dev'
18
+ Description-Content-Type: text/markdown
19
+
20
+ # [jQuantStats](https://tschm.github.io/jquantstats/book): Portfolio analytics for quants
21
+
22
+ [![PyPI version](https://badge.fury.io/py/jquantstats.svg)](https://badge.fury.io/py/jquantstats)
23
+ [![License: Apache 2.0](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](LICENSE.txt)
24
+ [![CI](https://github.com/tschm/jquantstats/actions/workflows/ci.yml/badge.svg)](https://github.com/tschm/jquantstats/actions/workflows/ci.yml)
25
+ [![Coverage Status](https://coveralls.io/repos/github/tschm/jquantstats/badge.svg?branch=main)](https://coveralls.io/github/tschm/jquantstats?branch=main)
26
+ [![CodeFactor](https://www.codefactor.io/repository/github/tschm/jquantstats/badge)](https://www.codefactor.io/repository/github/tschm/quantstats)
27
+ [![Renovate enabled](https://img.shields.io/badge/renovate-enabled-brightgreen.svg)](https://github.com/renovatebot/renovate)
28
+
29
+ [![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/tschm/jquantstats)
30
+
31
+ ## Overview
32
+
33
+ **jQuantStats** is a Python library for portfolio analytics
34
+ that helps quants and portfolio managers understand
35
+ their performance through in-depth analytics and risk metrics.
36
+ It provides tools for calculating various performance metrics
37
+ and visualizing portfolio performance.
38
+
39
+ The library is inspired by and currently exposes a subset of the
40
+ functionality of [QuantStats](https://github.com/ranaroussi/quantstats),
41
+ focusing on providing a clean, modern API with enhanced
42
+ visualization capabilities using Plotly.
43
+
44
+ We have made the following changes when compared to quantstats:
45
+
46
+ - added tests (based on pytest), pre-commit hooks and
47
+ github ci/cd workflows
48
+ - removed a direct dependency on yfinance to inject data
49
+ - moved all graphical output to plotly and removed the matplotlib dependency
50
+ - removed some statistical metrics but intend to bring them back
51
+ - moved to Marimo for demos
52
+ - gave up on the very tight coupling with pandas
53
+
54
+ Along the way we broke downwards compatibility with quantstats but the
55
+ underlying usage pattern is too different. Users familiar with
56
+ Dataclasses may find the chosen path appealing.
57
+ A data class is
58
+ constructed using the `build_data` function.
59
+ This function is essentially
60
+ the only viable entry point into jquantstats.
61
+ It constructs and returns
62
+ a `_Data` object which exposes plots and stats via its member attributes.
63
+
64
+ At this early stage the user would have to define a benchmark
65
+ and set the underlying risk-free rate.
66
+
67
+ ## Features
68
+
69
+ - **Performance Metrics**: Calculate key metrics like Sharpe ratio, Sortino ratio,
70
+ drawdowns, volatility, and many more
71
+ - **Risk Analysis**: Analyze risk through metrics like Value at Risk (VaR),
72
+ Conditional VaR, and drawdown analysis
73
+ - **Visualization**: Create interactive plots for portfolio performance, drawdowns,
74
+ return distributions, and monthly heatmaps
75
+ - **Benchmark Comparison**: Compare your portfolio performance against benchmarks
76
+
77
+ ## Installation
78
+
79
+ ```bash
80
+ pip install jquantstats
81
+ ```
82
+
83
+ For development:
84
+
85
+ ```bash
86
+ pip install jquantstats[dev]
87
+ ```
88
+
89
+ ## Quick Start
90
+
91
+ ```python
92
+ import pandas as pd
93
+ from jquantstats.api import build_data
94
+
95
+ # Create a Data object from returns
96
+ returns = pd.DataFrame(...) # Your returns data
97
+
98
+ # Basic usage
99
+ data = build_data(returns=returns)
100
+
101
+ # With benchmark and risk-free rate
102
+ benchmark = pd.Series(...) # Your benchmark returns
103
+ data = build_data(
104
+ returns=returns,
105
+ benchmark=benchmark,
106
+ rf=0.02, # risk-free rate (e.g., 2% annual rate)
107
+ nperiods=252 # number of trading days per year
108
+ )
109
+
110
+ # Calculate statistics
111
+ sharpe = data.stats.sharpe()
112
+ volatility = data.stats.volatility()
113
+
114
+ # Create visualizations
115
+ fig = data.plots.plot_snapshot(title="Portfolio Performance")
116
+ fig.show()
117
+
118
+ # Monthly returns heatmap
119
+ fig = data.plots.monthly_heatmap()
120
+ fig.show()
121
+ ```
122
+
123
+ ## Documentation
124
+
125
+ For detailed documentation,
126
+ visit [jQuantStats Documentation](https://tschm.github.io/jquantstats/book).
127
+
128
+ ## Requirements
129
+
130
+ - Python 3.10+
131
+ - numpy
132
+ - pandas
133
+ - scipy
134
+ - plotly
135
+ - kaleido (for static image export)
136
+
137
+ ## Contributing
138
+
139
+ Contributions are welcome! Please feel free to submit a Pull Request.
140
+
141
+ 1. Fork the repository
142
+ 2. Create your feature branch (`git checkout -b feature/amazing-feature`)
143
+ 3. Commit your changes (`git commit -m 'Add some amazing feature'`)
144
+ 4. Push to the branch (`git push origin feature/amazing-feature`)
145
+ 5. Open a Pull Request
146
+
147
+ ## License
148
+
149
+ This project is licensed under the
150
+ Apache License 2.0 - see the [LICENSE.txt](LICENSE.txt) file for details.
@@ -0,0 +1,8 @@
1
+ jquantstats/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ jquantstats/_plots.py,sha256=y3hGRvw-2X9EJaCRoI2zQ7G4Ghm5rlXiORlr2h9BrkA,10077
3
+ jquantstats/_stats.py,sha256=ftROfeBH_3AIpp-ZLAGSLEHE2XUYfdbTIWk7pGD4lOQ,15163
4
+ jquantstats/api.py,sha256=OZ9znbQFx4qwA1oh3mEBsrXDtRpcNEHzaJ9u5N9fikA,7995
5
+ jquantstats-0.0.2.dist-info/METADATA,sha256=eBXVpTwtADqDl97x35oD-xJAk-TPT63PCv_yjnjiEWg,5081
6
+ jquantstats-0.0.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
7
+ jquantstats-0.0.2.dist-info/licenses/LICENSE.txt,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
8
+ jquantstats-0.0.2.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: hatchling 1.27.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
@@ -0,0 +1,175 @@
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.