job-shop-lib 1.5.0__py3-none-any.whl → 1.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
job_shop_lib/__init__.py CHANGED
@@ -19,7 +19,7 @@ from job_shop_lib._schedule import Schedule
19
19
  from job_shop_lib._base_solver import BaseSolver, Solver
20
20
 
21
21
 
22
- __version__ = "1.5.0"
22
+ __version__ = "1.6.0"
23
23
 
24
24
  __all__ = [
25
25
  "Operation",
@@ -15,13 +15,13 @@ Solver = Callable[[JobShopInstance], Schedule]
15
15
  class BaseSolver(abc.ABC):
16
16
  """Base class for all solvers implemented as classes.
17
17
 
18
- A `Solver` is any `Callable` that takes a `JobShopInstance` and returns a
19
- `Schedule`. Therefore, solvers can be implemented as functions or as
20
- classes. This class is provided as a base class for solvers implemented as
21
- classes. It provides a default implementation of the `__call__` method that
22
- measures the time taken to solve the instance and stores it in the
23
- schedule's metadata under the key "elapsed_time" if it is not already
24
- present.
18
+ A ``Solver`` is any ``Callable`` that takes a :class:`JobShopInstance` and
19
+ returns a :class:`Schedule`. Therefore, solvers can be implemented as
20
+ functions or as classes. This class is provided as a base class for solvers
21
+ implemented as classes. It provides a default implementation of the
22
+ ``__call__`` method that measures the time taken to solve the instance
23
+ and stores it in the schedule's metadata under the key "elapsed_time" if
24
+ it is not alreadypresent.
25
25
  """
26
26
 
27
27
  @abc.abstractmethod
job_shop_lib/_schedule.py CHANGED
@@ -5,7 +5,7 @@ from __future__ import annotations
5
5
  from typing import Any, TYPE_CHECKING
6
6
  from collections import deque
7
7
 
8
- from job_shop_lib import ScheduledOperation, JobShopInstance
8
+ from job_shop_lib import ScheduledOperation, JobShopInstance, Operation
9
9
  from job_shop_lib.exceptions import ValidationError
10
10
 
11
11
  if TYPE_CHECKING:
@@ -53,6 +53,19 @@ class Schedule:
53
53
  "schedule. It can be used to store information about the "
54
54
  "algorithm that generated the schedule, for example."
55
55
  ),
56
+ "operation_to_scheduled_operation": (
57
+ "A dictionary that maps an :class:`Operation` to its "
58
+ ":class:`ScheduledOperation` in the schedule. This is used to "
59
+ "quickly find the scheduled operation associated with a given "
60
+ "operation."
61
+ ),
62
+ "num_scheduled_operations": (
63
+ "The number of operations that have been scheduled so far."
64
+ ),
65
+ "operation_with_latest_end_time": (
66
+ "The :class:`ScheduledOperation` with the latest end time. "
67
+ "This is used to quickly find the last operation in the schedule."
68
+ ),
56
69
  }
57
70
 
58
71
  def __init__(
@@ -69,6 +82,25 @@ class Schedule:
69
82
  self.instance: JobShopInstance = instance
70
83
  self._schedule = schedule
71
84
  self.metadata: dict[str, Any] = metadata
85
+ self.operation_to_scheduled_operation: dict[
86
+ Operation, ScheduledOperation
87
+ ] = {
88
+ scheduled_op.operation: scheduled_op
89
+ for machine_schedule in schedule
90
+ for scheduled_op in machine_schedule
91
+ }
92
+ self.num_scheduled_operations = sum(
93
+ len(machine_schedule) for machine_schedule in schedule
94
+ )
95
+ self.operation_with_latest_end_time: ScheduledOperation | None = max(
96
+ (
97
+ scheduled_op
98
+ for machine_schedule in schedule
99
+ for scheduled_op in machine_schedule
100
+ ),
101
+ key=lambda op: op.end_time, # type: ignore[union-attr]
102
+ default=None,
103
+ )
72
104
 
73
105
  def __repr__(self) -> str:
74
106
  return str(self.schedule)
@@ -84,11 +116,6 @@ class Schedule:
84
116
  Schedule.check_schedule(new_schedule)
85
117
  self._schedule = new_schedule
86
118
 
87
- @property
88
- def num_scheduled_operations(self) -> int:
89
- """The number of operations that have been scheduled so far."""
90
- return sum(len(machine_schedule) for machine_schedule in self.schedule)
91
-
92
119
  def to_dict(self) -> dict:
93
120
  """Returns a dictionary representation of the schedule.
94
121
 
@@ -106,15 +133,9 @@ class Schedule:
106
133
  - **"metadata"**: A dictionary with additional information
107
134
  about the schedule.
108
135
  """
109
- job_sequences: list[list[int]] = []
110
- for machine_schedule in self.schedule:
111
- job_sequences.append(
112
- [operation.job_id for operation in machine_schedule]
113
- )
114
-
115
136
  return {
116
137
  "instance": self.instance.to_dict(),
117
- "job_sequences": job_sequences,
138
+ "job_sequences": self.job_sequences(),
118
139
  "metadata": self.metadata,
119
140
  }
120
141
 
@@ -211,20 +232,35 @@ class Schedule:
211
232
  )
212
233
  return dispatcher.schedule
213
234
 
235
+ def job_sequences(self) -> list[list[int]]:
236
+ """Returns the sequence of jobs for each machine in the schedule.
237
+
238
+ This method returns a list of lists, where each sublist contains the
239
+ job ids of the operations scheduled on that machine.
240
+ """
241
+ job_sequences: list[list[int]] = []
242
+ for machine_schedule in self.schedule:
243
+ job_sequences.append(
244
+ [operation.job_id for operation in machine_schedule]
245
+ )
246
+ return job_sequences
247
+
214
248
  def reset(self):
215
249
  """Resets the schedule to an empty state."""
216
250
  self.schedule = [[] for _ in range(self.instance.num_machines)]
251
+ self.operation_to_scheduled_operation = {}
252
+ self.num_scheduled_operations = 0
253
+ self.operation_with_latest_end_time = None
217
254
 
218
255
  def makespan(self) -> int:
219
256
  """Returns the makespan of the schedule.
220
257
 
221
258
  The makespan is the time at which all operations are completed.
222
259
  """
223
- max_end_time = 0
224
- for machine_schedule in self.schedule:
225
- if machine_schedule:
226
- max_end_time = max(max_end_time, machine_schedule[-1].end_time)
227
- return max_end_time
260
+ last_operation = self.operation_with_latest_end_time
261
+ if last_operation is None:
262
+ return 0
263
+ return last_operation.end_time
228
264
 
229
265
  def is_complete(self) -> bool:
230
266
  """Returns ``True`` if all operations have been scheduled."""
@@ -245,10 +281,25 @@ class Schedule:
245
281
  constraints.
246
282
  """
247
283
  self._check_start_time_of_new_operation(scheduled_operation)
284
+
285
+ # Update attributes:
248
286
  self.schedule[scheduled_operation.machine_id].append(
249
287
  scheduled_operation
250
288
  )
251
289
 
290
+ self.operation_to_scheduled_operation[
291
+ scheduled_operation.operation
292
+ ] = scheduled_operation
293
+
294
+ self.num_scheduled_operations += 1
295
+
296
+ if (
297
+ self.operation_with_latest_end_time is None
298
+ or scheduled_operation.end_time
299
+ > self.operation_with_latest_end_time.end_time
300
+ ):
301
+ self.operation_with_latest_end_time = scheduled_operation
302
+
252
303
  def _check_start_time_of_new_operation(
253
304
  self,
254
305
  new_operation: ScheduledOperation,
@@ -333,3 +384,71 @@ class Schedule:
333
384
  [machine_schedule.copy() for machine_schedule in self.schedule],
334
385
  **self.metadata,
335
386
  )
387
+
388
+ def critical_path(self) -> list[ScheduledOperation]:
389
+ """Returns the critical path of the schedule.
390
+
391
+ The critical path is the longest path of dependent operations through
392
+ the schedule, which determines the makespan. This implementation
393
+ correctly identifies the path even in non-compact schedules where
394
+ idle time may exist.
395
+
396
+ It works by starting from an operation that determines the makespan
397
+ and tracing backwards, at each step choosing the predecessor (either
398
+ from the same job or the same machine) that finished latest.
399
+ """
400
+ # 1. Start from the operation that determines the makespan
401
+ last_scheduled_op = self.operation_with_latest_end_time
402
+ if last_scheduled_op is None:
403
+ return []
404
+
405
+ critical_path = deque([last_scheduled_op])
406
+ current_scheduled_op = last_scheduled_op
407
+
408
+ # 2. Trace backwards from the last operation
409
+ while True:
410
+ job_pred = None
411
+ machine_pred = None
412
+
413
+ # Find job predecessor (the previous operation in the same job)
414
+ op_idx_in_job = current_scheduled_op.operation.position_in_job
415
+ if op_idx_in_job > 0:
416
+ prev_op_in_job = self.instance.jobs[
417
+ current_scheduled_op.job_id
418
+ ][op_idx_in_job - 1]
419
+ job_pred = self.operation_to_scheduled_operation[
420
+ prev_op_in_job
421
+ ]
422
+
423
+ # Find machine predecessor (the previous operation on the same
424
+ # machine)
425
+ machine_schedule = self.schedule[current_scheduled_op.machine_id]
426
+ op_idx_on_machine = machine_schedule.index(current_scheduled_op)
427
+ if op_idx_on_machine > 0:
428
+ machine_pred = machine_schedule[op_idx_on_machine - 1]
429
+
430
+ # 3. Determine the critical predecessor
431
+ # The critical predecessor is the one that finished latest, as it
432
+ # determined the start time of the current operation.
433
+
434
+ if job_pred is None and machine_pred is None:
435
+ # Reached the beginning of the schedule, no more predecessors
436
+ break
437
+
438
+ job_pred_end_time = (
439
+ job_pred.end_time if job_pred is not None else -1
440
+ )
441
+ machine_pred_end_time = (
442
+ machine_pred.end_time if machine_pred is not None else -1
443
+ )
444
+ critical_pred = (
445
+ job_pred
446
+ if job_pred_end_time >= machine_pred_end_time
447
+ else machine_pred
448
+ )
449
+ assert critical_pred is not None
450
+ # Prepend the critical predecessor to the path and continue tracing
451
+ critical_path.appendleft(critical_pred)
452
+ current_scheduled_op = critical_pred
453
+
454
+ return list(critical_path)
@@ -0,0 +1,61 @@
1
+ """Metaheuristic algorithms for solving job shop scheduling problems.
2
+
3
+ This module provides implementations of various metaheuristic optimization
4
+ algorithms designed to solve the job shop scheduling problem.
5
+
6
+ Metaheuristics are particularly well-suited for JSSP due to their ability to:
7
+
8
+ - Handle large solution spaces efficiently
9
+ - Escape local optima through stochastic mechanisms
10
+ - Balance exploration and exploitation of the search space
11
+ - Provide good quality solutions within reasonable computational time
12
+
13
+ Currently implemented algorithms:
14
+
15
+ - Simulated annealing: A probabilistic technique that accepts worse
16
+ solutions with decreasing probability to escape local optima
17
+
18
+ The module aims to contain implementations of other
19
+ metaheuristic algorithms such as genetic algorithms, particle swarm
20
+ optimization, tabu search, etc. Feel free to open an issue if you want to
21
+ contribute!
22
+
23
+ .. autosummary::
24
+ :nosignatures:
25
+
26
+ JobShopAnnealer
27
+ SimulatedAnnealingSolver
28
+ NeighborGenerator
29
+ swap_adjacent_operations
30
+ swap_in_critical_path
31
+ swap_random_operations
32
+ ObjectiveFunction
33
+ get_makespan_with_penalties_objective
34
+
35
+ """
36
+
37
+ from job_shop_lib.metaheuristics._objective_functions import (
38
+ ObjectiveFunction,
39
+ get_makespan_with_penalties_objective,
40
+ )
41
+ from job_shop_lib.metaheuristics._neighbor_generators import (
42
+ NeighborGenerator,
43
+ swap_adjacent_operations,
44
+ swap_in_critical_path,
45
+ swap_random_operations,
46
+ )
47
+ from job_shop_lib.metaheuristics._job_shop_annealer import JobShopAnnealer
48
+ from job_shop_lib.metaheuristics._simulated_annealing_solver import (
49
+ SimulatedAnnealingSolver,
50
+ )
51
+
52
+ __all__ = [
53
+ "JobShopAnnealer",
54
+ "SimulatedAnnealingSolver",
55
+ "NeighborGenerator",
56
+ "swap_adjacent_operations",
57
+ "swap_in_critical_path",
58
+ "swap_random_operations",
59
+ "ObjectiveFunction",
60
+ "get_makespan_with_penalties_objective",
61
+ ]
@@ -0,0 +1,229 @@
1
+ import random
2
+ import math
3
+ import time
4
+
5
+ import simanneal
6
+
7
+ from job_shop_lib import JobShopInstance, Schedule
8
+ from job_shop_lib.exceptions import ValidationError
9
+ from job_shop_lib.metaheuristics import (
10
+ NeighborGenerator,
11
+ ObjectiveFunction,
12
+ swap_in_critical_path,
13
+ get_makespan_with_penalties_objective,
14
+ )
15
+
16
+
17
+ class JobShopAnnealer(simanneal.Annealer):
18
+ """Helper class for the :class:`SimulatedAnnealingSolver`.
19
+
20
+ It uses `simanneal <https://github.com/perrygeo/simanneal>`_ as the
21
+ backend.
22
+
23
+ In the context of the job shop scheduling problem, simulated annealing is
24
+ particularly useful for improving previous solutions.
25
+
26
+ The neighbor move is pluggable via a ``neighbor_generator`` function. By
27
+ default it uses :func:`swap_in_critical_path`, but any function that takes
28
+ a schedule and a random generator and returns a new schedule can be
29
+ provided to tailor the exploration of the search space.
30
+
31
+ The process involves iteratively exploring the solution space:
32
+
33
+ 1. A random move is made to alter the current state. This is done by
34
+ swapping two operations in the sequence of a machine.
35
+ 2. The "energy" of the new state is evaluated using an objective function.
36
+ With the default objective function, the energy is calculated as the
37
+ makespan of the schedule plus penalties for any constraint violations
38
+ (such as deadlines and due dates). See
39
+ :func:`get_makespan_with_penalties_objective` for details. You can
40
+ create custom objective functions by implementing the
41
+ :class:`ObjectiveFunction` interface, which takes a schedule and returns
42
+ a float representing the energy of that schedule.
43
+ 3. The new state is accepted if it has lower energy (a better solution).
44
+ If it has higher energy, it might still be accepted with a certain
45
+ probability, which depends on the current "temperature". The
46
+ temperature decreases over time, reducing the chance of accepting
47
+ worse solutions as the algorithm progresses. This helps to avoid
48
+ getting stuck in local optima.
49
+
50
+ This is repeated until the solution converges or a maximum number of
51
+ steps is reached.
52
+
53
+ Tuning the annealer is crucial for performance. The base
54
+ ``simanneal.Annealer`` class provides parameters that can be adjusted:
55
+
56
+ - ``Tmax``: Maximum (starting) temperature (default: 25000.0).
57
+ - ``Tmin``: Minimum (ending) temperature (default: 2.5).
58
+ - ``steps``: Number of iterations (default: 50000).
59
+ - ``updates``: Number of progress updates (default: 100).
60
+
61
+ A good starting point is to set ``Tmax`` to a value that accepts about 98%
62
+ of moves and ``Tmin`` to a value where the solution no longer improves.
63
+ The number of ``steps`` should be large enough to explore the search space
64
+ thoroughly.
65
+
66
+ These parameters can be set on the annealer instance. For example:
67
+ ``annealer.Tmax = 12000.0``
68
+
69
+ Alternatively, this class provides an ``auto`` method to find reasonable
70
+ parameters based on a desired runtime:
71
+ ``auto_schedule = annealer.auto(minutes=1)``
72
+ ``annealer.set_schedule(auto_schedule)``
73
+
74
+ Attributes:
75
+ instance:
76
+ The job shop instance to solve.
77
+ random_generator:
78
+ Random generator for reproducibility.
79
+ neighbor_generator:
80
+ Function used to generate neighbors from the current schedule.
81
+ Defaults to :func:`swap_in_critical_path`.
82
+ objective_function:
83
+ Function that computes the energy of the schedule. If ``None``,
84
+ it defaults to :func:`get_makespan_with_penalties_objective`.
85
+ This function receives a schedule and returns the energy that will
86
+ be minimized by the annealer.
87
+
88
+ Args:
89
+ instance:
90
+ The job shop instance to solve. It retrieves the jobs and
91
+ machines from the instance and uses them to create the schedule.
92
+ initial_state:
93
+ Initial state of the schedule as a list of lists, where each
94
+ sublist represents the operations of a job.
95
+ seed:
96
+ Random seed for reproducibility. If ``None``, random behavior
97
+ will be non-deterministic.
98
+ neighbor_generator:
99
+ Function that receives the current schedule and a random generator
100
+ and returns a new schedule to explore. Defaults to
101
+ :func:`swap_in_critical_path`. Use this to plug in custom
102
+ neighborhoods (e.g., adjacent swaps).
103
+ objective_function:
104
+ Function that computes the energy of the schedule. If ``None``,
105
+ it defaults to :func:`get_makespan_with_penalties_objective`.
106
+ This callable receives a :class:`~job_shop_lib.Schedule` and
107
+ returns a float that will be minimized by the annealer.
108
+ """
109
+
110
+ copy_strategy = "method"
111
+
112
+ def __init__(
113
+ self,
114
+ instance: JobShopInstance,
115
+ initial_state: Schedule,
116
+ *,
117
+ seed: int | None = None,
118
+ neighbor_generator: NeighborGenerator = swap_in_critical_path,
119
+ objective_function: ObjectiveFunction | None = None,
120
+ ):
121
+ super().__init__(initial_state)
122
+ self.instance = instance
123
+ if objective_function is None:
124
+ self.objective_function = get_makespan_with_penalties_objective()
125
+ else:
126
+ self.objective_function = objective_function
127
+ self.random_generator = random.Random(seed)
128
+ self.neighbor_generator = neighbor_generator
129
+
130
+ def _get_state(self) -> Schedule:
131
+ """Returns the current state of the annealer.
132
+
133
+ This method facilitates type checking.
134
+ """
135
+ return self.state
136
+
137
+ def move(self) -> None:
138
+ """Generates a neighbor state using the configured neighbor generator.
139
+
140
+ Delegates to ``self.neighbor_generator`` with the current schedule and
141
+ the internal random generator, enabling pluggable neighborhoods.
142
+ """
143
+ self.state = self.neighbor_generator(
144
+ self._get_state(), self.random_generator
145
+ )
146
+
147
+ def anneal(self) -> tuple[Schedule, float]:
148
+ """Minimizes the energy of a system by simulated annealing.
149
+
150
+ Overrides the ``anneal`` method from the base class to use the
151
+ random generator defined in the constructor.
152
+
153
+ Returns:
154
+ The best state and energy found during the annealing process.
155
+ """
156
+ step = 0
157
+ self.start = time.time()
158
+
159
+ # Precompute factor for exponential cooling from Tmax to Tmin
160
+ if self.Tmin <= 0.0:
161
+ raise ValidationError(
162
+ "Exponential cooling requires a minimum "
163
+ "temperature greater than zero."
164
+ )
165
+ t_factor = -math.log(self.Tmax / self.Tmin)
166
+
167
+ # Note initial state
168
+ t = self.Tmax
169
+ current_energy = self.energy()
170
+ prev_state = self.copy_state(self.state)
171
+ prev_energy = current_energy
172
+ self.best_state = self.copy_state(self.state)
173
+ self.best_energy = current_energy
174
+ trials, accepts, improves = 0, 0, 0
175
+ update_wave_length = 0 # not used, but avoids pylint warning
176
+ if self.updates > 0:
177
+ update_wave_length = self.steps / self.updates
178
+ self.update(step, t, current_energy, None, None)
179
+
180
+ # Attempt moves to new states
181
+ while step < self.steps and not self.user_exit:
182
+ step += 1
183
+ t = self.Tmax * math.exp(t_factor * step / self.steps)
184
+ self.move()
185
+ current_energy = self.energy()
186
+ delta_e = current_energy - prev_energy
187
+ trials += 1
188
+ if (
189
+ delta_e > 0.0
190
+ and math.exp(-delta_e / t) < self.random_generator.random()
191
+ ):
192
+ # Restore previous state
193
+ self.state = self.copy_state(prev_state)
194
+ current_energy = prev_energy
195
+ else:
196
+ # Accept new state and compare to best state
197
+ accepts += 1
198
+ if delta_e < 0.0:
199
+ improves += 1
200
+ prev_state = self.copy_state(self.state)
201
+ prev_energy = current_energy
202
+ if current_energy < self.best_energy:
203
+ self.best_state = self.copy_state(self.state)
204
+ self.best_energy = current_energy
205
+ if self.updates < 1:
206
+ continue
207
+ if (step // update_wave_length) > (
208
+ (step - 1) // update_wave_length
209
+ ):
210
+ self.update(
211
+ step,
212
+ t,
213
+ current_energy,
214
+ accepts / trials,
215
+ improves / trials,
216
+ )
217
+ trials, accepts, improves = 0, 0, 0
218
+
219
+ self.state = self.copy_state(self.best_state)
220
+ if self.save_state_on_exit:
221
+ self.save_state()
222
+
223
+ return self.best_state, self.best_energy
224
+
225
+ def energy(self) -> float:
226
+ """Computes the energy of the current schedule using the objective
227
+ function provided."""
228
+ schedule = self._get_state()
229
+ return self.objective_function(schedule)
@@ -0,0 +1,182 @@
1
+ from collections.abc import Callable
2
+ import random
3
+
4
+ from job_shop_lib import Schedule, ScheduledOperation
5
+ from job_shop_lib.exceptions import ValidationError
6
+
7
+
8
+ NeighborGenerator = Callable[[Schedule, random.Random], Schedule]
9
+
10
+ _MAX_ATTEMPTS = 1000
11
+
12
+
13
+ def _swap_with_index_picker(
14
+ schedule: Schedule,
15
+ random_generator: random.Random | None,
16
+ index_picker: Callable[[list, random.Random], tuple[int, int]],
17
+ ) -> Schedule:
18
+ """Generates a neighbor schedule by swapping two positions chosen by a
19
+ strategy.
20
+
21
+ This private helper applies a swap on a randomly selected machine whose
22
+ sequence has at least two operations. The actual indices to swap are
23
+ chosen by the provided picker function. It attempts up to a fixed number
24
+ of times to produce a valid neighbor. If all attempts fail, it returns
25
+ the original schedule unchanged.
26
+
27
+ Args:
28
+ schedule:
29
+ Current schedule to perturb.
30
+
31
+ random_generator:
32
+ Source of randomness. If ``None``, a new generator is created.
33
+
34
+ index_picker:
35
+ Function that receives a machine sequence and a random generator
36
+ and returns two indices to swap.
37
+
38
+ Returns:
39
+ A valid neighbor schedule if a feasible swap is found, otherwise the
40
+ original schedule.
41
+ """
42
+ if random_generator is None:
43
+ random_generator = random.Random()
44
+ job_sequences = schedule.job_sequences()
45
+ valid_machines = [i for i, seq in enumerate(job_sequences) if len(seq) > 1]
46
+ if not valid_machines:
47
+ return schedule
48
+
49
+ for _ in range(_MAX_ATTEMPTS):
50
+ machine_id = random_generator.choice(valid_machines)
51
+ sequence = job_sequences[machine_id]
52
+ idx1, idx2 = index_picker(sequence, random_generator)
53
+ sequence[idx1], sequence[idx2] = sequence[idx2], sequence[idx1]
54
+ try:
55
+ return Schedule.from_job_sequences(
56
+ schedule.instance, job_sequences
57
+ )
58
+ except ValidationError:
59
+ pass
60
+ return schedule
61
+
62
+
63
+ def swap_adjacent_operations(
64
+ schedule: Schedule, random_generator: random.Random | None = None
65
+ ) -> Schedule:
66
+ """Generates a neighbor schedule by swapping two adjacent operations.
67
+
68
+ Selects a machine at random with at least two operations and swaps a pair
69
+ of adjacent operations in its sequence. Internally tries several times to
70
+ produce a valid neighbor; if none is found, the original schedule is
71
+ returned.
72
+
73
+ Args:
74
+ schedule:
75
+ Current schedule to perturb.
76
+
77
+ random_generator:
78
+ Source of randomness. If ``None``, a new generator is created.
79
+
80
+ Returns:
81
+ A valid neighbor schedule with one adjacent swap applied, or the
82
+ original schedule if no valid swap is found.
83
+ """
84
+
85
+ def adjacent_picker(seq: list, rng: random.Random) -> tuple[int, int]:
86
+ idx = rng.randint(0, len(seq) - 2)
87
+ return idx, idx + 1
88
+
89
+ return _swap_with_index_picker(schedule, random_generator, adjacent_picker)
90
+
91
+
92
+ def swap_random_operations(
93
+ schedule: Schedule, random_generator: random.Random | None = None
94
+ ) -> Schedule:
95
+ """Generates a neighbor schedule by swapping two random operations.
96
+
97
+ Selects a machine at random with at least two operations and swaps two
98
+ randomly chosen positions in its sequence. Internally tries several times
99
+ to produce a valid neighbor; if none is found, the original schedule is
100
+ returned.
101
+
102
+ Args:
103
+ schedule:
104
+ Current schedule to perturb.
105
+
106
+ random_generator:
107
+ Source of randomness. If ``None``, a new generator is created.
108
+
109
+ Returns:
110
+ A valid neighbor schedule with one random swap applied, or the
111
+ original schedule if no valid swap is found.
112
+ """
113
+
114
+ def random_picker(seq: list, rng: random.Random) -> tuple[int, int]:
115
+ idx1, idx2 = rng.sample(range(len(seq)), 2)
116
+ return idx1, idx2
117
+
118
+ return _swap_with_index_picker(schedule, random_generator, random_picker)
119
+
120
+
121
+ def swap_in_critical_path(
122
+ schedule: Schedule, random_generator: random.Random | None = None
123
+ ) -> Schedule:
124
+ """Generates a neighbor by targeting swaps on the critical path.
125
+
126
+ This operator focuses on pairs of consecutive scheduled operations along
127
+ the current critical path that share the same machine. Swapping such
128
+ operations directly perturbs the longest-duration chain of precedence
129
+ and resource constraints that determines the makespan.
130
+
131
+ Why target the critical path:
132
+
133
+ - The makespan is the length of the critical path; operations not on it
134
+ typically have slack, so reordering them often does not improve the
135
+ objective. By contrast, modifying machine order on the critical path
136
+ can shorten the longest path or unlock constraints that reduce
137
+ blocking and idle times.
138
+ - Swapping consecutive critical operations on the same machine always
139
+ results in a feasible schedule.
140
+
141
+ Behavior:
142
+
143
+ - Identifies all consecutive pairs on the critical path that run on the
144
+ same machine and swaps one of them at random.
145
+ - If no such pairs exist, it falls back to a standard adjacent swap.
146
+
147
+ Args:
148
+ schedule:
149
+ Current schedule to perturb.
150
+
151
+ random_generator:
152
+ Source of randomness. If ``None``, a new generator is created.
153
+
154
+ Returns:
155
+ A valid neighbor schedule that prioritizes swaps on the critical
156
+ path, or a neighbor produced by an adjacent swap fallback when none
157
+ applies.
158
+ """
159
+ if random_generator is None:
160
+ random_generator = random.Random()
161
+
162
+ critical_path = schedule.critical_path()
163
+ possible_swaps: list[tuple[ScheduledOperation, ScheduledOperation]] = []
164
+ for i, current_scheduled_op in enumerate(critical_path[:-1]):
165
+ next_scheduled_op = critical_path[i + 1]
166
+ if current_scheduled_op.machine_id == next_scheduled_op.machine_id:
167
+ possible_swaps.append((current_scheduled_op, next_scheduled_op))
168
+
169
+ if not possible_swaps:
170
+ return swap_adjacent_operations(schedule, random_generator)
171
+
172
+ op1, op2 = random_generator.choice(possible_swaps)
173
+ job_sequences = schedule.job_sequences()
174
+ machine_id = op1.machine_id
175
+ idx1 = job_sequences[machine_id].index(op1.operation.job_id)
176
+ idx2 = job_sequences[machine_id].index(op2.operation.job_id)
177
+
178
+ job_sequences[machine_id][idx1], job_sequences[machine_id][idx2] = (
179
+ job_sequences[machine_id][idx2],
180
+ job_sequences[machine_id][idx1],
181
+ )
182
+ return Schedule.from_job_sequences(schedule.instance, job_sequences)
@@ -0,0 +1,73 @@
1
+ from collections.abc import Callable
2
+ from job_shop_lib import Schedule
3
+
4
+
5
+ ObjectiveFunction = Callable[[Schedule], float]
6
+
7
+
8
+ def get_makespan_with_penalties_objective(
9
+ deadline_penalty_factor: float = 1_000_000,
10
+ due_date_penalty_factor: float = 100,
11
+ ) -> ObjectiveFunction:
12
+ """Builds an objective function that returns the makespan plus penalties.
13
+
14
+ This factory returns a callable that evaluates a Schedule as the sum of
15
+ its makespan and penalties for violating operation-level deadlines and due
16
+ dates.
17
+
18
+ Penalties are applied per scheduled operation that finishes after its
19
+ corresponding attribute value:
20
+
21
+ - Deadline violation: adds ``deadline_penalty_factor`` once per violating
22
+ operation (hard constraint surrogate).
23
+ - Due date violation: adds ``due_date_penalty_factor`` once per violating
24
+ operation (soft constraint surrogate).
25
+
26
+ Args:
27
+ deadline_penalty_factor:
28
+ Cost added for each operation that
29
+ finishes after its deadline. Defaults to 1_000_000.
30
+ due_date_penalty_factor:
31
+ Cost added for each operation that
32
+ finishes after its due date. Defaults to 100.
33
+
34
+ Returns:
35
+ A function ``f(schedule) -> float`` that
36
+ computes ``schedule.makespan() + penalty``.
37
+
38
+ Notes:
39
+ - Deadlines and due dates are taken from each operation. If an
40
+ operation does not define the attribute (``None``), no penalty is
41
+ applied for that attribute.
42
+ - If the instance has neither deadlines nor due dates, the objective is
43
+ simply the makespan.
44
+ """
45
+
46
+ def objective(schedule: Schedule) -> float:
47
+ makespan = schedule.makespan()
48
+ instance = schedule.instance
49
+
50
+ # Fast path: no constraint attributes present in the instance
51
+ if not instance.has_deadlines and not instance.has_due_dates:
52
+ return makespan
53
+
54
+ penalty = 0.0
55
+ for machine_schedule in schedule.schedule:
56
+ for scheduled_op in machine_schedule:
57
+ op = scheduled_op.operation
58
+ # Deadline (hard) penalty
59
+ if (
60
+ op.deadline is not None
61
+ and scheduled_op.end_time > op.deadline
62
+ ):
63
+ penalty += deadline_penalty_factor
64
+ # Due date (soft) penalty
65
+ if (
66
+ op.due_date is not None
67
+ and scheduled_op.end_time > op.due_date
68
+ ):
69
+ penalty += due_date_penalty_factor
70
+
71
+ return makespan + penalty
72
+
73
+ return objective
@@ -0,0 +1,163 @@
1
+ from job_shop_lib import BaseSolver, JobShopInstance, Schedule
2
+ from job_shop_lib.metaheuristics import JobShopAnnealer
3
+ from job_shop_lib.dispatching.rules import DispatchingRuleSolver
4
+ from job_shop_lib.metaheuristics import (
5
+ NeighborGenerator,
6
+ swap_in_critical_path,
7
+ ObjectiveFunction,
8
+ )
9
+
10
+
11
+ class SimulatedAnnealingSolver(BaseSolver):
12
+ """Wraps the :class:`JobShopAnnealer` to follow the
13
+ :class`~job_shop_lib.BaseSolver` interface.
14
+
15
+ .. seealso::
16
+ See the documentation of the :class:`JobShopAnnealer` class for more
17
+ details on the annealing process.
18
+
19
+ Attributes:
20
+ initial_temperature:
21
+ Initial temperature for the annealing process. It controls the
22
+ probability of accepting worse solutions. That sets the metropolis
23
+ criterion. Corresponds to the `tmax` parameter in the annealer.
24
+ ending_temperature:
25
+ Ending temperature for the annealing process. It controls when to
26
+ stop accepting worse solutions. Corresponds to the `tmin` parameter
27
+ in the annealer.
28
+ steps:
29
+ Number of steps to perform in the annealing process. This is the
30
+ number of iterations the algorithm will run.
31
+ updates:
32
+ The number of progress updates to print during the annealing
33
+ process. Set to 0 to disable updates.
34
+ seed:
35
+ Random seed for reproducibility. If ``None``, random behavior will
36
+ be non-deterministic.
37
+
38
+ Args:
39
+ initial_temperature:
40
+ Initial temperature for the annealing process. It controls the
41
+ probability of accepting worse solutions. That sets the metropolis
42
+ criterion. Corresponds to the `tmax` parameter in the annealer.
43
+ ending_temperature:
44
+ Ending temperature for the annealing process. It controls when to
45
+ stop accepting worse solutions. Corresponds to the `tmin` parameter
46
+ in the annealer.
47
+ steps:
48
+ Number of steps to perform in the annealing process. This is the
49
+ number of iterations the algorithm will run.
50
+ updates:
51
+ The number of progress updates to print during the annealing
52
+ process. Set to 0 to disable updates.
53
+ seed:
54
+ Random seed for reproducibility. If ``None``, random behavior will
55
+ be non-deterministic.
56
+ """
57
+
58
+ def __init__(
59
+ self,
60
+ *,
61
+ initial_temperature: float = 25000,
62
+ ending_temperature: float = 2.5,
63
+ steps: int = 50_000,
64
+ updates: int = 100,
65
+ objective_function: ObjectiveFunction | None = None,
66
+ seed: int | None = None,
67
+ neighbor_generator: NeighborGenerator = swap_in_critical_path,
68
+ ):
69
+ self.initial_temperature = initial_temperature
70
+ self.ending_temperature = ending_temperature
71
+ self.steps = steps
72
+ self.updates = updates
73
+ self.objective_function = objective_function
74
+ self.seed = seed
75
+ self.neighbor_generator = neighbor_generator
76
+ self.annealer_: JobShopAnnealer | None = None
77
+
78
+ def setup_annealer(
79
+ self, instance: JobShopInstance, initial_state: Schedule | None = None
80
+ ) -> None:
81
+ """Initializes the annealer with the given instance and initial state.
82
+
83
+ Args:
84
+ instance:
85
+ The job shop instance to solve.
86
+ initial_state:
87
+ Initial state of the schedule as a list of lists, where each
88
+ sublist represents the operations of a job.
89
+ """
90
+ if initial_state is None:
91
+ initial_state = self._generate_initial_state(instance)
92
+
93
+ annealer = JobShopAnnealer(
94
+ instance,
95
+ initial_state,
96
+ objective_function=self.objective_function,
97
+ seed=self.seed,
98
+ neighbor_generator=self.neighbor_generator,
99
+ )
100
+ best_hparams = {
101
+ "tmax": self.initial_temperature,
102
+ "tmin": self.ending_temperature,
103
+ "steps": self.steps,
104
+ "updates": self.updates,
105
+ }
106
+ annealer.set_schedule(best_hparams)
107
+ self.annealer_ = annealer
108
+
109
+ def solve(
110
+ self,
111
+ instance: JobShopInstance,
112
+ initial_state: Schedule | None = None,
113
+ ) -> Schedule:
114
+ """Solves the given Job Shop Scheduling problem using
115
+ simulated annealing.
116
+
117
+ Args:
118
+ instance:
119
+ The job shop problem instance to solve.
120
+ initial_state:
121
+ Initial job sequences for each machine. A job sequence is a
122
+ list of job ids. Each list of job ids represents the order of
123
+ operations on the machine. The machine that the list
124
+ corresponds to is determined by the index of the list. If
125
+ ``None``, the solver will generate an initial state using the
126
+ :class:`DispatchingRuleSolver`.
127
+
128
+ Returns:
129
+ The best schedule found.
130
+
131
+ """
132
+ self.setup_annealer(instance, initial_state)
133
+ # For type checking purposes, we assert that the annealer is set up.
134
+ assert (
135
+ self.annealer_ is not None
136
+ ), "There was a problem setting up the annealer."
137
+ try:
138
+ best_state, _ = self.annealer_.anneal()
139
+ except KeyboardInterrupt:
140
+ # If the annealing process is interrupted, we return the best state
141
+ # found so far.
142
+ best_state = self.annealer_.best_state
143
+ return best_state
144
+
145
+ @staticmethod
146
+ def _generate_initial_state(instance: JobShopInstance) -> Schedule:
147
+ """Uses the
148
+ :class:`~job_shop_lib.dispatching.rules.DispatchingRuleSolver` to
149
+ generate an initial state for the annealer.
150
+
151
+ .. note::
152
+ The first solution might be unfeasible if the job shop instance
153
+ has deadlines.
154
+
155
+ Args:
156
+ instance (JobShopInstance): The job shop problem instance.
157
+
158
+ Returns:
159
+ An initial schedule generated by the dispatching rule solver.
160
+ """
161
+ solver = DispatchingRuleSolver()
162
+ schedule = solver.solve(instance)
163
+ return schedule
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: job-shop-lib
3
- Version: 1.5.0
3
+ Version: 1.6.0
4
4
  Summary: An easy-to-use and modular Python library for the Job Shop Scheduling Problem (JSSP)
5
5
  License: MIT
6
6
  Author: Pabloo22
@@ -21,6 +21,7 @@ Requires-Dist: ortools (>=9.9,<10.0) ; sys_platform != "darwin"
21
21
  Requires-Dist: ortools (>=9.9,<9.13) ; sys_platform == "darwin"
22
22
  Requires-Dist: pyarrow (>=15,<21)
23
23
  Requires-Dist: pygraphviz (>=1.12,<2.0) ; extra == "pygraphviz"
24
+ Requires-Dist: simanneal (>=0.5.0,<0.6.0)
24
25
  Description-Content-Type: text/markdown
25
26
 
26
27
  <div align="center">
@@ -42,49 +43,34 @@ JobShopLib is a Python package for creating, solving, and visualizing job shop s
42
43
 
43
44
  It follows a modular design, allowing users to easily extend the library with new solvers, dispatching rules, visualization functions, etc.
44
45
 
45
- There is a [documentation page](https://job-shop-lib.readthedocs.io/en/stable/) for versions 1.0.0a3 and onward. See the [latest pull requests](https://github.com/Pabloo22/job_shop_lib/pulls?q=is%3Apr+is%3Aclosed) for the latest changes.
46
+ We support multiple solvers, including:
47
+ - **Constraint Programming**: Based on OR-Tools' CP-SAT solver. It supports **release dates, deadlines, and due dates.** See the ["Solving the Problem" tutorial](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/tutorial/02-Solving-the-Problem.ipynb) for an example.
48
+ - **Dispatching Rules**: A set of predefined rules and the ability to create custom ones. They support arbitrary **setup times, machine breakdowns, release dates, deadlines, and due dates**. See the [following example](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/examples/03-Dispatching-Rules.ipynb). You can also create videos or GIFs of the scheduling process. For creating GIFs or videos, see the [Save Gif example](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/examples/04-Save-Gif.ipynb).
49
+ - **Metaheuristics**: Currently, we have a **simulated annealing** implementation that supports **release dates, deadlines, and due dates**. We also support arbitrary neighborhood search strategies, including swapping operations in the critical path as described in the paper "Job Shop Scheduling by Simulated Annealing" by van Laarhoven et al. (1992); and energy functions. See our [simulated annealing tutorial](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/tutorial/03-Simulated-Annealing.ipynb).
50
+ - **Reinforcement Learning**: Two Gymnasium environments for solving the problem with **graph neural networks** (GNNs) or any other method. The environments support **setup times, release dates, deadlines, and due dates.** We're currently building a tutorial on how to use them.
46
51
 
47
- See [`gnn_scheduler`](https://github.com/Pabloo22/gnn_scheduler/blob/main/gnn_scheduler/) for an example implementation of a graph neural network-based dispatcher trained with [PyTorch Geometric](https://pyg.org/).
48
-
49
- See [this](https://colab.research.google.com/drive/1XV_Rvq1F2ns6DFG8uNj66q_rcowwTZ4H?usp=sharing) Google Colab notebook for a quick start guide! More advanced examples can be found [here](https://job-shop-lib.readthedocs.io/en/stable/examples.html).
52
+ We also provide useful utilities, data structures, and visualization functions:
53
+ - **Intuitive Data Structures**: Easily create, manage, and manipulate job shop instances and solutions with user-friendly data structures. See [Getting Started](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/tutorial/00-Getting-Started.ipynb) and [How Solutions are Represented](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/tutorial/01-How-Solutions-are-Represented.ipynb).
54
+ - **Benchmark Instances**: Load well-known benchmark instances directly from the library without manual downloading. See [Load Benchmark Instances](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/examples/05-Load-Benchmark-Instances.ipynb).
55
+ - **Random Instance Generation**: Create random instances with customizable sizes and properties. See [`generation`](https://job-shop-lib.readthedocs.io/en/stable/api/job_shop_lib.generation.html#module-job_shop_lib.generation) module.
56
+ - **Gantt Charts**: Visualize final schedules and how they are created iteratively by dispatching rule solvers or sequences of scheduling decisions with GIFs or videos.
57
+ - **Graph Representations**: Represent and visualize instances as disjunctive graphs or agent-task graphs (introduced in the ScheduleNet paper). Build your own custom graphs with the `JobShopGraph` class. See the [Disjunctive Graphs](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/tutorial/04-Disjunctive-Graphs.ipynb) and [Resource Task Graphs](https://job-shop-lib.readthedocs.io/en/stable/examples/07-Resource-Task-Graph.html) examples.
50
58
 
51
59
  ## Installation :package:
52
60
 
53
61
  <!-- start installation -->
54
62
 
55
- JobShopLib is distributed on [PyPI](https://pypi.org/project/job-shop-lib/). You can install the latest stable version using `pip`:
56
-
57
63
  ```bash
58
64
  pip install job-shop-lib
59
65
  ```
60
66
 
61
- <!-- end installation -->
62
-
63
- <!-- key features -->
64
-
65
- ## Key Features :star:
66
-
67
- - **Data Structures**: Easily create, manage, and manipulate job shop instances and solutions with user-friendly data structures. See [Getting Started](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/tutorial/00-Getting-Started.ipynb) and [How Solutions are Represented](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/tutorial/01-How-Solutions-are-Represented.ipynb).
68
-
69
- - **Benchmark Instances**: Load well-known benchmark instances directly from the library without manual downloading. See [Load Benchmark Instances](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/examples/05-Load-Benchmark-Instances.ipynb).
70
-
71
- - **Random Instance Generation**: Create random instances with customizable sizes and properties. See [`generation`](job_shop_lib/generation) package.
72
-
73
- - **Multiple Solvers**:
74
- - **Constraint Programming Solver**: OR-Tools' CP-SAT solver. See [Solving the Problem](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/tutorial/02-Solving-the-Problem.ipynb).
75
-
76
- - **Dispatching Rule Solvers**: Use any of the available dispatching rules or create custom ones. See [Dispatching Rules](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/examples/03-Dispatching-Rules.ipynb).
77
-
78
- - **Gantt Charts**: Visualize final schedules and how are they created iteratively by dispatching rule solvers or sequences of scheduling decisions with GIFs or videos. See [Save Gif](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/examples/06-Save-Gif.ipynb).
79
-
80
- - **Graph Representations**:
81
- - **Disjunctive Graphs**: Represent and visualize instances as disjunctive graphs. See [Disjunctive Graph](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/examples/04-Disjunctive-Graph.ipynb).
82
- - **Agent-Task Graphs**: Encode instances as agent-task graphs (introduced in [ScheduleNet paper](https://arxiv.org/abs/2106.03051)). See [Agent-Task Graph](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/examples/07-Agent-Task-Graph.ipynb).
83
- - Build your own custom graphs with the `JobShopGraph` class.
67
+ or
84
68
 
85
- - **Gymnasium Environments**: Two environments for solving the problem with graph neural networks (GNNs) or any other method, and reinforcement learning (RL). See [SingleJobShopGraphEnv](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/examples/09-SingleJobShopGraphEnv.ipynb) and [MultiJobShopGraphEnv](https://github.com/Pabloo22/job_shop_lib/blob/main/docs/source/examples/10-MultiJobShopGraphEnv.ipynb).
69
+ ```bash
70
+ poetry add job-shop-lib
71
+ ```
86
72
 
87
- <!-- end key features -->
73
+ <!-- end installation -->
88
74
 
89
75
  ## Publication :scroll:
90
76
 
@@ -219,6 +205,7 @@ A dispatching rule is a heuristic guideline used to prioritize and sequence jobs
219
205
  ```python
220
206
  class DispatchingRule(str, Enum):
221
207
  SHORTEST_PROCESSING_TIME = "shortest_processing_time"
208
+ LARGEST_PROCESSING_TIME = "largest_processing_time"
222
209
  FIRST_COME_FIRST_SERVED = "first_come_first_served"
223
210
  MOST_WORK_REMAINING = "most_work_remaining"
224
211
  MOST_OPERATION_REMAINING = "most_operation_remaining"
@@ -432,6 +419,8 @@ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file
432
419
 
433
420
  ## References :books:
434
421
 
422
+ - Peter J. M. van Laarhoven, Emile H. L. Aarts, Jan Karel Lenstra, (1992) Job Shop Scheduling by Simulated Annealing. Operations Research 40(1):113-125.
423
+
435
424
  - J. Adams, E. Balas, and D. Zawack, "The shifting bottleneck procedure
436
425
  for job shop scheduling," Management Science, vol. 34, no. 3,
437
426
  pp. 391–401, 1988.
@@ -1,8 +1,8 @@
1
- job_shop_lib/__init__.py,sha256=vJ_HFv-mEpI6ejngfGDE4aTMgYvFR3kYm8nkFyGrMS8,639
2
- job_shop_lib/_base_solver.py,sha256=p17XmtufNc9Y481cqZUT45pEkUmmW1HWG53dfhIBJH8,1363
1
+ job_shop_lib/__init__.py,sha256=7AD9gwI3xXZonyTg82RJ8dhTXg1QdRJpL3HA0Y7TElg,639
2
+ job_shop_lib/_base_solver.py,sha256=8CCSiA2-DegCKRXhMw7yYyI8iPauTSuLku2LQ8dU-9U,1382
3
3
  job_shop_lib/_job_shop_instance.py,sha256=_92orxdi70645J7cQlRE1I0PebvpHRCP6958q9j2h18,24261
4
4
  job_shop_lib/_operation.py,sha256=JI5WjvRXNBeSpPOv3ZwSrUJ4jsVDJYKfMaDHYOaFYts,5945
5
- job_shop_lib/_schedule.py,sha256=3PgDZ-DZmlESh5TASNHTqW_8Z7XPVSF64knvXEGRIbM,12927
5
+ job_shop_lib/_schedule.py,sha256=u0clgm2OTUsTstwd_AQeGQWANhmbWRrPPsKAc62iel4,17783
6
6
  job_shop_lib/_scheduled_operation.py,sha256=czrGr87EOTlO2NPolIN5CDigeiCzvQEyra5IZPwSFZc,2801
7
7
  job_shop_lib/benchmarking/__init__.py,sha256=JPnCw5mK7sADAW0HctVKHEDRw22afp9caNh2eUS36Ys,3290
8
8
  job_shop_lib/benchmarking/_load_benchmark.py,sha256=-cgyx0Kn6uAc3KdGFSQb6eUVQjQggmpVKOH9qusNkXI,2930
@@ -52,6 +52,11 @@ job_shop_lib/graphs/graph_updaters/_disjunctive_graph_updater.py,sha256=-t0T8W-J
52
52
  job_shop_lib/graphs/graph_updaters/_graph_updater.py,sha256=j1f7iWsa62GVszK2BPaMxnKBCEGWa9owm8g4VWUje8w,1967
53
53
  job_shop_lib/graphs/graph_updaters/_residual_graph_updater.py,sha256=9NG3pu7Z5h-ZTfX8rRiZbI_NfNQi80h-XUHainshjZY,6064
54
54
  job_shop_lib/graphs/graph_updaters/_utils.py,sha256=sdw2Vo75P9c6Fy-YBlfgpXb9gPwHUluTB1E-9WINm_g,730
55
+ job_shop_lib/metaheuristics/__init__.py,sha256=z7bHN5vP-ctOSL0eUYK-aRyhRkU2lrDyA4kBs15EME0,1884
56
+ job_shop_lib/metaheuristics/_job_shop_annealer.py,sha256=Ty4SLPZh1NrL-XRqU76EeN8fwUdKfqbphqfYEDje1lQ,9195
57
+ job_shop_lib/metaheuristics/_neighbor_generators.py,sha256=3RePlnYvJdpdhObmf0m_3NhyUM7avfNr4vOZT0PWTRQ,6563
58
+ job_shop_lib/metaheuristics/_objective_functions.py,sha256=GG5M3LoLnNzo1zxzfpNMvo4bdYlqWuhVA8mIkXFsxxM,2607
59
+ job_shop_lib/metaheuristics/_simulated_annealing_solver.py,sha256=EMCrFl2zzJubrvCMi5upm8lnUgtBizhZbi4EvbnIsM4,6200
55
60
  job_shop_lib/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
61
  job_shop_lib/reinforcement_learning/__init__.py,sha256=sAVgxylKfBnn2rrz0BFcab1kjvQQ1h-hgldfbkPF--E,1537
57
62
  job_shop_lib/reinforcement_learning/_multi_job_shop_graph_env.py,sha256=6nXw67Tfmim3LqlSuQ9Cfg3mMY-VmbMHuXfyOL90jng,15740
@@ -68,7 +73,7 @@ job_shop_lib/visualization/gantt/_plot_gantt_chart.py,sha256=_4UGUTRuIw0tLzsJD9G
68
73
  job_shop_lib/visualization/graphs/__init__.py,sha256=HUWzfgQLeklNROtjnxeJX_FIySo_baTXO6klx0zUVpQ,630
69
74
  job_shop_lib/visualization/graphs/_plot_disjunctive_graph.py,sha256=L9_ZGgvCFpGc2rTOdZESdtydFQqShjqedimIOhqZx6Y,16209
70
75
  job_shop_lib/visualization/graphs/_plot_resource_task_graph.py,sha256=nkkdZ-9_OBevw72Frecwzv1y3WyhGZ9r9lz0y9MXvZ8,13192
71
- job_shop_lib-1.5.0.dist-info/LICENSE,sha256=9mggivMGd5taAu3xbmBway-VQZMBzurBGHofFopvUsQ,1069
72
- job_shop_lib-1.5.0.dist-info/METADATA,sha256=ggq_EHjUpRr9jX_67Sc3Fhj7sFlOqOL1tWzqRY-4xzY,19130
73
- job_shop_lib-1.5.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
74
- job_shop_lib-1.5.0.dist-info/RECORD,,
76
+ job_shop_lib-1.6.0.dist-info/LICENSE,sha256=9mggivMGd5taAu3xbmBway-VQZMBzurBGHofFopvUsQ,1069
77
+ job_shop_lib-1.6.0.dist-info/METADATA,sha256=cDfJquD-2ph8c7Niv0_hZ_OGI_1fOmJLe-nNoXVS96s,19250
78
+ job_shop_lib-1.6.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
79
+ job_shop_lib-1.6.0.dist-info/RECORD,,