job-shop-lib 1.0.0a5__py3-none-any.whl → 1.0.0b2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- job_shop_lib/__init__.py +1 -1
- job_shop_lib/_job_shop_instance.py +34 -29
- job_shop_lib/_operation.py +4 -2
- job_shop_lib/_schedule.py +11 -11
- job_shop_lib/benchmarking/_load_benchmark.py +3 -3
- job_shop_lib/constraint_programming/_ortools_solver.py +6 -6
- job_shop_lib/dispatching/__init__.py +4 -3
- job_shop_lib/dispatching/_dispatcher.py +19 -19
- job_shop_lib/dispatching/_dispatcher_observer_config.py +4 -4
- job_shop_lib/dispatching/_factories.py +4 -2
- job_shop_lib/dispatching/_history_observer.py +2 -1
- job_shop_lib/dispatching/_optimal_operations_observer.py +115 -0
- job_shop_lib/dispatching/_ready_operation_filters.py +19 -18
- job_shop_lib/dispatching/_unscheduled_operations_observer.py +4 -3
- job_shop_lib/dispatching/feature_observers/_composite_feature_observer.py +7 -8
- job_shop_lib/dispatching/feature_observers/_earliest_start_time_observer.py +3 -1
- job_shop_lib/dispatching/feature_observers/_factory.py +13 -14
- job_shop_lib/dispatching/feature_observers/_feature_observer.py +9 -8
- job_shop_lib/dispatching/feature_observers/_is_completed_observer.py +2 -1
- job_shop_lib/dispatching/feature_observers/_is_ready_observer.py +4 -2
- job_shop_lib/dispatching/rules/__init__.py +37 -1
- job_shop_lib/dispatching/rules/_dispatching_rule_factory.py +4 -2
- job_shop_lib/dispatching/rules/_dispatching_rule_solver.py +50 -20
- job_shop_lib/dispatching/rules/_dispatching_rules_functions.py +9 -8
- job_shop_lib/dispatching/rules/_machine_chooser_factory.py +4 -3
- job_shop_lib/dispatching/rules/_utils.py +9 -8
- job_shop_lib/generation/__init__.py +8 -0
- job_shop_lib/generation/_general_instance_generator.py +42 -64
- job_shop_lib/generation/_instance_generator.py +11 -7
- job_shop_lib/generation/_transformations.py +5 -4
- job_shop_lib/generation/_utils.py +124 -0
- job_shop_lib/graphs/__init__.py +7 -7
- job_shop_lib/graphs/{_build_agent_task_graph.py → _build_resource_task_graphs.py} +26 -24
- job_shop_lib/graphs/_job_shop_graph.py +17 -13
- job_shop_lib/graphs/_node.py +6 -4
- job_shop_lib/graphs/graph_updaters/_residual_graph_updater.py +4 -2
- job_shop_lib/reinforcement_learning/_multi_job_shop_graph_env.py +40 -20
- job_shop_lib/reinforcement_learning/_reward_observers.py +3 -1
- job_shop_lib/reinforcement_learning/_single_job_shop_graph_env.py +89 -22
- job_shop_lib/reinforcement_learning/_types_and_constants.py +1 -1
- job_shop_lib/reinforcement_learning/_utils.py +3 -3
- job_shop_lib/visualization/__init__.py +0 -60
- job_shop_lib/visualization/gantt/__init__.py +48 -0
- job_shop_lib/visualization/{_gantt_chart_creator.py → gantt/_gantt_chart_creator.py} +12 -12
- job_shop_lib/visualization/{_gantt_chart_video_and_gif_creation.py → gantt/_gantt_chart_video_and_gif_creation.py} +22 -22
- job_shop_lib/visualization/{_plot_gantt_chart.py → gantt/_plot_gantt_chart.py} +12 -13
- job_shop_lib/visualization/graphs/__init__.py +29 -0
- job_shop_lib/visualization/{_plot_disjunctive_graph.py → graphs/_plot_disjunctive_graph.py} +18 -16
- job_shop_lib/visualization/graphs/_plot_resource_task_graph.py +389 -0
- {job_shop_lib-1.0.0a5.dist-info → job_shop_lib-1.0.0b2.dist-info}/METADATA +21 -15
- job_shop_lib-1.0.0b2.dist-info/RECORD +70 -0
- job_shop_lib/visualization/_plot_agent_task_graph.py +0 -276
- job_shop_lib-1.0.0a5.dist-info/RECORD +0 -66
- {job_shop_lib-1.0.0a5.dist-info → job_shop_lib-1.0.0b2.dist-info}/LICENSE +0 -0
- {job_shop_lib-1.0.0a5.dist-info → job_shop_lib-1.0.0b2.dist-info}/WHEEL +0 -0
@@ -1,5 +1,6 @@
|
|
1
1
|
"""Home of the `JobShopGraph` class."""
|
2
2
|
|
3
|
+
from typing import List, Union, Dict
|
3
4
|
import collections
|
4
5
|
import networkx as nx
|
5
6
|
|
@@ -62,23 +63,23 @@ class JobShopGraph:
|
|
62
63
|
self.graph = nx.DiGraph()
|
63
64
|
self.instance = instance
|
64
65
|
|
65
|
-
self._nodes:
|
66
|
-
self._nodes_by_type:
|
66
|
+
self._nodes: List[Node] = []
|
67
|
+
self._nodes_by_type: Dict[NodeType, List[Node]] = (
|
67
68
|
collections.defaultdict(list)
|
68
69
|
)
|
69
|
-
self._nodes_by_machine:
|
70
|
+
self._nodes_by_machine: List[List[Node]] = [
|
70
71
|
[] for _ in range(instance.num_machines)
|
71
72
|
]
|
72
|
-
self._nodes_by_job:
|
73
|
+
self._nodes_by_job: List[List[Node]] = [
|
73
74
|
[] for _ in range(instance.num_jobs)
|
74
75
|
]
|
75
76
|
self._next_node_id = 0
|
76
|
-
self.removed_nodes:
|
77
|
+
self.removed_nodes: List[bool] = []
|
77
78
|
if add_operation_nodes:
|
78
79
|
self.add_operation_nodes()
|
79
80
|
|
80
81
|
@property
|
81
|
-
def nodes(self) ->
|
82
|
+
def nodes(self) -> List[Node]:
|
82
83
|
"""List of all nodes added to the graph.
|
83
84
|
|
84
85
|
It may contain nodes that have been removed from the graph.
|
@@ -86,7 +87,7 @@ class JobShopGraph:
|
|
86
87
|
return self._nodes
|
87
88
|
|
88
89
|
@property
|
89
|
-
def nodes_by_type(self) ->
|
90
|
+
def nodes_by_type(self) -> Dict[NodeType, List[Node]]:
|
90
91
|
"""Dictionary mapping node types to lists of nodes.
|
91
92
|
|
92
93
|
It may contain nodes that have been removed from the graph.
|
@@ -94,7 +95,7 @@ class JobShopGraph:
|
|
94
95
|
return self._nodes_by_type
|
95
96
|
|
96
97
|
@property
|
97
|
-
def nodes_by_machine(self) ->
|
98
|
+
def nodes_by_machine(self) -> List[List[Node]]:
|
98
99
|
"""List of lists mapping machine ids to operation nodes.
|
99
100
|
|
100
101
|
It may contain nodes that have been removed from the graph.
|
@@ -102,7 +103,7 @@ class JobShopGraph:
|
|
102
103
|
return self._nodes_by_machine
|
103
104
|
|
104
105
|
@property
|
105
|
-
def nodes_by_job(self) ->
|
106
|
+
def nodes_by_job(self) -> List[List[Node]]:
|
106
107
|
"""List of lists mapping job ids to operation nodes.
|
107
108
|
|
108
109
|
It may contain nodes that have been removed from the graph.
|
@@ -163,7 +164,10 @@ class JobShopGraph:
|
|
163
164
|
self._nodes_by_machine[machine_id].append(node_for_adding)
|
164
165
|
|
165
166
|
def add_edge(
|
166
|
-
self,
|
167
|
+
self,
|
168
|
+
u_of_edge: Union[Node, int],
|
169
|
+
v_of_edge: Union[Node, int],
|
170
|
+
**attr,
|
167
171
|
) -> None:
|
168
172
|
"""Adds an edge to the graph.
|
169
173
|
|
@@ -177,7 +181,7 @@ class JobShopGraph:
|
|
177
181
|
**attr: Additional attributes to be added to the edge.
|
178
182
|
|
179
183
|
Raises:
|
180
|
-
|
184
|
+
ValidationError: If `u_of_edge` or `v_of_edge` are not in the
|
181
185
|
graph.
|
182
186
|
"""
|
183
187
|
if isinstance(u_of_edge, Node):
|
@@ -206,7 +210,7 @@ class JobShopGraph:
|
|
206
210
|
|
207
211
|
self.graph.remove_nodes_from(isolated_nodes)
|
208
212
|
|
209
|
-
def is_removed(self, node: int
|
213
|
+
def is_removed(self, node: Union[int, Node]) -> bool:
|
210
214
|
"""Returns whether the node is removed from the graph.
|
211
215
|
|
212
216
|
Args:
|
@@ -218,7 +222,7 @@ class JobShopGraph:
|
|
218
222
|
node = node.node_id
|
219
223
|
return self.removed_nodes[node]
|
220
224
|
|
221
|
-
def non_removed_nodes(self) ->
|
225
|
+
def non_removed_nodes(self) -> List[Node]:
|
222
226
|
"""Returns the nodes that are not removed from the graph."""
|
223
227
|
return [node for node in self._nodes if not self.is_removed(node)]
|
224
228
|
|
job_shop_lib/graphs/_node.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1
1
|
"""Home of the `Node` class."""
|
2
2
|
|
3
|
+
from typing import Optional
|
4
|
+
|
3
5
|
from job_shop_lib import Operation
|
4
6
|
from job_shop_lib.exceptions import (
|
5
7
|
UninitializedAttributeError,
|
@@ -80,9 +82,9 @@ class Node:
|
|
80
82
|
def __init__(
|
81
83
|
self,
|
82
84
|
node_type: NodeType,
|
83
|
-
operation: Operation
|
84
|
-
machine_id: int
|
85
|
-
job_id: int
|
85
|
+
operation: Optional[Operation] = None,
|
86
|
+
machine_id: Optional[int] = None,
|
87
|
+
job_id: Optional[int] = None,
|
86
88
|
):
|
87
89
|
if node_type == NodeType.OPERATION and operation is None:
|
88
90
|
raise ValidationError("Operation node must have an operation.")
|
@@ -94,7 +96,7 @@ class Node:
|
|
94
96
|
raise ValidationError("Job node must have a job_id.")
|
95
97
|
|
96
98
|
self.node_type: NodeType = node_type
|
97
|
-
self._node_id: int
|
99
|
+
self._node_id: Optional[int] = None
|
98
100
|
|
99
101
|
self._operation = operation
|
100
102
|
self._machine_id = machine_id
|
@@ -1,5 +1,7 @@
|
|
1
1
|
"""Home of the `ResidualGraphUpdater` class."""
|
2
2
|
|
3
|
+
from typing import Optional, List
|
4
|
+
|
3
5
|
from job_shop_lib import ScheduledOperation
|
4
6
|
from job_shop_lib.exceptions import UninitializedAttributeError
|
5
7
|
from job_shop_lib.graphs import NodeType, JobShopGraph
|
@@ -54,7 +56,7 @@ class ResidualGraphUpdater(GraphUpdater):
|
|
54
56
|
remove_completed_machine_nodes: bool = True,
|
55
57
|
remove_completed_job_nodes: bool = True,
|
56
58
|
):
|
57
|
-
self._is_completed_observer:
|
59
|
+
self._is_completed_observer: Optional[IsCompletedObserver] = None
|
58
60
|
self.remove_completed_job_nodes = remove_completed_job_nodes
|
59
61
|
self.remove_completed_machine_nodes = remove_completed_machine_nodes
|
60
62
|
self._initialize_is_completed_observer_attribute(dispatcher)
|
@@ -80,7 +82,7 @@ class ResidualGraphUpdater(GraphUpdater):
|
|
80
82
|
return False
|
81
83
|
return True
|
82
84
|
|
83
|
-
feature_types:
|
85
|
+
feature_types: List[FeatureType] = []
|
84
86
|
if self.remove_completed_machine_nodes:
|
85
87
|
feature_types.append(FeatureType.MACHINES)
|
86
88
|
if self.remove_completed_job_nodes:
|
@@ -2,7 +2,7 @@
|
|
2
2
|
|
3
3
|
from collections import defaultdict
|
4
4
|
from collections.abc import Callable, Sequence
|
5
|
-
from typing import Any
|
5
|
+
from typing import Any, Tuple, Dict, List, Optional, Type
|
6
6
|
from copy import deepcopy
|
7
7
|
|
8
8
|
import gymnasium as gym
|
@@ -16,7 +16,7 @@ from job_shop_lib.dispatching import (
|
|
16
16
|
)
|
17
17
|
from job_shop_lib.dispatching.feature_observers import FeatureObserverConfig
|
18
18
|
from job_shop_lib.generation import InstanceGenerator
|
19
|
-
from job_shop_lib.graphs import JobShopGraph,
|
19
|
+
from job_shop_lib.graphs import JobShopGraph, build_resource_task_graph
|
20
20
|
from job_shop_lib.graphs.graph_updaters import (
|
21
21
|
GraphUpdater,
|
22
22
|
ResidualGraphUpdater,
|
@@ -160,18 +160,18 @@ class MultiJobShopGraphEnv(gym.Env):
|
|
160
160
|
feature_observer_configs: Sequence[FeatureObserverConfig],
|
161
161
|
graph_initializer: Callable[
|
162
162
|
[JobShopInstance], JobShopGraph
|
163
|
-
] =
|
163
|
+
] = build_resource_task_graph,
|
164
164
|
graph_updater_config: DispatcherObserverConfig[
|
165
|
-
|
165
|
+
Type[GraphUpdater]
|
166
166
|
] = DispatcherObserverConfig(class_type=ResidualGraphUpdater),
|
167
167
|
ready_operations_filter: Callable[
|
168
|
-
[Dispatcher,
|
168
|
+
[Dispatcher, List[Operation]], List[Operation]
|
169
169
|
] = filter_dominated_operations,
|
170
170
|
reward_function_config: DispatcherObserverConfig[
|
171
|
-
|
171
|
+
Type[RewardObserver]
|
172
172
|
] = DispatcherObserverConfig(class_type=MakespanReward),
|
173
|
-
render_mode: str
|
174
|
-
render_config: RenderConfig
|
173
|
+
render_mode: Optional[str] = None,
|
174
|
+
render_config: Optional[RenderConfig] = None,
|
175
175
|
use_padding: bool = True,
|
176
176
|
) -> None:
|
177
177
|
super().__init__()
|
@@ -226,7 +226,7 @@ class MultiJobShopGraphEnv(gym.Env):
|
|
226
226
|
@property
|
227
227
|
def ready_operations_filter(
|
228
228
|
self,
|
229
|
-
) -> Callable[[Dispatcher,
|
229
|
+
) -> Optional[Callable[[Dispatcher, List[Operation]], List[Operation]]]:
|
230
230
|
"""Returns the current ready operations filter."""
|
231
231
|
return (
|
232
232
|
self.single_job_shop_graph_env.dispatcher.ready_operations_filter
|
@@ -236,7 +236,7 @@ class MultiJobShopGraphEnv(gym.Env):
|
|
236
236
|
def ready_operations_filter(
|
237
237
|
self,
|
238
238
|
pruning_function: Callable[
|
239
|
-
[Dispatcher,
|
239
|
+
[Dispatcher, List[Operation]], List[Operation]
|
240
240
|
],
|
241
241
|
) -> None:
|
242
242
|
"""Sets the ready operations filter."""
|
@@ -267,9 +267,9 @@ class MultiJobShopGraphEnv(gym.Env):
|
|
267
267
|
def reset(
|
268
268
|
self,
|
269
269
|
*,
|
270
|
-
seed: int
|
271
|
-
options:
|
272
|
-
) ->
|
270
|
+
seed: Optional[int] = None,
|
271
|
+
options: Dict[str, Any] | None = None,
|
272
|
+
) -> Tuple[ObservationDict, Dict[str, Any]]:
|
273
273
|
"""Resets the environment and returns the initial observation.
|
274
274
|
|
275
275
|
Args:
|
@@ -303,8 +303,8 @@ class MultiJobShopGraphEnv(gym.Env):
|
|
303
303
|
return obs, info
|
304
304
|
|
305
305
|
def step(
|
306
|
-
self, action:
|
307
|
-
) ->
|
306
|
+
self, action: Tuple[int, int]
|
307
|
+
) -> Tuple[ObservationDict, float, bool, bool, Dict[str, Any]]:
|
308
308
|
"""Takes a step in the environment.
|
309
309
|
|
310
310
|
Args:
|
@@ -322,9 +322,10 @@ class MultiJobShopGraphEnv(gym.Env):
|
|
322
322
|
- Whether the environment is done.
|
323
323
|
- Whether the episode was truncated (always False).
|
324
324
|
- A dictionary with additional information. The dictionary
|
325
|
-
contains the following keys:
|
326
|
-
|
327
|
-
|
325
|
+
contains the following keys: "feature_names", the names of the
|
326
|
+
features in the observation; and "available_operations_with_ids",
|
327
|
+
a list of available actions in the form of (operation_id,
|
328
|
+
machine_id, job_id).
|
328
329
|
"""
|
329
330
|
obs, reward, done, truncated, info = (
|
330
331
|
self.single_job_shop_graph_env.step(action)
|
@@ -355,7 +356,7 @@ class MultiJobShopGraphEnv(gym.Env):
|
|
355
356
|
input_shape: (num_machines, num_features)
|
356
357
|
output_shape: (max_num_machines, num_features) (padded with -1)
|
357
358
|
"""
|
358
|
-
padding_value:
|
359
|
+
padding_value: Dict[str, float | bool] = defaultdict(lambda: -1)
|
359
360
|
padding_value[ObservationSpaceKey.REMOVED_NODES.value] = True
|
360
361
|
for key, value in observation.items():
|
361
362
|
if not isinstance(value, np.ndarray): # Make mypy happy
|
@@ -368,7 +369,7 @@ class MultiJobShopGraphEnv(gym.Env):
|
|
368
369
|
)
|
369
370
|
return observation
|
370
371
|
|
371
|
-
def _get_output_shape(self, key: str) ->
|
372
|
+
def _get_output_shape(self, key: str) -> Tuple[int, ...]:
|
372
373
|
"""Returns the output shape of the observation space key."""
|
373
374
|
output_shape = self.observation_space[key].shape
|
374
375
|
assert output_shape is not None # Make mypy happy
|
@@ -376,3 +377,22 @@ class MultiJobShopGraphEnv(gym.Env):
|
|
376
377
|
|
377
378
|
def render(self) -> None:
|
378
379
|
self.single_job_shop_graph_env.render()
|
380
|
+
|
381
|
+
def get_available_actions_with_ids(self) -> List[Tuple[int, int, int]]:
|
382
|
+
"""Returns a list of available actions in the form of
|
383
|
+
(operation_id, machine_id, job_id)."""
|
384
|
+
return self.single_job_shop_graph_env.get_available_actions_with_ids()
|
385
|
+
|
386
|
+
def validate_action(self, action: Tuple[int, int]) -> None:
|
387
|
+
"""Validates the action.
|
388
|
+
|
389
|
+
Args:
|
390
|
+
action:
|
391
|
+
The action to validate. The action is a tuple of two integers
|
392
|
+
(job_id, machine_id): the job ID and the machine ID in which
|
393
|
+
to schedule the operation.
|
394
|
+
|
395
|
+
Raises:
|
396
|
+
ValidationError: If the action is invalid.
|
397
|
+
"""
|
398
|
+
self.single_job_shop_graph_env.validate_action(action)
|
@@ -1,6 +1,8 @@
|
|
1
1
|
"""Rewards functions are defined as `DispatcherObervers` and are used to
|
2
2
|
calculate the reward for a given state."""
|
3
3
|
|
4
|
+
from typing import List
|
5
|
+
|
4
6
|
from job_shop_lib.dispatching import DispatcherObserver, Dispatcher
|
5
7
|
from job_shop_lib import ScheduledOperation
|
6
8
|
|
@@ -18,7 +20,7 @@ class RewardObserver(DispatcherObserver):
|
|
18
20
|
self, dispatcher: Dispatcher, *, subscribe: bool = True
|
19
21
|
) -> None:
|
20
22
|
super().__init__(dispatcher, subscribe=subscribe)
|
21
|
-
self.rewards:
|
23
|
+
self.rewards: List[float] = []
|
22
24
|
|
23
25
|
@property
|
24
26
|
def last_reward(self) -> float:
|
@@ -2,7 +2,7 @@
|
|
2
2
|
|
3
3
|
from copy import deepcopy
|
4
4
|
from collections.abc import Callable, Sequence
|
5
|
-
from typing import Any
|
5
|
+
from typing import Any, Dict, Tuple, List, Optional, Type
|
6
6
|
|
7
7
|
import matplotlib.pyplot as plt
|
8
8
|
import gymnasium as gym
|
@@ -15,6 +15,7 @@ from job_shop_lib.graphs.graph_updaters import (
|
|
15
15
|
GraphUpdater,
|
16
16
|
ResidualGraphUpdater,
|
17
17
|
)
|
18
|
+
from job_shop_lib.exceptions import ValidationError
|
18
19
|
from job_shop_lib.dispatching import (
|
19
20
|
Dispatcher,
|
20
21
|
filter_dominated_operations,
|
@@ -24,7 +25,7 @@ from job_shop_lib.dispatching.feature_observers import (
|
|
24
25
|
FeatureObserverConfig,
|
25
26
|
CompositeFeatureObserver,
|
26
27
|
)
|
27
|
-
from job_shop_lib.visualization import GanttChartCreator
|
28
|
+
from job_shop_lib.visualization.gantt import GanttChartCreator
|
28
29
|
from job_shop_lib.reinforcement_learning import (
|
29
30
|
RewardObserver,
|
30
31
|
MakespanReward,
|
@@ -138,16 +139,16 @@ class SingleJobShopGraphEnv(gym.Env):
|
|
138
139
|
job_shop_graph: JobShopGraph,
|
139
140
|
feature_observer_configs: Sequence[FeatureObserverConfig],
|
140
141
|
reward_function_config: DispatcherObserverConfig[
|
141
|
-
|
142
|
+
Type[RewardObserver]
|
142
143
|
] = DispatcherObserverConfig(class_type=MakespanReward),
|
143
144
|
graph_updater_config: DispatcherObserverConfig[
|
144
|
-
|
145
|
+
Type[GraphUpdater]
|
145
146
|
] = DispatcherObserverConfig(class_type=ResidualGraphUpdater),
|
146
|
-
ready_operations_filter:
|
147
|
-
Callable[[Dispatcher,
|
148
|
-
|
149
|
-
render_mode: str
|
150
|
-
render_config: RenderConfig
|
147
|
+
ready_operations_filter: Optional[
|
148
|
+
Callable[[Dispatcher, List[Operation]], List[Operation]]
|
149
|
+
] = filter_dominated_operations,
|
150
|
+
render_mode: Optional[str] = None,
|
151
|
+
render_config: Optional[RenderConfig] = None,
|
151
152
|
use_padding: bool = True,
|
152
153
|
) -> None:
|
153
154
|
super().__init__()
|
@@ -195,10 +196,26 @@ class SingleJobShopGraphEnv(gym.Env):
|
|
195
196
|
"""Returns the job shop graph."""
|
196
197
|
return self.graph_updater.job_shop_graph
|
197
198
|
|
199
|
+
def current_makespan(self) -> int:
|
200
|
+
"""Returns current makespan of partial schedule."""
|
201
|
+
return self.dispatcher.schedule.makespan()
|
202
|
+
|
203
|
+
def machine_utilization(self) -> NDArray[np.float32]:
|
204
|
+
"""Returns utilization percentage for each machine."""
|
205
|
+
total_time = max(1, self.current_makespan()) # Avoid division by zero
|
206
|
+
machine_busy_time = np.zeros(self.instance.num_machines)
|
207
|
+
|
208
|
+
for m_id, m_schedule in enumerate(self.dispatcher.schedule.schedule):
|
209
|
+
machine_busy_time[m_id] = sum(
|
210
|
+
op.operation.duration for op in m_schedule
|
211
|
+
)
|
212
|
+
|
213
|
+
return machine_busy_time / total_time
|
214
|
+
|
198
215
|
def _get_observation_space(self) -> gym.spaces.Dict:
|
199
216
|
"""Returns the observation space dictionary."""
|
200
217
|
num_edges = self.job_shop_graph.num_edges
|
201
|
-
dict_space:
|
218
|
+
dict_space: Dict[str, gym.Space] = {
|
202
219
|
ObservationSpaceKey.REMOVED_NODES.value: gym.spaces.MultiBinary(
|
203
220
|
len(self.job_shop_graph.nodes)
|
204
221
|
),
|
@@ -224,18 +241,23 @@ class SingleJobShopGraphEnv(gym.Env):
|
|
224
241
|
def reset(
|
225
242
|
self,
|
226
243
|
*,
|
227
|
-
seed: int
|
228
|
-
options:
|
229
|
-
) ->
|
244
|
+
seed: Optional[int] = None,
|
245
|
+
options: Optional[Dict[str, Any]] = None,
|
246
|
+
) -> Tuple[ObservationDict, dict]:
|
230
247
|
"""Resets the environment."""
|
231
248
|
super().reset(seed=seed, options=options)
|
232
249
|
self.dispatcher.reset()
|
233
250
|
obs = self.get_observation()
|
234
|
-
return obs, {
|
251
|
+
return obs, {
|
252
|
+
"feature_names": self.composite_observer.column_names,
|
253
|
+
"available_operations_with_ids": (
|
254
|
+
self.get_available_actions_with_ids()
|
255
|
+
),
|
256
|
+
}
|
235
257
|
|
236
258
|
def step(
|
237
|
-
self, action:
|
238
|
-
) ->
|
259
|
+
self, action: Tuple[int, int]
|
260
|
+
) -> Tuple[ObservationDict, float, bool, bool, Dict[str, Any]]:
|
239
261
|
"""Takes a step in the environment.
|
240
262
|
|
241
263
|
Args:
|
@@ -254,9 +276,9 @@ class SingleJobShopGraphEnv(gym.Env):
|
|
254
276
|
- Whether the episode was truncated (always False).
|
255
277
|
- A dictionary with additional information. The dictionary
|
256
278
|
contains the following keys: "feature_names", the names of the
|
257
|
-
features in the observation; "
|
258
|
-
|
259
|
-
|
279
|
+
features in the observation; and "available_operations_with_ids",
|
280
|
+
a list of available actions in the form of (operation_id,
|
281
|
+
machine_id, job_id).
|
260
282
|
"""
|
261
283
|
job_id, machine_id = action
|
262
284
|
operation = self.dispatcher.next_operation(job_id)
|
@@ -269,9 +291,11 @@ class SingleJobShopGraphEnv(gym.Env):
|
|
269
291
|
reward = self.reward_function.last_reward
|
270
292
|
done = self.dispatcher.schedule.is_complete()
|
271
293
|
truncated = False
|
272
|
-
info:
|
294
|
+
info: Dict[str, Any] = {
|
273
295
|
"feature_names": self.composite_observer.column_names,
|
274
|
-
"
|
296
|
+
"available_operations_with_ids": (
|
297
|
+
self.get_available_actions_with_ids()
|
298
|
+
),
|
275
299
|
}
|
276
300
|
return obs, reward, done, truncated, info
|
277
301
|
|
@@ -322,6 +346,49 @@ class SingleJobShopGraphEnv(gym.Env):
|
|
322
346
|
elif self.render_mode == "save_gif":
|
323
347
|
self.gantt_chart_creator.create_gif()
|
324
348
|
|
349
|
+
def get_available_actions_with_ids(self) -> List[Tuple[int, int, int]]:
|
350
|
+
"""Returns a list of available actions in the form of
|
351
|
+
(operation_id, machine_id, job_id)."""
|
352
|
+
available_operations = self.dispatcher.available_operations()
|
353
|
+
available_operations_with_ids = []
|
354
|
+
for operation in available_operations:
|
355
|
+
job_id = operation.job_id
|
356
|
+
operation_id = operation.operation_id
|
357
|
+
for machine_id in operation.machines:
|
358
|
+
available_operations_with_ids.append(
|
359
|
+
(operation_id, machine_id, job_id)
|
360
|
+
)
|
361
|
+
return available_operations_with_ids
|
362
|
+
|
363
|
+
def validate_action(self, action: Tuple[int, int]) -> None:
|
364
|
+
"""Validates that the action is legal in the current state.
|
365
|
+
|
366
|
+
Args:
|
367
|
+
action:
|
368
|
+
The action to validate. The action is a tuple of two integers
|
369
|
+
(job_id, machine_id).
|
370
|
+
|
371
|
+
Raises:
|
372
|
+
ValidationError: If the action is invalid.
|
373
|
+
"""
|
374
|
+
job_id, machine_id = action
|
375
|
+
if not 0 <= job_id < self.instance.num_jobs:
|
376
|
+
raise ValidationError(f"Invalid job_id {job_id}")
|
377
|
+
|
378
|
+
if not -1 <= machine_id < self.instance.num_machines:
|
379
|
+
raise ValidationError(f"Invalid machine_id {machine_id}")
|
380
|
+
|
381
|
+
# Check if job has operations left
|
382
|
+
job = self.instance.jobs[job_id]
|
383
|
+
if self.dispatcher.job_next_operation_index[job_id] >= len(job):
|
384
|
+
raise ValidationError(f"Job {job_id} has no operations left")
|
385
|
+
|
386
|
+
next_operation = self.dispatcher.next_operation(job_id)
|
387
|
+
if machine_id == -1 and len(next_operation.machines) > 1:
|
388
|
+
raise ValidationError(
|
389
|
+
f"Operation {next_operation} requires a machine_id"
|
390
|
+
)
|
391
|
+
|
325
392
|
|
326
393
|
if __name__ == "__main__":
|
327
394
|
from job_shop_lib.dispatching.feature_observers import (
|
@@ -333,7 +400,7 @@ if __name__ == "__main__":
|
|
333
400
|
|
334
401
|
instance = load_benchmark_instance("ft06")
|
335
402
|
job_shop_graph_ = build_disjunctive_graph(instance)
|
336
|
-
feature_observer_configs_ = [
|
403
|
+
feature_observer_configs_: List[DispatcherObserverConfig] = [
|
337
404
|
DispatcherObserverConfig(
|
338
405
|
FeatureObserverType.IS_READY,
|
339
406
|
kwargs={"feature_types": [FeatureType.JOBS]},
|
@@ -7,7 +7,7 @@ from typing import TypedDict
|
|
7
7
|
import numpy as np
|
8
8
|
|
9
9
|
from job_shop_lib.dispatching.feature_observers import FeatureType
|
10
|
-
from job_shop_lib.visualization import (
|
10
|
+
from job_shop_lib.visualization.gantt import (
|
11
11
|
PartialGanttChartPlotterConfig,
|
12
12
|
GifConfig,
|
13
13
|
VideoConfig,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
"""Utility functions for reinforcement learning."""
|
2
2
|
|
3
|
-
from typing import TypeVar, Any
|
3
|
+
from typing import TypeVar, Any, Tuple, Optional, Type
|
4
4
|
|
5
5
|
import numpy as np
|
6
6
|
from numpy.typing import NDArray
|
@@ -12,9 +12,9 @@ T = TypeVar("T", bound=np.number)
|
|
12
12
|
|
13
13
|
def add_padding(
|
14
14
|
array: NDArray[Any],
|
15
|
-
output_shape:
|
15
|
+
output_shape: Tuple[int, ...],
|
16
16
|
padding_value: float = -1,
|
17
|
-
dtype:
|
17
|
+
dtype: Optional[Type[T]] = None,
|
18
18
|
) -> NDArray[T]:
|
19
19
|
"""Adds padding to the array.
|
20
20
|
|
@@ -1,60 +0,0 @@
|
|
1
|
-
"""Contains functions and classes for visualizing job shop scheduling problems.
|
2
|
-
|
3
|
-
.. autosummary::
|
4
|
-
|
5
|
-
plot_gantt_chart
|
6
|
-
get_partial_gantt_chart_plotter
|
7
|
-
PartialGanttChartPlotter
|
8
|
-
create_gantt_chart_video
|
9
|
-
create_gantt_chart_gif
|
10
|
-
plot_disjunctive_graph
|
11
|
-
plot_agent_task_graph
|
12
|
-
GanttChartCreator
|
13
|
-
GifConfig
|
14
|
-
VideoConfig
|
15
|
-
|
16
|
-
"""
|
17
|
-
|
18
|
-
from job_shop_lib.visualization._plot_gantt_chart import plot_gantt_chart
|
19
|
-
from job_shop_lib.visualization._gantt_chart_video_and_gif_creation import (
|
20
|
-
create_gantt_chart_gif,
|
21
|
-
create_gantt_chart_video,
|
22
|
-
create_gantt_chart_frames,
|
23
|
-
get_partial_gantt_chart_plotter,
|
24
|
-
create_video_from_frames,
|
25
|
-
create_gif_from_frames,
|
26
|
-
PartialGanttChartPlotter,
|
27
|
-
)
|
28
|
-
from job_shop_lib.visualization._plot_disjunctive_graph import (
|
29
|
-
plot_disjunctive_graph,
|
30
|
-
duration_labeler,
|
31
|
-
)
|
32
|
-
from job_shop_lib.visualization._plot_agent_task_graph import (
|
33
|
-
plot_agent_task_graph,
|
34
|
-
three_columns_layout,
|
35
|
-
)
|
36
|
-
from job_shop_lib.visualization._gantt_chart_creator import (
|
37
|
-
GanttChartCreator,
|
38
|
-
PartialGanttChartPlotterConfig,
|
39
|
-
GifConfig,
|
40
|
-
VideoConfig,
|
41
|
-
)
|
42
|
-
|
43
|
-
__all__ = [
|
44
|
-
"plot_gantt_chart",
|
45
|
-
"create_gantt_chart_video",
|
46
|
-
"create_gantt_chart_gif",
|
47
|
-
"create_gantt_chart_frames",
|
48
|
-
"get_partial_gantt_chart_plotter",
|
49
|
-
"create_gif_from_frames",
|
50
|
-
"create_video_from_frames",
|
51
|
-
"plot_disjunctive_graph",
|
52
|
-
"plot_agent_task_graph",
|
53
|
-
"three_columns_layout",
|
54
|
-
"GanttChartCreator",
|
55
|
-
"PartialGanttChartPlotterConfig",
|
56
|
-
"GifConfig",
|
57
|
-
"VideoConfig",
|
58
|
-
"PartialGanttChartPlotter",
|
59
|
-
"duration_labeler",
|
60
|
-
]
|
@@ -0,0 +1,48 @@
|
|
1
|
+
"""Contains functions and classes for visualizing job shop scheduling problems.
|
2
|
+
|
3
|
+
.. autosummary::
|
4
|
+
|
5
|
+
plot_gantt_chart
|
6
|
+
get_partial_gantt_chart_plotter
|
7
|
+
PartialGanttChartPlotter
|
8
|
+
create_gantt_chart_video
|
9
|
+
create_gantt_chart_gif
|
10
|
+
GanttChartCreator
|
11
|
+
GifConfig
|
12
|
+
VideoConfig
|
13
|
+
PartialGanttChartPlotterConfig
|
14
|
+
|
15
|
+
"""
|
16
|
+
|
17
|
+
from ._plot_gantt_chart import plot_gantt_chart
|
18
|
+
from ._gantt_chart_video_and_gif_creation import (
|
19
|
+
create_gantt_chart_gif,
|
20
|
+
create_gantt_chart_video,
|
21
|
+
create_gantt_chart_frames,
|
22
|
+
get_partial_gantt_chart_plotter,
|
23
|
+
create_video_from_frames,
|
24
|
+
create_gif_from_frames,
|
25
|
+
PartialGanttChartPlotter,
|
26
|
+
)
|
27
|
+
|
28
|
+
from ._gantt_chart_creator import (
|
29
|
+
GanttChartCreator,
|
30
|
+
PartialGanttChartPlotterConfig,
|
31
|
+
GifConfig,
|
32
|
+
VideoConfig,
|
33
|
+
)
|
34
|
+
|
35
|
+
__all__ = [
|
36
|
+
"plot_gantt_chart",
|
37
|
+
"create_gantt_chart_video",
|
38
|
+
"create_gantt_chart_gif",
|
39
|
+
"create_gantt_chart_frames",
|
40
|
+
"get_partial_gantt_chart_plotter",
|
41
|
+
"create_gif_from_frames",
|
42
|
+
"create_video_from_frames",
|
43
|
+
"GanttChartCreator",
|
44
|
+
"PartialGanttChartPlotterConfig",
|
45
|
+
"GifConfig",
|
46
|
+
"VideoConfig",
|
47
|
+
"PartialGanttChartPlotter",
|
48
|
+
]
|