job-shop-lib 0.5.0__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (93) hide show
  1. job_shop_lib/__init__.py +19 -8
  2. job_shop_lib/{base_solver.py → _base_solver.py} +1 -1
  3. job_shop_lib/{job_shop_instance.py → _job_shop_instance.py} +155 -81
  4. job_shop_lib/_operation.py +118 -0
  5. job_shop_lib/{schedule.py → _schedule.py} +102 -84
  6. job_shop_lib/{scheduled_operation.py → _scheduled_operation.py} +25 -49
  7. job_shop_lib/benchmarking/__init__.py +66 -43
  8. job_shop_lib/benchmarking/_load_benchmark.py +88 -0
  9. job_shop_lib/constraint_programming/__init__.py +13 -0
  10. job_shop_lib/{cp_sat/ortools_solver.py → constraint_programming/_ortools_solver.py} +77 -22
  11. job_shop_lib/dispatching/__init__.py +51 -42
  12. job_shop_lib/dispatching/{dispatcher.py → _dispatcher.py} +223 -130
  13. job_shop_lib/dispatching/_dispatcher_observer_config.py +67 -0
  14. job_shop_lib/dispatching/_factories.py +135 -0
  15. job_shop_lib/dispatching/{history_tracker.py → _history_observer.py} +6 -7
  16. job_shop_lib/dispatching/_optimal_operations_observer.py +113 -0
  17. job_shop_lib/dispatching/_ready_operation_filters.py +168 -0
  18. job_shop_lib/dispatching/_unscheduled_operations_observer.py +70 -0
  19. job_shop_lib/dispatching/feature_observers/__init__.py +51 -13
  20. job_shop_lib/dispatching/feature_observers/_composite_feature_observer.py +212 -0
  21. job_shop_lib/dispatching/feature_observers/{duration_observer.py → _duration_observer.py} +20 -18
  22. job_shop_lib/dispatching/feature_observers/_earliest_start_time_observer.py +289 -0
  23. job_shop_lib/dispatching/feature_observers/_factory.py +95 -0
  24. job_shop_lib/dispatching/feature_observers/_feature_observer.py +228 -0
  25. job_shop_lib/dispatching/feature_observers/_is_completed_observer.py +97 -0
  26. job_shop_lib/dispatching/feature_observers/_is_ready_observer.py +35 -0
  27. job_shop_lib/dispatching/feature_observers/{is_scheduled_observer.py → _is_scheduled_observer.py} +9 -5
  28. job_shop_lib/dispatching/feature_observers/{position_in_job_observer.py → _position_in_job_observer.py} +8 -10
  29. job_shop_lib/dispatching/feature_observers/{remaining_operations_observer.py → _remaining_operations_observer.py} +8 -26
  30. job_shop_lib/dispatching/rules/__init__.py +87 -0
  31. job_shop_lib/dispatching/rules/_dispatching_rule_factory.py +84 -0
  32. job_shop_lib/dispatching/rules/_dispatching_rule_solver.py +201 -0
  33. job_shop_lib/dispatching/{dispatching_rules.py → rules/_dispatching_rules_functions.py} +70 -16
  34. job_shop_lib/dispatching/rules/_machine_chooser_factory.py +71 -0
  35. job_shop_lib/dispatching/rules/_utils.py +128 -0
  36. job_shop_lib/exceptions.py +18 -0
  37. job_shop_lib/generation/__init__.py +19 -0
  38. job_shop_lib/generation/_general_instance_generator.py +165 -0
  39. job_shop_lib/generation/_instance_generator.py +133 -0
  40. job_shop_lib/{generators/transformations.py → generation/_transformations.py} +16 -12
  41. job_shop_lib/generation/_utils.py +124 -0
  42. job_shop_lib/graphs/__init__.py +30 -12
  43. job_shop_lib/graphs/{build_disjunctive_graph.py → _build_disjunctive_graph.py} +41 -3
  44. job_shop_lib/graphs/{build_agent_task_graph.py → _build_resource_task_graphs.py} +28 -26
  45. job_shop_lib/graphs/_constants.py +38 -0
  46. job_shop_lib/graphs/_job_shop_graph.py +320 -0
  47. job_shop_lib/graphs/_node.py +182 -0
  48. job_shop_lib/graphs/graph_updaters/__init__.py +26 -0
  49. job_shop_lib/graphs/graph_updaters/_disjunctive_graph_updater.py +108 -0
  50. job_shop_lib/graphs/graph_updaters/_graph_updater.py +57 -0
  51. job_shop_lib/graphs/graph_updaters/_residual_graph_updater.py +155 -0
  52. job_shop_lib/graphs/graph_updaters/_utils.py +25 -0
  53. job_shop_lib/py.typed +0 -0
  54. job_shop_lib/reinforcement_learning/__init__.py +68 -0
  55. job_shop_lib/reinforcement_learning/_multi_job_shop_graph_env.py +398 -0
  56. job_shop_lib/reinforcement_learning/_resource_task_graph_observation.py +329 -0
  57. job_shop_lib/reinforcement_learning/_reward_observers.py +87 -0
  58. job_shop_lib/reinforcement_learning/_single_job_shop_graph_env.py +443 -0
  59. job_shop_lib/reinforcement_learning/_types_and_constants.py +62 -0
  60. job_shop_lib/reinforcement_learning/_utils.py +199 -0
  61. job_shop_lib/visualization/__init__.py +0 -25
  62. job_shop_lib/visualization/gantt/__init__.py +48 -0
  63. job_shop_lib/visualization/gantt/_gantt_chart_creator.py +257 -0
  64. job_shop_lib/visualization/gantt/_gantt_chart_video_and_gif_creation.py +422 -0
  65. job_shop_lib/visualization/{gantt_chart.py → gantt/_plot_gantt_chart.py} +84 -21
  66. job_shop_lib/visualization/graphs/__init__.py +29 -0
  67. job_shop_lib/visualization/graphs/_plot_disjunctive_graph.py +418 -0
  68. job_shop_lib/visualization/graphs/_plot_resource_task_graph.py +389 -0
  69. {job_shop_lib-0.5.0.dist-info → job_shop_lib-1.0.0.dist-info}/METADATA +87 -55
  70. job_shop_lib-1.0.0.dist-info/RECORD +73 -0
  71. {job_shop_lib-0.5.0.dist-info → job_shop_lib-1.0.0.dist-info}/WHEEL +1 -1
  72. job_shop_lib/benchmarking/load_benchmark.py +0 -142
  73. job_shop_lib/cp_sat/__init__.py +0 -5
  74. job_shop_lib/dispatching/dispatching_rule_solver.py +0 -119
  75. job_shop_lib/dispatching/factories.py +0 -206
  76. job_shop_lib/dispatching/feature_observers/composite_feature_observer.py +0 -87
  77. job_shop_lib/dispatching/feature_observers/earliest_start_time_observer.py +0 -156
  78. job_shop_lib/dispatching/feature_observers/factory.py +0 -58
  79. job_shop_lib/dispatching/feature_observers/feature_observer.py +0 -113
  80. job_shop_lib/dispatching/feature_observers/is_completed_observer.py +0 -98
  81. job_shop_lib/dispatching/feature_observers/is_ready_observer.py +0 -40
  82. job_shop_lib/dispatching/pruning_functions.py +0 -116
  83. job_shop_lib/generators/__init__.py +0 -7
  84. job_shop_lib/generators/basic_generator.py +0 -197
  85. job_shop_lib/graphs/constants.py +0 -21
  86. job_shop_lib/graphs/job_shop_graph.py +0 -202
  87. job_shop_lib/graphs/node.py +0 -166
  88. job_shop_lib/operation.py +0 -122
  89. job_shop_lib/visualization/agent_task_graph.py +0 -257
  90. job_shop_lib/visualization/create_gif.py +0 -209
  91. job_shop_lib/visualization/disjunctive_graph.py +0 -210
  92. job_shop_lib-0.5.0.dist-info/RECORD +0 -48
  93. {job_shop_lib-0.5.0.dist-info → job_shop_lib-1.0.0.dist-info}/LICENSE +0 -0
job_shop_lib/operation.py DELETED
@@ -1,122 +0,0 @@
1
- """Home of the `Operation` class."""
2
-
3
- from __future__ import annotations
4
-
5
- from job_shop_lib import JobShopLibError
6
-
7
-
8
- class Operation:
9
- """Stores machine and duration information for a job operation.
10
-
11
- Note:
12
- To increase performance, some solvers such as the CP-SAT solver use
13
- only integers to represent the operation's attributes. Should a
14
- problem involve operations with non-integer durations, it would be
15
- necessary to multiply all durations by a sufficiently large integer so
16
- that every duration is an integer.
17
-
18
- Attributes:
19
- machines: A list of machine ids that can perform the operation.
20
- duration: The time it takes to perform the operation.
21
- """
22
-
23
- __slots__ = (
24
- "machines",
25
- "duration",
26
- "_job_id",
27
- "_position_in_job",
28
- "_operation_id",
29
- )
30
-
31
- def __init__(self, machines: int | list[int], duration: int):
32
- """Initializes the object with the given machines and duration.
33
-
34
- Args:
35
- machines: A list of machine ids that can perform the operation. If
36
- only one machine can perform the operation, it can be passed as
37
- an integer.
38
- duration: The time it takes to perform the operation.
39
- """
40
- self.machines = [machines] if isinstance(machines, int) else machines
41
- self.duration = duration
42
-
43
- # Defined outside the class by the JobShopInstance class:
44
- self._job_id: int | None = None
45
- self._position_in_job: int | None = None
46
- self._operation_id: int | None = None
47
-
48
- @property
49
- def machine_id(self) -> int:
50
- """Returns the id of the machine associated with the operation.
51
-
52
- Raises:
53
- ValueError: If the operation has multiple machines in its list.
54
- """
55
- if len(self.machines) > 1:
56
- raise JobShopLibError("Operation has multiple machines.")
57
- return self.machines[0]
58
-
59
- @property
60
- def job_id(self) -> int:
61
- """Returns the id of the job that the operation belongs to."""
62
- if self._job_id is None:
63
- raise JobShopLibError("Operation has no job_id.")
64
- return self._job_id
65
-
66
- @job_id.setter
67
- def job_id(self, value: int) -> None:
68
- self._job_id = value
69
-
70
- @property
71
- def position_in_job(self) -> int:
72
- """Returns the position (starting at zero) of the operation in the
73
- job.
74
-
75
- Raises:
76
- ValueError: If the operation has no position_in_job.
77
- """
78
- if self._position_in_job is None:
79
- raise JobShopLibError("Operation has no position_in_job.")
80
- return self._position_in_job
81
-
82
- @position_in_job.setter
83
- def position_in_job(self, value: int) -> None:
84
- self._position_in_job = value
85
-
86
- @property
87
- def operation_id(self) -> int:
88
- """Returns the id of the operation.
89
-
90
- The operation id is unique within a job shop instance and should
91
- be set by the JobShopInstance class.
92
-
93
- It starts at 0 and is incremented by 1 for each operation in the
94
- instance.
95
-
96
- Raises:
97
- ValueError: If the operation has no id.
98
- """
99
- if self._operation_id is None:
100
- raise JobShopLibError("Operation has no id.")
101
- return self._operation_id
102
-
103
- @operation_id.setter
104
- def operation_id(self, value: int) -> None:
105
- self._operation_id = value
106
-
107
- def __hash__(self) -> int:
108
- return hash(self.operation_id)
109
-
110
- def __eq__(self, value: object) -> bool:
111
- if not isinstance(value, Operation):
112
- return False
113
- return self.__slots__ == value.__slots__
114
-
115
- def __repr__(self) -> str:
116
- machines = (
117
- self.machines[0] if len(self.machines) == 1 else self.machines
118
- )
119
- return (
120
- f"O(m={machines}, d={self.duration}, "
121
- f"j={self.job_id}, p={self.position_in_job})"
122
- )
@@ -1,257 +0,0 @@
1
- """Contains functions to plot the agent-task graph of a job shop instance.
2
-
3
- The agent-task graph was introduced by Junyoung Park et al. (2021).
4
- In contrast to the disjunctive graph, instead of connecting operations that
5
- share the same resources directly by disjunctive edges, operation nodes are
6
- connected with machine ones. All machine nodes are connected between them, and
7
- all operation nodes from the same job are connected by non-directed edges too.
8
-
9
- See: job_shop_lib.graphs.build_agent_task_graph module for more information.
10
- """
11
-
12
- from typing import Optional
13
-
14
- import matplotlib.pyplot as plt
15
- import networkx as nx
16
-
17
- from job_shop_lib.graphs import NodeType, JobShopGraph, Node
18
-
19
-
20
- def plot_agent_task_graph(
21
- job_shop_graph: JobShopGraph,
22
- title: Optional[str] = None,
23
- figsize: tuple[int, int] = (10, 10),
24
- layout: Optional[dict[Node, tuple[float, float]]] = None,
25
- color_map_name: str = "tab10",
26
- node_size: int = 1000,
27
- alpha: float = 0.95,
28
- add_legend: bool = False,
29
- ) -> plt.Figure:
30
- """Returns a plot of the agent-task graph of the instance.
31
-
32
- Machine and job nodes are represented by squares, and the operation nodes
33
- are represented by circles.
34
-
35
- Args:
36
- job_shop_graph:
37
- The job shop graph instance. It should be already initialized with
38
- the instance with a valid agent-task graph representation.
39
-
40
- Returns:
41
- The figure of the plot. This figure can be used to save the plot to a
42
- file or to show it in a Jupyter notebook.
43
- """
44
- if title is None:
45
- title = (
46
- f"Agent-Task Graph Visualization: {job_shop_graph.instance.name}"
47
- )
48
- # Create a new figure and axis
49
- fig, ax = plt.subplots(figsize=figsize)
50
- fig.suptitle(title)
51
-
52
- # Create the networkx graph
53
- graph = job_shop_graph.graph
54
-
55
- # Create the layout if it was not provided
56
- if layout is None:
57
- layout = three_columns_layout(job_shop_graph)
58
-
59
- # Define colors and shapes
60
- color_map = plt.get_cmap(color_map_name)
61
- machine_colors = {
62
- machine.machine_id: color_map(i)
63
- for i, machine in enumerate(
64
- job_shop_graph.nodes_by_type[NodeType.MACHINE]
65
- )
66
- }
67
- node_colors = [
68
- _get_node_color(node, machine_colors) for node in job_shop_graph.nodes
69
- ]
70
- node_shapes = {"machine": "s", "job": "d", "operation": "o", "global": "o"}
71
-
72
- # Draw nodes with different shapes based on their type
73
- for node_type, shape in node_shapes.items():
74
- current_nodes = [
75
- node.node_id
76
- for node in job_shop_graph.nodes
77
- if node.node_type.name.lower() == node_type
78
- ]
79
- nx.draw_networkx_nodes(
80
- graph,
81
- layout,
82
- nodelist=current_nodes,
83
- node_color=[node_colors[i] for i in current_nodes],
84
- node_shape=shape,
85
- ax=ax,
86
- node_size=node_size,
87
- alpha=alpha,
88
- )
89
-
90
- # Draw edges
91
- nx.draw_networkx_edges(graph, layout, ax=ax)
92
-
93
- node_labels = {
94
- node.node_id: _get_node_label(node) for node in job_shop_graph.nodes
95
- }
96
- nx.draw_networkx_labels(graph, layout, node_labels, ax=ax)
97
-
98
- ax.set_axis_off()
99
-
100
- plt.tight_layout()
101
-
102
- # Add to the legend the meaning of m and d
103
- if add_legend:
104
- plt.figtext(0, 0.95, "d = duration", wrap=True, fontsize=12)
105
- return fig
106
-
107
-
108
- def _get_node_color(
109
- node: Node, machine_colors: dict[int, tuple[float, float, float, float]]
110
- ) -> tuple[float, float, float, float] | str:
111
- if node.node_type == NodeType.OPERATION:
112
- return machine_colors[node.operation.machine_id]
113
- if node.node_type == NodeType.MACHINE:
114
- return machine_colors[node.machine_id]
115
-
116
- return "lightblue"
117
-
118
-
119
- def _get_node_label(node: Node) -> str:
120
- if node.node_type == NodeType.OPERATION:
121
- return f"d={node.operation.duration}"
122
- if node.node_type == NodeType.MACHINE:
123
- return f"M{node.machine_id}"
124
- if node.node_type == NodeType.JOB:
125
- return f"J{node.job_id}"
126
- if node.node_type == NodeType.GLOBAL:
127
- return "G"
128
-
129
- raise ValueError(f"Invalid node type: {node.node_type}")
130
-
131
-
132
- def three_columns_layout(
133
- job_shop_graph: JobShopGraph,
134
- *,
135
- leftmost_position: float = 0.1,
136
- rightmost_position: float = 0.9,
137
- topmost_position: float = 1.0,
138
- bottommost_position: float = 0.0,
139
- ) -> dict[Node, tuple[float, float]]:
140
- """Returns the layout of the agent-task graph.
141
-
142
- The layout is organized in a grid manner. For example, for a JobShopGraph
143
- representing a job shop instance with 2 machines and 3 jobs, the layout
144
- would be:
145
-
146
- 0: - O_11 -
147
- 1: - O_12 J1
148
- 2: - O_13 -
149
- 3: M1 O_21 -
150
- 4: - O_22 J2
151
- 5: - O_23 -
152
- 6: M2 O_31 -
153
- 7: - O_32 J3
154
- 8: - O_33 -
155
- 9: - - -
156
- 10: - G -
157
- Where M1 and M2 are the machine nodes, J1, J2, and J3 are the job
158
- nodes, O_ij are the operation nodes, and G is the global node.
159
-
160
- Args:
161
- job_shop_graph:
162
- The job shop graph instance. It should be already initialized with
163
- the instance with a valid agent-task graph representation.
164
- leftmost_position:
165
- The center position of the leftmost column of the layout. It should
166
- be a float between 0 and 1. The default is 0.1.
167
- rightmost_position:
168
- The center position of the rightmost column of the layout. It
169
- should be a float between 0 and 1. The default is 0.9.
170
- topmost_position:
171
- The center position of the topmost node of the layout. It should be
172
- a float between 0 and 1. The default is 0.9.
173
- bottommost_position:
174
- The center position of the bottommost node of the layout. It should
175
- be a float between 0 and 1. The default is 0.1.
176
-
177
- Returns:
178
- A dictionary with the position of each node in the graph. The keys are
179
- the node ids, and the values are tuples with the x and y coordinates.
180
- """
181
-
182
- x_positions = _get_x_positions(leftmost_position, rightmost_position)
183
-
184
- operation_nodes = job_shop_graph.nodes_by_type[NodeType.OPERATION]
185
- machine_nodes = job_shop_graph.nodes_by_type[NodeType.MACHINE]
186
- job_nodes = job_shop_graph.nodes_by_type[NodeType.JOB]
187
- global_nodes = job_shop_graph.nodes_by_type[NodeType.GLOBAL]
188
-
189
- total_positions = len(operation_nodes) + len(global_nodes) * 2
190
- y_spacing = (topmost_position - bottommost_position) / total_positions
191
-
192
- layout: dict[Node, tuple[float, float]] = {}
193
-
194
- machines_spacing_multiplier = len(operation_nodes) // len(machine_nodes)
195
- layout.update(
196
- _assign_positions_from_top(
197
- machine_nodes,
198
- x_positions["machine"],
199
- topmost_position,
200
- y_spacing * machines_spacing_multiplier,
201
- )
202
- )
203
- layout.update(
204
- (
205
- _assign_positions_from_top(
206
- operation_nodes,
207
- x_positions["operation"],
208
- topmost_position,
209
- y_spacing,
210
- )
211
- )
212
- )
213
-
214
- if global_nodes:
215
- layout[global_nodes[0]] = (
216
- x_positions["operation"],
217
- bottommost_position,
218
- )
219
-
220
- if job_nodes:
221
- job_multiplier = len(operation_nodes) // len(job_nodes)
222
- layout.update(
223
- _assign_positions_from_top(
224
- job_nodes,
225
- x_positions["job"],
226
- topmost_position,
227
- y_spacing * job_multiplier,
228
- )
229
- )
230
- return layout
231
-
232
-
233
- def _get_x_positions(
234
- leftmost_position: float, rightmost_position: float
235
- ) -> dict[str, float]:
236
- center_position = (
237
- leftmost_position + (rightmost_position - leftmost_position) / 2
238
- )
239
- return {
240
- "machine": leftmost_position,
241
- "operation": center_position,
242
- "job": rightmost_position,
243
- }
244
-
245
-
246
- def _assign_positions_from_top(
247
- nodes: list[Node],
248
- x: float,
249
- top: float,
250
- y_spacing: float,
251
- ) -> dict[Node, tuple[float, float]]:
252
- layout: dict[Node, tuple[float, float]] = {}
253
- for i, node in enumerate(nodes):
254
- y = top - (i + 1) * y_spacing
255
- layout[node] = (x, y)
256
-
257
- return layout
@@ -1,209 +0,0 @@
1
- """Module for creating a GIF of the schedule being built by a
2
- dispatching rule solver."""
3
-
4
- import os
5
- import pathlib
6
- import shutil
7
- from collections.abc import Callable
8
-
9
- import imageio
10
- import matplotlib.pyplot as plt
11
- from matplotlib.figure import Figure
12
-
13
- from job_shop_lib import JobShopInstance, Schedule, Operation
14
- from job_shop_lib.dispatching import (
15
- DispatchingRuleSolver,
16
- Dispatcher,
17
- HistoryTracker,
18
- )
19
- from job_shop_lib.visualization.gantt_chart import plot_gantt_chart
20
-
21
-
22
- # Most of the arguments are optional with default values. There is no way to
23
- # reduce the number of arguments without losing functionality.
24
- # pylint: disable=too-many-arguments
25
- def create_gif(
26
- gif_path: str,
27
- instance: JobShopInstance,
28
- solver: DispatchingRuleSolver,
29
- plot_function: (
30
- Callable[[Schedule, int, list[Operation] | None, int | None], Figure]
31
- | None
32
- ) = None,
33
- fps: int = 1,
34
- remove_frames: bool = True,
35
- frames_dir: str | None = None,
36
- plot_current_time: bool = True,
37
- ) -> None:
38
- """Creates a GIF of the schedule being built by the given solver.
39
-
40
- Args:
41
- gif_path:
42
- The path to save the GIF file. It should end with ".gif".
43
- instance:
44
- The instance of the job shop problem to be scheduled.
45
- solver:
46
- The dispatching rule solver to use.
47
- plot_function:
48
- A function that plots a Gantt chart for a schedule. It
49
- should take a `Schedule` object and the makespan of the schedule as
50
- input and return a `Figure` object. If not provided, a default
51
- function is used.
52
- fps:
53
- The number of frames per second in the GIF.
54
- remove_frames:
55
- Whether to remove the frames after creating the GIF.
56
- frames_dir:
57
- The directory to save the frames in. If not provided,
58
- `gif_path.replace(".gif", "") + "_frames"` is used.
59
- plot_current_time:
60
- Whether to plot a vertical line at the current time.
61
- """
62
- if plot_function is None:
63
- plot_function = plot_gantt_chart_wrapper()
64
-
65
- if frames_dir is None:
66
- # Use the name of the GIF file as the directory name
67
- frames_dir = gif_path.replace(".gif", "") + "_frames"
68
- path = pathlib.Path(frames_dir)
69
- path.mkdir(exist_ok=True)
70
- frames_dir = str(path)
71
- create_gantt_chart_frames(
72
- frames_dir, instance, solver, plot_function, plot_current_time
73
- )
74
- create_gif_from_frames(frames_dir, gif_path, fps)
75
-
76
- if remove_frames:
77
- shutil.rmtree(frames_dir)
78
-
79
-
80
- def plot_gantt_chart_wrapper(
81
- title: str | None = None,
82
- cmap: str = "viridis",
83
- show_available_operations: bool = False,
84
- ) -> Callable[[Schedule, int, list[Operation] | None, int | None], Figure]:
85
- """Returns a function that plots a Gantt chart for an unfinished schedule.
86
-
87
- Args:
88
- title: The title of the Gantt chart.
89
- cmap: The name of the colormap to use.
90
- show_available_operations:
91
- Whether to show the available operations in the Gantt chart.
92
-
93
- Returns:
94
- A function that plots a Gantt chart for a schedule. The function takes
95
- the following arguments:
96
- - schedule: The schedule to plot.
97
- - makespan: The makespan of the schedule.
98
- - available_operations: A list of available operations. If None,
99
- the available operations are not shown.
100
- - current_time: The current time in the schedule. If provided, a
101
- red vertical line is plotted at this time.
102
- """
103
-
104
- def plot_function(
105
- schedule: Schedule,
106
- makespan: int,
107
- available_operations: list | None = None,
108
- current_time: int | None = None,
109
- ) -> Figure:
110
- fig, ax = plot_gantt_chart(
111
- schedule, title=title, cmap_name=cmap, xlim=makespan
112
- )
113
-
114
- if show_available_operations and available_operations is not None:
115
-
116
- operations_text = "\n".join(
117
- str(operation) for operation in available_operations
118
- )
119
- text = f"Available operations:\n{operations_text}"
120
- # Print the available operations at the bottom right corner
121
- # of the Gantt chart
122
- fig.text(
123
- 1.25,
124
- 0.05,
125
- text,
126
- ha="right",
127
- va="bottom",
128
- transform=ax.transAxes,
129
- bbox={
130
- "facecolor": "white",
131
- "alpha": 0.5,
132
- "boxstyle": "round,pad=0.5",
133
- },
134
- )
135
- if current_time is not None:
136
- ax.axvline(current_time, color="red", linestyle="--")
137
- return fig
138
-
139
- return plot_function
140
-
141
-
142
- def create_gantt_chart_frames(
143
- frames_dir: str,
144
- instance: JobShopInstance,
145
- solver: DispatchingRuleSolver,
146
- plot_function: Callable[
147
- [Schedule, int, list[Operation] | None, int | None], Figure
148
- ],
149
- plot_current_time: bool = True,
150
- ) -> None:
151
- """Creates frames of the Gantt chart for the schedule being built.
152
-
153
- Args:
154
- frames_dir:
155
- The directory to save the frames in.
156
- instance:
157
- The instance of the job shop problem to be scheduled.
158
- solver:
159
- The dispatching rule solver to use.
160
- plot_function:
161
- A function that plots a Gantt chart for a schedule. It
162
- should take a `Schedule` object and the makespan of the schedule as
163
- input and return a `Figure` object.
164
- plot_current_time:
165
- Whether to plot a vertical line at the current time.
166
- """
167
- dispatcher = Dispatcher(instance, pruning_function=solver.pruning_function)
168
- history_tracker = HistoryTracker(dispatcher)
169
- makespan = solver.solve(instance, dispatcher).makespan()
170
- dispatcher.unsubscribe(history_tracker)
171
- dispatcher.reset()
172
- for i, scheduled_operation in enumerate(history_tracker.history, start=1):
173
- dispatcher.dispatch(
174
- scheduled_operation.operation, scheduled_operation.machine_id
175
- )
176
- current_time = (
177
- None if not plot_current_time else dispatcher.current_time()
178
- )
179
- fig = plot_function(
180
- dispatcher.schedule,
181
- makespan,
182
- dispatcher.available_operations(),
183
- current_time,
184
- )
185
- _save_frame(fig, frames_dir, i)
186
-
187
-
188
- def _save_frame(figure: Figure, frames_dir: str, number: int) -> None:
189
- figure.savefig(f"{frames_dir}/frame_{number:02d}.png", bbox_inches="tight")
190
- plt.close(figure)
191
-
192
-
193
- def create_gif_from_frames(frames_dir: str, gif_path: str, fps: int) -> None:
194
- """Creates a GIF from the frames in the given directory.
195
-
196
- Args:
197
- frames_dir:
198
- The directory containing the frames to be used in the GIF.
199
- gif_path:
200
- The path to save the GIF file. It should end with ".gif".
201
- fps:
202
- The number of frames per second in the GIF.
203
- """
204
- frames = [
205
- os.path.join(frames_dir, frame)
206
- for frame in sorted(os.listdir(frames_dir))
207
- ]
208
- images = [imageio.imread(frame) for frame in frames]
209
- imageio.mimsave(gif_path, images, fps=fps, loop=0)