job-shop-lib 0.4.0__py3-none-any.whl → 0.5.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. job_shop_lib/dispatching/dispatcher.py +219 -51
  2. job_shop_lib/dispatching/feature_observers/__init__.py +28 -0
  3. job_shop_lib/dispatching/feature_observers/composite_feature_observer.py +87 -0
  4. job_shop_lib/dispatching/feature_observers/duration_observer.py +95 -0
  5. job_shop_lib/dispatching/feature_observers/earliest_start_time_observer.py +156 -0
  6. job_shop_lib/dispatching/feature_observers/factory.py +58 -0
  7. job_shop_lib/dispatching/feature_observers/feature_observer.py +113 -0
  8. job_shop_lib/dispatching/feature_observers/is_completed_observer.py +98 -0
  9. job_shop_lib/dispatching/feature_observers/is_ready_observer.py +40 -0
  10. job_shop_lib/dispatching/feature_observers/is_scheduled_observer.py +34 -0
  11. job_shop_lib/dispatching/feature_observers/position_in_job_observer.py +39 -0
  12. job_shop_lib/dispatching/feature_observers/remaining_operations_observer.py +54 -0
  13. job_shop_lib/generation/__init__.py +11 -0
  14. job_shop_lib/generation/general_instance_generator.py +169 -0
  15. job_shop_lib/generation/instance_generator.py +122 -0
  16. job_shop_lib/generation/transformations.py +164 -0
  17. job_shop_lib/generators/__init__.py +2 -1
  18. job_shop_lib/generators/basic_generator.py +3 -0
  19. job_shop_lib/graphs/build_disjunctive_graph.py +20 -0
  20. job_shop_lib/job_shop_instance.py +101 -0
  21. job_shop_lib/visualization/create_gif.py +47 -38
  22. job_shop_lib/visualization/gantt_chart.py +1 -1
  23. {job_shop_lib-0.4.0.dist-info → job_shop_lib-0.5.1.dist-info}/METADATA +9 -5
  24. job_shop_lib-0.5.1.dist-info/RECORD +52 -0
  25. job_shop_lib-0.4.0.dist-info/RECORD +0 -37
  26. {job_shop_lib-0.4.0.dist-info → job_shop_lib-0.5.1.dist-info}/LICENSE +0 -0
  27. {job_shop_lib-0.4.0.dist-info → job_shop_lib-0.5.1.dist-info}/WHEEL +0 -0
@@ -0,0 +1,122 @@
1
+ import abc
2
+
3
+ import random
4
+ from typing import Iterator
5
+
6
+ from job_shop_lib import JobShopInstance
7
+
8
+
9
+ class InstanceGenerator(abc.ABC):
10
+ """Common interface for all generators.
11
+
12
+ The class supports both single instance generation and iteration over
13
+ multiple instances, controlled by the `iteration_limit` parameter. It
14
+ implements the iterator protocol, allowing it to be used in a `for` loop.
15
+
16
+ Note:
17
+ When used as an iterator, the generator will produce instances until it
18
+ reaches the specified `iteration_limit`. If `iteration_limit` is None,
19
+ it will continue indefinitely.
20
+
21
+ Attributes:
22
+ num_jobs_range:
23
+ The range of the number of jobs to generate. If a single
24
+ int is provided, it is used as both the minimum and maximum.
25
+ duration_range:
26
+ The range of durations for each operation.
27
+ num_machines_range:
28
+ The range of the number of machines available. If a
29
+ single int is provided, it is used as both the minimum and maximum.
30
+ name_suffix:
31
+ A suffix to append to each instance's name for identification.
32
+ seed:
33
+ Seed for the random number generator to ensure reproducibility.
34
+ """
35
+
36
+ def __init__( # pylint: disable=too-many-arguments
37
+ self,
38
+ num_jobs: int | tuple[int, int] = (10, 20),
39
+ num_machines: int | tuple[int, int] = (5, 10),
40
+ duration_range: tuple[int, int] = (1, 99),
41
+ name_suffix: str = "generated_instance",
42
+ seed: int | None = None,
43
+ iteration_limit: int | None = None,
44
+ ):
45
+ """Initializes the instance generator with the given parameters.
46
+
47
+ Args:
48
+ num_jobs:
49
+ The range of the number of jobs to generate.
50
+ num_machines:
51
+ The range of the number of machines available.
52
+ duration_range:
53
+ The range of durations for each operation.
54
+ name_suffix:
55
+ Suffix for instance names.
56
+ seed:
57
+ Seed for the random number generator.
58
+ iteration_limit:
59
+ Maximum number of instances to generate in iteration mode.
60
+ """
61
+
62
+ if isinstance(num_jobs, int):
63
+ num_jobs = (num_jobs, num_jobs)
64
+ if isinstance(num_machines, int):
65
+ num_machines = (num_machines, num_machines)
66
+ if seed is not None:
67
+ random.seed(seed)
68
+
69
+ self.num_jobs_range = num_jobs
70
+ self.num_machines_range = num_machines
71
+ self.duration_range = duration_range
72
+ self.name_suffix = name_suffix
73
+
74
+ self._counter = 0
75
+ self._current_iteration = 0
76
+ self._iteration_limit = iteration_limit
77
+
78
+ @abc.abstractmethod
79
+ def generate(self) -> JobShopInstance:
80
+ """Generates a single job shop instance"""
81
+
82
+ def _next_name(self) -> str:
83
+ self._counter += 1
84
+ return f"{self.name_suffix}_{self._counter}"
85
+
86
+ def __iter__(self) -> Iterator[JobShopInstance]:
87
+ self._current_iteration = 0
88
+ return self
89
+
90
+ def __next__(self) -> JobShopInstance:
91
+ if (
92
+ self._iteration_limit is not None
93
+ and self._current_iteration >= self._iteration_limit
94
+ ):
95
+ raise StopIteration
96
+ self._current_iteration += 1
97
+ return self.generate()
98
+
99
+ def __len__(self) -> int:
100
+ if self._iteration_limit is None:
101
+ raise ValueError("Iteration limit is not set.")
102
+ return self._iteration_limit
103
+
104
+ @property
105
+ def max_num_jobs(self) -> int:
106
+ """Returns the maximum number of jobs that can be generated."""
107
+ return self.num_jobs_range[1]
108
+
109
+ @property
110
+ def min_num_jobs(self) -> int:
111
+ """Returns the minimum number of jobs that can be generated."""
112
+ return self.num_jobs_range[0]
113
+
114
+ @property
115
+ def max_num_machines(self) -> int:
116
+ """Returns the maximum number of machines that can be generated."""
117
+ return self.num_machines_range[1]
118
+
119
+ @property
120
+ def min_num_machines(self) -> int:
121
+ """Returns the minimum number of machines that can be generated."""
122
+ return self.num_machines_range[0]
@@ -0,0 +1,164 @@
1
+ """Classes for generating transformed JobShopInstance objects."""
2
+
3
+ import abc
4
+ import copy
5
+ import random
6
+
7
+ from job_shop_lib import JobShopInstance, Operation
8
+
9
+
10
+ class Transformation(abc.ABC):
11
+ """Base class for transformations applied to JobShopInstance objects."""
12
+
13
+ def __init__(self, suffix: str = ""):
14
+ self.suffix = suffix
15
+ self.counter = 0
16
+
17
+ @abc.abstractmethod
18
+ def apply(self, instance: JobShopInstance) -> JobShopInstance:
19
+ """Applies the transformation to a given JobShopInstance.
20
+
21
+ Args:
22
+ instance: The JobShopInstance to transform.
23
+
24
+ Returns:
25
+ A new JobShopInstance with the transformation applied.
26
+ """
27
+
28
+ def __call__(self, instance: JobShopInstance) -> JobShopInstance:
29
+ instance = self.apply(instance)
30
+ suffix = f"{self.suffix}_id={self.counter}"
31
+ instance.name += suffix
32
+ self.counter += 1
33
+ return instance
34
+
35
+
36
+ # pylint: disable=too-few-public-methods
37
+ class RemoveMachines(Transformation):
38
+ """Removes operations associated with randomly selected machines until
39
+ there are exactly num_machines machines left."""
40
+
41
+ def __init__(self, num_machines: int, suffix: str | None = None):
42
+ if suffix is None:
43
+ suffix = f"_machines={num_machines}"
44
+ super().__init__(suffix=suffix)
45
+ self.num_machines = num_machines
46
+
47
+ def apply(self, instance: JobShopInstance) -> JobShopInstance:
48
+ if instance.num_machines <= self.num_machines:
49
+ return instance # No need to remove machines
50
+
51
+ # Select machine indices to keep
52
+ machines_to_keep = set(
53
+ random.sample(range(instance.num_machines), self.num_machines)
54
+ )
55
+
56
+ # Re-index machines
57
+ machine_reindex_map = {
58
+ old_id: new_id
59
+ for new_id, old_id in enumerate(sorted(machines_to_keep))
60
+ }
61
+
62
+ new_jobs = []
63
+ for job in instance.jobs:
64
+ # Keep operations whose machine_id is in machines_to_keep and
65
+ # re-index them
66
+ new_jobs.append(
67
+ [
68
+ Operation(machine_reindex_map[op.machine_id], op.duration)
69
+ for op in job
70
+ if op.machine_id in machines_to_keep
71
+ ]
72
+ )
73
+
74
+ return JobShopInstance(new_jobs, instance.name)
75
+
76
+
77
+ # pylint: disable=too-few-public-methods
78
+ class AddDurationNoise(Transformation):
79
+ """Adds uniform integer noise to operation durations."""
80
+
81
+ def __init__(
82
+ self,
83
+ min_duration: int = 1,
84
+ max_duration: int = 100,
85
+ noise_level: int = 10,
86
+ suffix: str | None = None,
87
+ ):
88
+ if suffix is None:
89
+ suffix = f"_noise={noise_level}"
90
+ super().__init__(suffix=suffix)
91
+ self.min_duration = min_duration
92
+ self.max_duration = max_duration
93
+ self.noise_level = noise_level
94
+
95
+ def apply(self, instance: JobShopInstance) -> JobShopInstance:
96
+ new_jobs = []
97
+ for job in instance.jobs:
98
+ new_job = []
99
+ for op in job:
100
+ noise = random.randint(-self.noise_level, self.noise_level)
101
+ new_duration = max(
102
+ self.min_duration,
103
+ min(self.max_duration, op.duration + noise),
104
+ )
105
+
106
+ new_job.append(Operation(op.machine_id, new_duration))
107
+ new_jobs.append(new_job)
108
+
109
+ return JobShopInstance(new_jobs, instance.name)
110
+
111
+
112
+ class RemoveJobs(Transformation):
113
+ """Removes jobs randomly until the number of jobs is within a specified
114
+ range."""
115
+
116
+ def __init__(
117
+ self,
118
+ min_jobs: int,
119
+ max_jobs: int,
120
+ target_jobs: int | None = None,
121
+ suffix: str | None = None,
122
+ ):
123
+ """
124
+ Args:
125
+ min_jobs: The minimum number of jobs to remain in the instance.
126
+ max_jobs: The maximum number of jobs to remain in the instance.
127
+ target_jobs: If specified, the number of jobs to remain in the
128
+ instance. Overrides min_jobs and max_jobs.
129
+ """
130
+ if suffix is None:
131
+ suffix = f"_jobs={min_jobs}-{max_jobs}"
132
+ super().__init__(suffix=suffix)
133
+ self.min_jobs = min_jobs
134
+ self.max_jobs = max_jobs
135
+ self.target_jobs = target_jobs
136
+
137
+ def apply(self, instance: JobShopInstance) -> JobShopInstance:
138
+ if self.target_jobs is None:
139
+ target_jobs = random.randint(self.min_jobs, self.max_jobs)
140
+ else:
141
+ target_jobs = self.target_jobs
142
+ new_jobs = copy.deepcopy(instance.jobs)
143
+
144
+ while len(new_jobs) > target_jobs:
145
+ new_jobs.pop(random.randint(0, len(new_jobs) - 1))
146
+
147
+ return JobShopInstance(new_jobs, instance.name)
148
+
149
+ @staticmethod
150
+ def remove_job(
151
+ instance: JobShopInstance, job_index: int
152
+ ) -> JobShopInstance:
153
+ """Removes a specific job from the instance.
154
+
155
+ Args:
156
+ instance: The JobShopInstance from which to remove the job.
157
+ job_index: The index of the job to remove.
158
+
159
+ Returns:
160
+ A new JobShopInstance with the specified job removed.
161
+ """
162
+ new_jobs = copy.deepcopy(instance.jobs)
163
+ new_jobs.pop(job_index)
164
+ return JobShopInstance(new_jobs, instance.name)
@@ -1,4 +1,5 @@
1
- """Package for generating job shop instances."""
1
+ """DEPRECATED: Use `job_shop_lib.generation` instead. It will be removed in
2
+ version 1.0.0."""
2
3
 
3
4
  from job_shop_lib.generators.basic_generator import BasicGenerator
4
5
 
@@ -9,6 +9,9 @@ from job_shop_lib import JobShopInstance, Operation
9
9
  class BasicGenerator: # pylint: disable=too-many-instance-attributes
10
10
  """Generates instances for job shop problems.
11
11
 
12
+ DEPRECATED: Class moved to `job_shop_lib.generation` and renamed to
13
+ `GeneralInstanceGenerator`. This class will be removed in version 1.0.0.
14
+
12
15
  This class is designed to be versatile, enabling the creation of various
13
16
  job shop instances without the need for multiple dedicated classes.
14
17
 
@@ -23,6 +23,26 @@ from job_shop_lib.graphs import JobShopGraph, EdgeType, NodeType, Node
23
23
 
24
24
 
25
25
  def build_disjunctive_graph(instance: JobShopInstance) -> JobShopGraph:
26
+ """Builds and returns a disjunctive graph for the given job shop instance.
27
+
28
+ This function creates a complete disjunctive graph from a JobShopInstance.
29
+ It starts by initializing a JobShopGraph object and proceeds by adding
30
+ disjunctive edges between operations using the same machine, conjunctive
31
+ edges between successive operations in the same job, and finally, special
32
+ source and sink nodes with their respective edges to and from all other
33
+ operations.
34
+
35
+ Edges have a "type" attribute indicating whether they are disjunctive or
36
+ conjunctive.
37
+
38
+ Args:
39
+ instance (JobShopInstance): The job shop instance for which to build
40
+ the graph.
41
+
42
+ Returns:
43
+ JobShopGraph: A JobShopGraph object representing the disjunctive graph
44
+ of the job shop scheduling problem.
45
+ """
26
46
  graph = JobShopGraph(instance)
27
47
  add_disjunctive_edges(graph)
28
48
  add_conjunctive_edges(graph)
@@ -6,6 +6,8 @@ import os
6
6
  import functools
7
7
  from typing import Any
8
8
 
9
+ import numpy as np
10
+
9
11
  from job_shop_lib import Operation
10
12
 
11
13
 
@@ -264,6 +266,58 @@ class JobShopInstance:
264
266
  [operation.machine_id for operation in job] for job in self.jobs
265
267
  ]
266
268
 
269
+ @functools.cached_property
270
+ def durations_matrix_array(self) -> np.ndarray:
271
+ """Returns the duration matrix of the instance as a numpy array.
272
+
273
+ The returned array has shape (num_jobs, max_num_operations_per_job).
274
+ Non-existing operations are filled with np.nan.
275
+
276
+ Example:
277
+ >>> jobs = [[Operation(0, 2), Operation(1, 3)], [Operation(0, 4)]]
278
+ >>> instance = JobShopInstance(jobs)
279
+ >>> instance.durations_matrix_array
280
+ array([[ 2., 2.],
281
+ [ 4., nan]], dtype=float32)
282
+ """
283
+ duration_matrix = self.durations_matrix
284
+ return self._fill_matrix_with_nans_2d(duration_matrix)
285
+
286
+ @functools.cached_property
287
+ def machines_matrix_array(self) -> np.ndarray:
288
+ """Returns the machines matrix of the instance as a numpy array.
289
+
290
+ The returned array has shape (num_jobs, max_num_operations_per_job,
291
+ max_num_machines_per_operation). Non-existing machines are filled with
292
+ np.nan.
293
+
294
+ Example:
295
+ >>> jobs = [
296
+ ... [Operation(machines=[0, 1], 2), Operation(machines=1, 3)],
297
+ ... [Operation(machines=0, 6)],
298
+ ... ]
299
+ >>> instance = JobShopInstance(jobs)
300
+ >>> instance.machines_matrix_array
301
+ array([[[ 0., 1.],
302
+ [ 1., nan]],
303
+ [[ 0., nan],
304
+ [nan, nan]]], dtype=float32)
305
+ """
306
+
307
+ machines_matrix = self.machines_matrix
308
+ if self.is_flexible:
309
+ # False positive from mypy, the type of machines_matrix is
310
+ # list[list[list[int]]] here
311
+ return self._fill_matrix_with_nans_3d(
312
+ machines_matrix # type: ignore[arg-type]
313
+ )
314
+
315
+ # False positive from mypy, the type of machines_matrix is
316
+ # list[list[int]] here
317
+ return self._fill_matrix_with_nans_2d(
318
+ machines_matrix # type: ignore[arg-type]
319
+ )
320
+
267
321
  @functools.cached_property
268
322
  def operations_by_machine(self) -> list[list[Operation]]:
269
323
  """Returns a list of lists of operations.
@@ -353,3 +407,50 @@ class JobShopInstance:
353
407
  def total_duration(self) -> int:
354
408
  """Returns the sum of the durations of all operations in all jobs."""
355
409
  return sum(self.job_durations)
410
+
411
+ @staticmethod
412
+ def _fill_matrix_with_nans_2d(matrix: list[list[int]]) -> np.ndarray:
413
+ """Fills a matrix with np.nan values.
414
+
415
+ Args:
416
+ matrix:
417
+ A list of lists of integers.
418
+
419
+ Returns:
420
+ A numpy array with the same shape as the input matrix, filled with
421
+ np.nan values.
422
+ """
423
+ max_length = max(len(row) for row in matrix)
424
+ squared_matrix = np.full(
425
+ (len(matrix), max_length), np.nan, dtype=np.float32
426
+ )
427
+ for i, row in enumerate(matrix):
428
+ squared_matrix[i, : len(row)] = row
429
+ return squared_matrix
430
+
431
+ @staticmethod
432
+ def _fill_matrix_with_nans_3d(matrix: list[list[list[int]]]) -> np.ndarray:
433
+ """Fills a 3D matrix with np.nan values.
434
+
435
+ Args:
436
+ matrix:
437
+ A list of lists of lists of integers.
438
+
439
+ Returns:
440
+ A numpy array with the same shape as the input matrix, filled with
441
+ np.nan values.
442
+ """
443
+ max_length = max(len(row) for row in matrix)
444
+ max_inner_length = len(matrix[0][0])
445
+ for row in matrix:
446
+ for inner_row in row:
447
+ max_inner_length = max(max_inner_length, len(inner_row))
448
+ squared_matrix = np.full(
449
+ (len(matrix), max_length, max_inner_length),
450
+ np.nan,
451
+ dtype=np.float32,
452
+ )
453
+ for i, row in enumerate(matrix):
454
+ for j, inner_row in enumerate(row):
455
+ squared_matrix[i, j, : len(inner_row)] = inner_row
456
+ return squared_matrix
@@ -27,7 +27,8 @@ def create_gif(
27
27
  instance: JobShopInstance,
28
28
  solver: DispatchingRuleSolver,
29
29
  plot_function: (
30
- Callable[[Schedule, int, list[Operation] | None], Figure] | None
30
+ Callable[[Schedule, int, list[Operation] | None, int | None], Figure]
31
+ | None
31
32
  ) = None,
32
33
  fps: int = 1,
33
34
  remove_frames: bool = True,
@@ -80,50 +81,59 @@ def plot_gantt_chart_wrapper(
80
81
  title: str | None = None,
81
82
  cmap: str = "viridis",
82
83
  show_available_operations: bool = False,
83
- ) -> Callable[[Schedule, int, list[Operation] | None], Figure]:
84
+ ) -> Callable[[Schedule, int, list[Operation] | None, int | None], Figure]:
84
85
  """Returns a function that plots a Gantt chart for an unfinished schedule.
85
86
 
86
87
  Args:
87
88
  title: The title of the Gantt chart.
88
89
  cmap: The name of the colormap to use.
90
+ show_available_operations:
91
+ Whether to show the available operations in the Gantt chart.
89
92
 
90
93
  Returns:
91
94
  A function that plots a Gantt chart for a schedule. The function takes
92
- a `Schedule` object and the makespan of the schedule as input and
93
- returns a `Figure` object.
95
+ the following arguments:
96
+ - schedule: The schedule to plot.
97
+ - makespan: The makespan of the schedule.
98
+ - available_operations: A list of available operations. If None,
99
+ the available operations are not shown.
100
+ - current_time: The current time in the schedule. If provided, a
101
+ red vertical line is plotted at this time.
94
102
  """
95
103
 
96
104
  def plot_function(
97
105
  schedule: Schedule,
98
106
  makespan: int,
99
107
  available_operations: list | None = None,
108
+ current_time: int | None = None,
100
109
  ) -> Figure:
101
110
  fig, ax = plot_gantt_chart(
102
111
  schedule, title=title, cmap_name=cmap, xlim=makespan
103
112
  )
104
113
 
105
- if not show_available_operations or available_operations is None:
106
- return fig
107
-
108
- operations_text = "\n".join(
109
- str(operation) for operation in available_operations
110
- )
111
- text = f"Available operations:\n{operations_text}"
112
- # Print the available operations at the bottom right corner
113
- # of the Gantt chart
114
- fig.text(
115
- 1.25,
116
- 0.05,
117
- text,
118
- ha="right",
119
- va="bottom",
120
- transform=ax.transAxes,
121
- bbox={
122
- "facecolor": "white",
123
- "alpha": 0.5,
124
- "boxstyle": "round,pad=0.5",
125
- },
126
- )
114
+ if show_available_operations and available_operations is not None:
115
+
116
+ operations_text = "\n".join(
117
+ str(operation) for operation in available_operations
118
+ )
119
+ text = f"Available operations:\n{operations_text}"
120
+ # Print the available operations at the bottom right corner
121
+ # of the Gantt chart
122
+ fig.text(
123
+ 1.25,
124
+ 0.05,
125
+ text,
126
+ ha="right",
127
+ va="bottom",
128
+ transform=ax.transAxes,
129
+ bbox={
130
+ "facecolor": "white",
131
+ "alpha": 0.5,
132
+ "boxstyle": "round,pad=0.5",
133
+ },
134
+ )
135
+ if current_time is not None:
136
+ ax.axvline(current_time, color="red", linestyle="--")
127
137
  return fig
128
138
 
129
139
  return plot_function
@@ -133,7 +143,9 @@ def create_gantt_chart_frames(
133
143
  frames_dir: str,
134
144
  instance: JobShopInstance,
135
145
  solver: DispatchingRuleSolver,
136
- plot_function: Callable[[Schedule, int, list[Operation] | None], Figure],
146
+ plot_function: Callable[
147
+ [Schedule, int, list[Operation] | None, int | None], Figure
148
+ ],
137
149
  plot_current_time: bool = True,
138
150
  ) -> None:
139
151
  """Creates frames of the Gantt chart for the schedule being built.
@@ -150,7 +162,8 @@ def create_gantt_chart_frames(
150
162
  should take a `Schedule` object and the makespan of the schedule as
151
163
  input and return a `Figure` object.
152
164
  plot_current_time:
153
- Whether to plot a vertical line at the current time."""
165
+ Whether to plot a vertical line at the current time.
166
+ """
154
167
  dispatcher = Dispatcher(instance, pruning_function=solver.pruning_function)
155
168
  history_tracker = HistoryTracker(dispatcher)
156
169
  makespan = solver.solve(instance, dispatcher).makespan()
@@ -160,23 +173,19 @@ def create_gantt_chart_frames(
160
173
  dispatcher.dispatch(
161
174
  scheduled_operation.operation, scheduled_operation.machine_id
162
175
  )
176
+ current_time = (
177
+ None if not plot_current_time else dispatcher.current_time()
178
+ )
163
179
  fig = plot_function(
164
180
  dispatcher.schedule,
165
181
  makespan,
166
182
  dispatcher.available_operations(),
183
+ current_time,
167
184
  )
168
- current_time = (
169
- None if not plot_current_time else dispatcher.current_time()
170
- )
171
- _save_frame(fig, frames_dir, i, current_time)
172
-
185
+ _save_frame(fig, frames_dir, i)
173
186
 
174
- def _save_frame(
175
- figure: Figure, frames_dir: str, number: int, current_time: int | None
176
- ) -> None:
177
- if current_time is not None:
178
- figure.gca().axvline(current_time, color="red", linestyle="--")
179
187
 
188
+ def _save_frame(figure: Figure, frames_dir: str, number: int) -> None:
180
189
  figure.savefig(f"{frames_dir}/frame_{number:02d}.png", bbox_inches="tight")
181
190
  plt.close(figure)
182
191
 
@@ -65,7 +65,7 @@ def _plot_machine_schedules(
65
65
  ) -> dict[int, Patch]:
66
66
  """Plots the schedules for each machine."""
67
67
  max_job_id = schedule.instance.num_jobs - 1
68
- cmap = plt.cm.get_cmap(cmap_name, max_job_id + 1)
68
+ cmap = plt.get_cmap(cmap_name, max_job_id + 1)
69
69
  norm = Normalize(vmin=0, vmax=max_job_id)
70
70
  legend_handles = {}
71
71
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: job-shop-lib
3
- Version: 0.4.0
3
+ Version: 0.5.1
4
4
  Summary: An easy-to-use and modular Python library for the Job Shop Scheduling Problem (JSSP)
5
5
  License: MIT
6
6
  Author: Pabloo22
@@ -15,7 +15,8 @@ Provides-Extra: pygraphviz
15
15
  Requires-Dist: imageio (>=2,<3)
16
16
  Requires-Dist: matplotlib (>=3,<4)
17
17
  Requires-Dist: networkx (>=3,<4)
18
- Requires-Dist: ortools (>=9,<10)
18
+ Requires-Dist: numpy (>=1.26.4,<2.0.0)
19
+ Requires-Dist: ortools (>=9.9,<9.10)
19
20
  Requires-Dist: pyarrow (>=15.0.0,<16.0.0)
20
21
  Requires-Dist: pygraphviz (>=1.12,<2.0) ; extra == "pygraphviz"
21
22
  Description-Content-Type: text/markdown
@@ -83,7 +84,7 @@ ft06 = load_benchmark_instance("ft06")
83
84
  ```
84
85
 
85
86
  The module `benchmarks` contains functions to load the instances from the file and return them as `JobShopInstance` objects without having to download them
86
- manually. The instances are stored in [benchmark_instances.json](job_shop_lib/benchmarks/benchmark_instances.json).
87
+ manually.
87
88
 
88
89
  The contributions to this benchmark dataset are as follows:
89
90
 
@@ -171,13 +172,15 @@ class DispatchingRule(str, Enum):
171
172
  We can visualize the solution with a `DispatchingRuleSolver` as a gif:
172
173
 
173
174
  ```python
174
- from job_shop_lib.visualization import create_gif, get_plot_function
175
+ from job_shop_lib.visualization import create_gif, plot_gantt_chart_wrapper
175
176
  from job_shop_lib.dispatching import DispatchingRuleSolver, DispatchingRule
176
177
 
177
178
  plt.style.use("ggplot")
178
179
 
179
180
  mwkr_solver = DispatchingRuleSolver("most_work_remaining")
180
- plot_function = get_plot_function(title="Solution with Most Work Remaining Rule")
181
+ plot_function = plot_gantt_chart_wrapper(
182
+ title="Solution with Most Work Remaining Rule"
183
+ )
181
184
  create_gif(
182
185
  gif_path="ft06_optimized.gif",
183
186
  instance=ft06,
@@ -350,3 +353,4 @@ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file
350
353
  Journal of Operational Research, vol. 64, no. 2, pp. 278–285, 1993.
351
354
 
352
355
  - Park, Junyoung, Sanjar Bakhtiyar, and Jinkyoo Park. "ScheduleNet: Learn to solve multi-agent scheduling problems with reinforcement learning." arXiv preprint arXiv:2106.03051, 2021.
356
+