job-shop-lib 0.1.3__py3-none-any.whl → 0.2.1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- job_shop_lib/generators/transformations.py +164 -0
- job_shop_lib/graphs/job_shop_graph.py +10 -0
- {job_shop_lib-0.1.3.dist-info → job_shop_lib-0.2.1.dist-info}/METADATA +2 -4
- {job_shop_lib-0.1.3.dist-info → job_shop_lib-0.2.1.dist-info}/RECORD +6 -5
- {job_shop_lib-0.1.3.dist-info → job_shop_lib-0.2.1.dist-info}/LICENSE +0 -0
- {job_shop_lib-0.1.3.dist-info → job_shop_lib-0.2.1.dist-info}/WHEEL +0 -0
@@ -0,0 +1,164 @@
|
|
1
|
+
"""Classes for generating transformed JobShopInstance objects."""
|
2
|
+
|
3
|
+
import abc
|
4
|
+
import copy
|
5
|
+
import random
|
6
|
+
|
7
|
+
from job_shop_lib import JobShopInstance, Operation
|
8
|
+
|
9
|
+
|
10
|
+
class Transformation(abc.ABC):
|
11
|
+
"""Base class for transformations applied to JobShopInstance objects."""
|
12
|
+
|
13
|
+
def __init__(self, suffix: str = ""):
|
14
|
+
self.suffix = suffix
|
15
|
+
self.counter = 0
|
16
|
+
|
17
|
+
@abc.abstractmethod
|
18
|
+
def apply(self, instance: JobShopInstance) -> JobShopInstance:
|
19
|
+
"""Applies the transformation to a given JobShopInstance.
|
20
|
+
|
21
|
+
Args:
|
22
|
+
instance: The JobShopInstance to transform.
|
23
|
+
|
24
|
+
Returns:
|
25
|
+
A new JobShopInstance with the transformation applied.
|
26
|
+
"""
|
27
|
+
|
28
|
+
def __call__(self, instance: JobShopInstance) -> JobShopInstance:
|
29
|
+
instance = self.apply(instance)
|
30
|
+
suffix = f"{self.suffix}_id={self.counter}"
|
31
|
+
instance.name += suffix
|
32
|
+
self.counter += 1
|
33
|
+
return instance
|
34
|
+
|
35
|
+
|
36
|
+
# pylint: disable=too-few-public-methods
|
37
|
+
class RemoveMachines(Transformation):
|
38
|
+
"""Removes operations associated with randomly selected machines until
|
39
|
+
there are exactly num_machines machines left."""
|
40
|
+
|
41
|
+
def __init__(self, num_machines: int, suffix: str | None = None):
|
42
|
+
if suffix is None:
|
43
|
+
suffix = f"_machines={num_machines}"
|
44
|
+
super().__init__(suffix=suffix)
|
45
|
+
self.num_machines = num_machines
|
46
|
+
|
47
|
+
def apply(self, instance: JobShopInstance) -> JobShopInstance:
|
48
|
+
if instance.num_machines <= self.num_machines:
|
49
|
+
return instance # No need to remove machines
|
50
|
+
|
51
|
+
# Select machine indices to keep
|
52
|
+
machines_to_keep = set(
|
53
|
+
random.sample(range(instance.num_machines), self.num_machines)
|
54
|
+
)
|
55
|
+
|
56
|
+
# Re-index machines
|
57
|
+
machine_reindex_map = {
|
58
|
+
old_id: new_id
|
59
|
+
for new_id, old_id in enumerate(sorted(machines_to_keep))
|
60
|
+
}
|
61
|
+
|
62
|
+
new_jobs = []
|
63
|
+
for job in instance.jobs:
|
64
|
+
# Keep operations whose machine_id is in machines_to_keep and
|
65
|
+
# re-index them
|
66
|
+
new_jobs.append(
|
67
|
+
[
|
68
|
+
Operation(machine_reindex_map[op.machine_id], op.duration)
|
69
|
+
for op in job
|
70
|
+
if op.machine_id in machines_to_keep
|
71
|
+
]
|
72
|
+
)
|
73
|
+
|
74
|
+
return JobShopInstance(new_jobs, instance.name)
|
75
|
+
|
76
|
+
|
77
|
+
# pylint: disable=too-few-public-methods
|
78
|
+
class AddDurationNoise(Transformation):
|
79
|
+
"""Adds uniform integer noise to operation durations."""
|
80
|
+
|
81
|
+
def __init__(
|
82
|
+
self,
|
83
|
+
min_duration: int = 1,
|
84
|
+
max_duration: int = 100,
|
85
|
+
noise_level: int = 10,
|
86
|
+
suffix: str | None = None,
|
87
|
+
):
|
88
|
+
if suffix is None:
|
89
|
+
suffix = f"_noise={noise_level}"
|
90
|
+
super().__init__(suffix=suffix)
|
91
|
+
self.min_duration = min_duration
|
92
|
+
self.max_duration = max_duration
|
93
|
+
self.noise_level = noise_level
|
94
|
+
|
95
|
+
def apply(self, instance: JobShopInstance) -> JobShopInstance:
|
96
|
+
new_jobs = []
|
97
|
+
for job in instance.jobs:
|
98
|
+
new_job = []
|
99
|
+
for op in job:
|
100
|
+
noise = random.randint(-self.noise_level, self.noise_level)
|
101
|
+
new_duration = max(
|
102
|
+
self.min_duration,
|
103
|
+
min(self.max_duration, op.duration + noise),
|
104
|
+
)
|
105
|
+
|
106
|
+
new_job.append(Operation(op.machine_id, new_duration))
|
107
|
+
new_jobs.append(new_job)
|
108
|
+
|
109
|
+
return JobShopInstance(new_jobs, instance.name)
|
110
|
+
|
111
|
+
|
112
|
+
class RemoveJobs(Transformation):
|
113
|
+
"""Removes jobs randomly until the number of jobs is within a specified
|
114
|
+
range."""
|
115
|
+
|
116
|
+
def __init__(
|
117
|
+
self,
|
118
|
+
min_jobs: int,
|
119
|
+
max_jobs: int,
|
120
|
+
target_jobs: int | None = None,
|
121
|
+
suffix: str | None = None,
|
122
|
+
):
|
123
|
+
"""
|
124
|
+
Args:
|
125
|
+
min_jobs: The minimum number of jobs to remain in the instance.
|
126
|
+
max_jobs: The maximum number of jobs to remain in the instance.
|
127
|
+
target_jobs: If specified, the number of jobs to remain in the
|
128
|
+
instance. Overrides min_jobs and max_jobs.
|
129
|
+
"""
|
130
|
+
if suffix is None:
|
131
|
+
suffix = f"_jobs={min_jobs}-{max_jobs}"
|
132
|
+
super().__init__(suffix=suffix)
|
133
|
+
self.min_jobs = min_jobs
|
134
|
+
self.max_jobs = max_jobs
|
135
|
+
self.target_jobs = target_jobs
|
136
|
+
|
137
|
+
def apply(self, instance: JobShopInstance) -> JobShopInstance:
|
138
|
+
if self.target_jobs is None:
|
139
|
+
target_jobs = random.randint(self.min_jobs, self.max_jobs)
|
140
|
+
else:
|
141
|
+
target_jobs = self.target_jobs
|
142
|
+
new_jobs = copy.deepcopy(instance.jobs)
|
143
|
+
|
144
|
+
while len(new_jobs) > target_jobs:
|
145
|
+
new_jobs.pop(random.randint(0, len(new_jobs) - 1))
|
146
|
+
|
147
|
+
return JobShopInstance(new_jobs, instance.name)
|
148
|
+
|
149
|
+
@staticmethod
|
150
|
+
def remove_job(
|
151
|
+
instance: JobShopInstance, job_index: int
|
152
|
+
) -> JobShopInstance:
|
153
|
+
"""Removes a specific job from the instance.
|
154
|
+
|
155
|
+
Args:
|
156
|
+
instance: The JobShopInstance from which to remove the job.
|
157
|
+
job_index: The index of the job to remove.
|
158
|
+
|
159
|
+
Returns:
|
160
|
+
A new JobShopInstance with the specified job removed.
|
161
|
+
"""
|
162
|
+
new_jobs = copy.deepcopy(instance.jobs)
|
163
|
+
new_jobs.pop(job_index)
|
164
|
+
return JobShopInstance(new_jobs, instance.name)
|
@@ -85,6 +85,16 @@ class JobShopGraph:
|
|
85
85
|
|
86
86
|
self._add_operation_nodes()
|
87
87
|
|
88
|
+
@property
|
89
|
+
def num_nodes(self) -> int:
|
90
|
+
"""Number of nodes in the graph."""
|
91
|
+
return len(self.nodes)
|
92
|
+
|
93
|
+
@property
|
94
|
+
def num_edges(self) -> int:
|
95
|
+
"""Number of edges in the graph."""
|
96
|
+
return self.graph.number_of_edges()
|
97
|
+
|
88
98
|
def _add_operation_nodes(self) -> None:
|
89
99
|
"""Adds operation nodes to the graph."""
|
90
100
|
for job in self.instance.jobs:
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: job-shop-lib
|
3
|
-
Version: 0.1
|
3
|
+
Version: 0.2.1
|
4
4
|
Summary: An easy-to-use and modular Python library for the Job Shop Scheduling Problem (JSSP)
|
5
5
|
License: MIT
|
6
6
|
Author: Pabloo22
|
@@ -33,8 +33,6 @@ Description-Content-Type: text/markdown
|
|
33
33
|
|
34
34
|
</div>
|
35
35
|
|
36
|
-
|
37
|
-
|
38
36
|
An easy-to-use and modular Python library for the Job Shop Scheduling Problem (JSSP) with a special focus on graph representations.
|
39
37
|
|
40
38
|
It provides intuitive data structures to represent instances and solutions, as well as solvers and visualization tools.
|
@@ -174,7 +172,7 @@ We can visualize the solution with a `DispatchingRuleSolver` as a gif:
|
|
174
172
|
|
175
173
|
```python
|
176
174
|
from job_shop_lib.visualization import create_gif, get_plot_function
|
177
|
-
from job_shop_lib.
|
175
|
+
from job_shop_lib.dispatching import DispatchingRuleSolver, DispatchingRule
|
178
176
|
|
179
177
|
plt.style.use("ggplot")
|
180
178
|
|
@@ -14,11 +14,12 @@ job_shop_lib/dispatching/pruning_functions.py,sha256=d94_uBHuESp4NSf_jBk1q8eBCfT
|
|
14
14
|
job_shop_lib/exceptions.py,sha256=0Wla1lK6E2u1o3t2hJj9hUwyoJ-1ebkXd42GdXFAhV0,899
|
15
15
|
job_shop_lib/generators/__init__.py,sha256=CrMExfhRbw_0TnYgJ1HwFmq13LEFYFU9wSFANmlSTSQ,154
|
16
16
|
job_shop_lib/generators/basic_generator.py,sha256=pbRDQWC2mnHU0dbc-T8wkdwVeJPlRn06nhFXuwKataQ,7533
|
17
|
+
job_shop_lib/generators/transformations.py,sha256=FI2qHrETATJUrQP3-RYhZAQ5boyEZ0CF2StDbacBej8,5290
|
17
18
|
job_shop_lib/graphs/__init__.py,sha256=mWyF0MypyYfvFhy2F93BJkFIVsxS_0ZqvPuc29B7TJg,1454
|
18
19
|
job_shop_lib/graphs/build_agent_task_graph.py,sha256=ktj-oNLUPmWHfL81EVyaoF4hXClWYfnN7oG2Nn4pOsg,7128
|
19
20
|
job_shop_lib/graphs/build_disjunctive_graph.py,sha256=IRMBtHw8aru5rYGz796-dc6QyaLJFh4LlPlN_BPSq5c,2877
|
20
21
|
job_shop_lib/graphs/constants.py,sha256=dqPF--okue5sF70Iv-YR14QKFx4pxPwT2dL1Rh5jylM,374
|
21
|
-
job_shop_lib/graphs/job_shop_graph.py,sha256=
|
22
|
+
job_shop_lib/graphs/job_shop_graph.py,sha256=2LDtZR1s61Lb-XjVE6SSu1Foca_YeMoCDVgT3XuNZKk,6229
|
22
23
|
job_shop_lib/graphs/node.py,sha256=wyKhSK6kUPWucPtbBv8E_BlFyFPg352u5fRBUnC6Mos,4880
|
23
24
|
job_shop_lib/job_shop_instance.py,sha256=ZB0NOcTvGSq0zmmxiDceaC0DH9ljpJXD0hfKOmP0jcE,12801
|
24
25
|
job_shop_lib/operation.py,sha256=dERsRpZLUwHMAPItd_KIHhbrKv0d1aS9GBabORktoEY,3862
|
@@ -29,7 +30,7 @@ job_shop_lib/visualization/agent_task_graph.py,sha256=G-c9eiawz6m9sdnDM1r-ZHz6K-
|
|
29
30
|
job_shop_lib/visualization/create_gif.py,sha256=3j339wjgGZKLOyMWGdVqVBQu4WFDUhyualHx8b3CJMQ,6382
|
30
31
|
job_shop_lib/visualization/disjunctive_graph.py,sha256=feiRAMxuG5CG2naO7I3HtcrSQw99yWxWzIGgZC_pxIs,5803
|
31
32
|
job_shop_lib/visualization/gantt_chart.py,sha256=OyBMBnjSsRC769qXimJ3IIQWlssgPfx-nlVeSeU5sWY,4415
|
32
|
-
job_shop_lib-0.1.
|
33
|
-
job_shop_lib-0.1.
|
34
|
-
job_shop_lib-0.1.
|
35
|
-
job_shop_lib-0.1.
|
33
|
+
job_shop_lib-0.2.1.dist-info/LICENSE,sha256=9mggivMGd5taAu3xbmBway-VQZMBzurBGHofFopvUsQ,1069
|
34
|
+
job_shop_lib-0.2.1.dist-info/METADATA,sha256=DFmlsg1-gGkYYsqmUwMrNw_T31Vmu8WI_myPX2JSY6I,12624
|
35
|
+
job_shop_lib-0.2.1.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
|
36
|
+
job_shop_lib-0.2.1.dist-info/RECORD,,
|
File without changes
|
File without changes
|