jinns 0.9.0__py3-none-any.whl → 1.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- jinns/__init__.py +2 -0
- jinns/data/_Batchs.py +27 -0
- jinns/data/_DataGenerators.py +904 -1203
- jinns/data/__init__.py +4 -8
- jinns/experimental/__init__.py +0 -2
- jinns/experimental/_diffrax_solver.py +5 -5
- jinns/loss/_DynamicLoss.py +282 -305
- jinns/loss/_DynamicLossAbstract.py +322 -167
- jinns/loss/_LossODE.py +324 -322
- jinns/loss/_LossPDE.py +652 -1027
- jinns/loss/__init__.py +21 -5
- jinns/loss/_boundary_conditions.py +87 -41
- jinns/loss/{_Losses.py → _loss_utils.py} +101 -45
- jinns/loss/_loss_weights.py +59 -0
- jinns/loss/_operators.py +78 -72
- jinns/parameters/__init__.py +6 -0
- jinns/parameters/_derivative_keys.py +521 -0
- jinns/parameters/_params.py +115 -0
- jinns/plot/__init__.py +5 -0
- jinns/{data/_display.py → plot/_plot.py} +98 -75
- jinns/solver/_rar.py +183 -39
- jinns/solver/_solve.py +151 -124
- jinns/utils/__init__.py +3 -9
- jinns/utils/_containers.py +37 -44
- jinns/utils/_hyperpinn.py +224 -119
- jinns/utils/_pinn.py +183 -111
- jinns/utils/_save_load.py +121 -56
- jinns/utils/_spinn.py +113 -86
- jinns/utils/_types.py +64 -0
- jinns/utils/_utils.py +6 -160
- jinns/validation/_validation.py +48 -140
- jinns-1.1.0.dist-info/AUTHORS +2 -0
- {jinns-0.9.0.dist-info → jinns-1.1.0.dist-info}/METADATA +5 -4
- jinns-1.1.0.dist-info/RECORD +39 -0
- {jinns-0.9.0.dist-info → jinns-1.1.0.dist-info}/WHEEL +1 -1
- jinns/experimental/_sinuspinn.py +0 -135
- jinns/experimental/_spectralpinn.py +0 -87
- jinns/solver/_seq2seq.py +0 -157
- jinns/utils/_optim.py +0 -147
- jinns/utils/_utils_uspinn.py +0 -727
- jinns-0.9.0.dist-info/RECORD +0 -36
- {jinns-0.9.0.dist-info → jinns-1.1.0.dist-info}/LICENSE +0 -0
- {jinns-0.9.0.dist-info → jinns-1.1.0.dist-info}/top_level.txt +0 -0
jinns/utils/_hyperpinn.py
CHANGED
|
@@ -3,76 +3,124 @@ Implements utility function to create HYPERPINNs
|
|
|
3
3
|
https://arxiv.org/pdf/2111.01008.pdf
|
|
4
4
|
"""
|
|
5
5
|
|
|
6
|
+
import warnings
|
|
7
|
+
from dataclasses import InitVar
|
|
8
|
+
from typing import Callable, Literal
|
|
6
9
|
import copy
|
|
7
10
|
from math import prod
|
|
8
|
-
import numpy as onp
|
|
9
11
|
import jax
|
|
10
12
|
import jax.numpy as jnp
|
|
11
13
|
from jax.tree_util import tree_leaves, tree_map
|
|
12
|
-
from
|
|
14
|
+
from jaxtyping import Array, Float, PyTree, Int, Key
|
|
13
15
|
import equinox as eqx
|
|
16
|
+
import numpy as onp
|
|
14
17
|
|
|
15
18
|
from jinns.utils._pinn import PINN, _MLP
|
|
19
|
+
from jinns.parameters._params import Params
|
|
16
20
|
|
|
17
21
|
|
|
18
|
-
def _get_param_nb(
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
sum when parsing the
|
|
23
|
-
|
|
24
|
-
|
|
22
|
+
def _get_param_nb(
|
|
23
|
+
params: Params,
|
|
24
|
+
) -> tuple[Int[onp.ndarray, "1"], Int[onp.ndarray, "n_layers"]]:
|
|
25
|
+
"""Returns the number of parameters in a Params object and also
|
|
26
|
+
the cumulative sum when parsing the object.
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
Parameters
|
|
30
|
+
----------
|
|
31
|
+
params :
|
|
32
|
+
A Params object.
|
|
25
33
|
"""
|
|
26
34
|
dim_prod_all_arrays = [
|
|
27
35
|
prod(a.shape)
|
|
28
36
|
for a in tree_leaves(params, is_leaf=lambda x: isinstance(x, jnp.ndarray))
|
|
29
37
|
]
|
|
30
|
-
return sum(dim_prod_all_arrays), onp.cumsum(dim_prod_all_arrays)
|
|
38
|
+
return onp.asarray(sum(dim_prod_all_arrays)), onp.cumsum(dim_prod_all_arrays)
|
|
31
39
|
|
|
32
40
|
|
|
33
41
|
class HYPERPINN(PINN):
|
|
34
42
|
"""
|
|
35
|
-
|
|
36
|
-
|
|
43
|
+
A HYPERPINN object compatible with the rest of jinns.
|
|
44
|
+
Composed of a PINN and an HYPER network. The HYPERPINN is typically
|
|
45
|
+
instanciated using with `create_HYPERPINN`. However, a user could directly
|
|
46
|
+
creates their HYPERPINN using this
|
|
47
|
+
class by passing an eqx.Module for argument `mlp` (resp. for argument
|
|
48
|
+
`hyper_mlp`) that plays the role of the NN (resp. hyper NN) and that is
|
|
49
|
+
already instanciated.
|
|
37
50
|
|
|
38
|
-
|
|
39
|
-
|
|
51
|
+
Parameters
|
|
52
|
+
----------
|
|
40
53
|
hyperparams: list = eqx.field(static=True)
|
|
54
|
+
A list of keys from Params.eq_params that will be considered as
|
|
55
|
+
hyperparameters for metamodeling.
|
|
41
56
|
hypernet_input_size: int
|
|
42
|
-
|
|
43
|
-
|
|
57
|
+
An integer. The input size of the MLP used for the hypernetwork. Must
|
|
58
|
+
be equal to the flattened concatenations for the array of parameters
|
|
59
|
+
designated by the `hyperparams` argument.
|
|
60
|
+
slice_solution : slice
|
|
61
|
+
A jnp.s\_ object which indicates which axis of the PINN output is
|
|
62
|
+
dedicated to the actual equation solution. Default None
|
|
63
|
+
means that slice_solution = the whole PINN output. This argument is useful
|
|
64
|
+
when the PINN is also used to output equation parameters for example
|
|
65
|
+
Note that it must be a slice and not an integer (a preprocessing of the
|
|
66
|
+
user provided argument takes care of it).
|
|
67
|
+
eq_type : str
|
|
68
|
+
A string with three possibilities.
|
|
69
|
+
"ODE": the HYPERPINN is called with one input `t`.
|
|
70
|
+
"statio_PDE": the HYPERPINN is called with one input `x`, `x`
|
|
71
|
+
can be high dimensional.
|
|
72
|
+
"nonstatio_PDE": the HYPERPINN is called with two inputs `t` and `x`, `x`
|
|
73
|
+
can be high dimensional.
|
|
74
|
+
**Note**: the input dimension as given in eqx_list has to match the sum
|
|
75
|
+
of the dimension of `t` + the dimension of `x` or the output dimension
|
|
76
|
+
after the `input_transform` function
|
|
77
|
+
input_transform : Callable[[Float[Array, "input_dim"], Params], Float[Array, "output_dim"]]
|
|
78
|
+
A function that will be called before entering the PINN. Its output(s)
|
|
79
|
+
must match the PINN inputs (except for the parameters).
|
|
80
|
+
Its inputs are the PINN inputs (`t` and/or `x` concatenated together)
|
|
81
|
+
and the parameters. Default is no operation.
|
|
82
|
+
output_transform : Callable[[Float[Array, "input_dim"], Float[Array, "output_dim"], Params], Float[Array, "output_dim"]]
|
|
83
|
+
A function with arguments begin the same input as the PINN, the PINN
|
|
84
|
+
output and the parameter. This function will be called after exiting the PINN.
|
|
85
|
+
Default is no operation.
|
|
86
|
+
output_slice : slice, default=None
|
|
87
|
+
A jnp.s\_[] to determine the different dimension for the HYPERPINN.
|
|
88
|
+
See `shared_pinn_outputs` argument of `create_HYPERPINN`.
|
|
89
|
+
mlp : eqx.Module
|
|
90
|
+
The actual neural network instanciated as an eqx.Module.
|
|
91
|
+
hyper_mlp : eqx.Module
|
|
92
|
+
The actual hyper neural network instanciated as an eqx.Module.
|
|
93
|
+
"""
|
|
44
94
|
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
)
|
|
57
|
-
|
|
95
|
+
hyperparams: list[str] = eqx.field(static=True, kw_only=True)
|
|
96
|
+
hypernet_input_size: int = eqx.field(kw_only=True)
|
|
97
|
+
|
|
98
|
+
hyper_mlp: InitVar[eqx.Module] = eqx.field(kw_only=True)
|
|
99
|
+
mlp: InitVar[eqx.Module] = eqx.field(kw_only=True)
|
|
100
|
+
|
|
101
|
+
params_hyper: PyTree = eqx.field(init=False)
|
|
102
|
+
static_hyper: PyTree = eqx.field(init=False, static=True)
|
|
103
|
+
pinn_params_sum: Int[onp.ndarray, "1"] = eqx.field(init=False, static=True)
|
|
104
|
+
pinn_params_cumsum: Int[onp.ndarray, "n_layers"] = eqx.field(
|
|
105
|
+
init=False, static=True
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
def __post_init__(self, mlp, hyper_mlp):
|
|
109
|
+
super().__post_init__(
|
|
58
110
|
mlp,
|
|
59
|
-
slice_solution,
|
|
60
|
-
eq_type,
|
|
61
|
-
input_transform,
|
|
62
|
-
output_transform,
|
|
63
|
-
output_slice,
|
|
64
111
|
)
|
|
65
112
|
self.params_hyper, self.static_hyper = eqx.partition(
|
|
66
113
|
hyper_mlp, eqx.is_inexact_array
|
|
67
114
|
)
|
|
68
|
-
self.hyperparams = hyperparams
|
|
69
|
-
self.hypernet_input_size = hypernet_input_size
|
|
70
115
|
self.pinn_params_sum, self.pinn_params_cumsum = _get_param_nb(self.params)
|
|
71
116
|
|
|
72
|
-
def init_params(self):
|
|
117
|
+
def init_params(self) -> Params:
|
|
118
|
+
"""
|
|
119
|
+
Returns an initial set of parameters
|
|
120
|
+
"""
|
|
73
121
|
return self.params_hyper
|
|
74
122
|
|
|
75
|
-
def
|
|
123
|
+
def _hyper_to_pinn(self, hyper_output: Float[Array, "output_dim"]) -> PyTree:
|
|
76
124
|
"""
|
|
77
125
|
From the output of the hypernetwork we set the well formed
|
|
78
126
|
parameters of the pinn (`self.params`)
|
|
@@ -90,26 +138,31 @@ class HYPERPINN(PINN):
|
|
|
90
138
|
is_leaf=lambda x: isinstance(x, jnp.ndarray),
|
|
91
139
|
)
|
|
92
140
|
|
|
93
|
-
def
|
|
141
|
+
def eval_nn(
|
|
142
|
+
self,
|
|
143
|
+
inputs: Float[Array, "input_dim"],
|
|
144
|
+
params: Params | PyTree,
|
|
145
|
+
) -> Float[Array, "output_dim"]:
|
|
94
146
|
"""
|
|
95
|
-
|
|
96
|
-
call _eval_nn which always have the same content.
|
|
147
|
+
Evaluate the HYPERPINN on some inputs with some params.
|
|
97
148
|
"""
|
|
98
149
|
try:
|
|
99
|
-
hyper = eqx.combine(params
|
|
100
|
-
except (KeyError, TypeError) as e: # give more flexibility
|
|
150
|
+
hyper = eqx.combine(params.nn_params, self.static_hyper)
|
|
151
|
+
except (KeyError, AttributeError, TypeError) as e: # give more flexibility
|
|
101
152
|
hyper = eqx.combine(params, self.static_hyper)
|
|
102
153
|
|
|
103
154
|
eq_params_batch = jnp.concatenate(
|
|
104
|
-
[params
|
|
155
|
+
[params.eq_params[k].flatten() for k in self.hyperparams], axis=0
|
|
105
156
|
)
|
|
106
157
|
|
|
107
158
|
hyper_output = hyper(eq_params_batch)
|
|
108
159
|
|
|
109
|
-
pinn_params = self.
|
|
160
|
+
pinn_params = self._hyper_to_pinn(hyper_output)
|
|
110
161
|
|
|
111
162
|
pinn = eqx.combine(pinn_params, self.static)
|
|
112
|
-
res = output_transform(
|
|
163
|
+
res = self.output_transform(
|
|
164
|
+
inputs, pinn(self.input_transform(inputs, params)).squeeze(), params
|
|
165
|
+
)
|
|
113
166
|
|
|
114
167
|
if self.output_slice is not None:
|
|
115
168
|
res = res[self.output_slice]
|
|
@@ -121,18 +174,23 @@ class HYPERPINN(PINN):
|
|
|
121
174
|
|
|
122
175
|
|
|
123
176
|
def create_HYPERPINN(
|
|
124
|
-
key,
|
|
125
|
-
eqx_list,
|
|
126
|
-
eq_type,
|
|
127
|
-
hyperparams,
|
|
128
|
-
hypernet_input_size,
|
|
129
|
-
dim_x=0,
|
|
130
|
-
input_transform
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
177
|
+
key: Key,
|
|
178
|
+
eqx_list: tuple[tuple[Callable, int, int] | Callable, ...],
|
|
179
|
+
eq_type: Literal["ODE", "statio_PDE", "nonstatio_PDE"],
|
|
180
|
+
hyperparams: list[str],
|
|
181
|
+
hypernet_input_size: int,
|
|
182
|
+
dim_x: int = 0,
|
|
183
|
+
input_transform: Callable[
|
|
184
|
+
[Float[Array, "input_dim"], Params], Float[Array, "output_dim"]
|
|
185
|
+
] = None,
|
|
186
|
+
output_transform: Callable[
|
|
187
|
+
[Float[Array, "input_dim"], Float[Array, "output_dim"], Params],
|
|
188
|
+
Float[Array, "output_dim"],
|
|
189
|
+
] = None,
|
|
190
|
+
slice_solution: slice = None,
|
|
191
|
+
shared_pinn_outputs: slice = None,
|
|
192
|
+
eqx_list_hyper: tuple[tuple[Callable, int, int] | Callable, ...] = None,
|
|
193
|
+
) -> HYPERPINN | list[HYPERPINN]:
|
|
136
194
|
r"""
|
|
137
195
|
Utility function to create a standard PINN neural network with the equinox
|
|
138
196
|
library.
|
|
@@ -140,59 +198,61 @@ def create_HYPERPINN(
|
|
|
140
198
|
Parameters
|
|
141
199
|
----------
|
|
142
200
|
key
|
|
143
|
-
A
|
|
201
|
+
A JAX random key that will be used to initialize the network
|
|
202
|
+
parameters.
|
|
144
203
|
eqx_list
|
|
145
|
-
A
|
|
146
|
-
describe the PINN architecture. The inner
|
|
147
|
-
|
|
204
|
+
A tuple of tuples of successive equinox modules and activation functions to
|
|
205
|
+
describe the PINN architecture. The inner tuples must have the eqx module or
|
|
206
|
+
activation function as first item, other items represent arguments
|
|
148
207
|
that could be required (eg. the size of the layer).
|
|
149
|
-
|
|
208
|
+
The `key` argument need not be given.
|
|
150
209
|
Thus typical example is `eqx_list=
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
210
|
+
((eqx.nn.Linear, 2, 20),
|
|
211
|
+
jax.nn.tanh,
|
|
212
|
+
(eqx.nn.Linear, 20, 20),
|
|
213
|
+
jax.nn.tanh,
|
|
214
|
+
(eqx.nn.Linear, 20, 20),
|
|
215
|
+
jax.nn.tanh,
|
|
216
|
+
(eqx.nn.Linear, 20, 1)
|
|
217
|
+
)`.
|
|
159
218
|
eq_type
|
|
160
219
|
A string with three possibilities.
|
|
161
|
-
"ODE": the
|
|
162
|
-
"statio_PDE": the
|
|
220
|
+
"ODE": the HYPERPINN is called with one input `t`.
|
|
221
|
+
"statio_PDE": the HYPERPINN is called with one input `x`, `x`
|
|
163
222
|
can be high dimensional.
|
|
164
|
-
"nonstatio_PDE": the
|
|
223
|
+
"nonstatio_PDE": the HYPERPINN is called with two inputs `t` and `x`, `x`
|
|
165
224
|
can be high dimensional.
|
|
166
225
|
**Note**: the input dimension as given in eqx_list has to match the sum
|
|
167
226
|
of the dimension of `t` + the dimension of `x` or the output dimension
|
|
168
227
|
after the `input_transform` function
|
|
169
228
|
hyperparams
|
|
170
|
-
A list of keys from
|
|
171
|
-
hyperparameters for metamodeling
|
|
229
|
+
A list of keys from Params.eq_params that will be considered as
|
|
230
|
+
hyperparameters for metamodeling.
|
|
172
231
|
hypernet_input_size
|
|
173
232
|
An integer. The input size of the MLP used for the hypernetwork. Must
|
|
174
233
|
be equal to the flattened concatenations for the array of parameters
|
|
175
|
-
designated by the `hyperparams` argument
|
|
234
|
+
designated by the `hyperparams` argument.
|
|
176
235
|
dim_x
|
|
177
|
-
An integer. The dimension of `x`. Default `0
|
|
236
|
+
An integer. The dimension of `x`. Default `0`.
|
|
178
237
|
input_transform
|
|
179
238
|
A function that will be called before entering the PINN. Its output(s)
|
|
180
|
-
must match the PINN inputs
|
|
181
|
-
|
|
239
|
+
must match the PINN inputs (except for the parameters).
|
|
240
|
+
Its inputs are the PINN inputs (`t` and/or `x` concatenated together)
|
|
241
|
+
and the parameters. Default is no operation.
|
|
182
242
|
output_transform
|
|
183
|
-
A function with arguments the same input
|
|
184
|
-
output
|
|
185
|
-
operation
|
|
243
|
+
A function with arguments begin the same input as the PINN, the PINN
|
|
244
|
+
output and the parameter. This function will be called after exiting the PINN.
|
|
245
|
+
Default is no operation.
|
|
186
246
|
slice_solution
|
|
187
247
|
A jnp.s\_ object which indicates which axis of the PINN output is
|
|
188
248
|
dedicated to the actual equation solution. Default None
|
|
189
249
|
means that slice_solution = the whole PINN output. This argument is useful
|
|
190
250
|
when the PINN is also used to output equation parameters for example
|
|
191
251
|
Note that it must be a slice and not an integer (a preprocessing of the
|
|
192
|
-
user provided argument takes care of it)
|
|
252
|
+
user provided argument takes care of it).
|
|
193
253
|
shared_pinn_outputs
|
|
194
254
|
Default is None, for a stantard PINN.
|
|
195
|
-
A tuple of jnp.
|
|
255
|
+
A tuple of jnp.s\_[] (slices) to determine the different output for each
|
|
196
256
|
network. In this case we return a list of PINNs, one for each output in
|
|
197
257
|
shared_pinn_outputs. This is useful to create PINNs that share the
|
|
198
258
|
same network and same parameters; **the user must then use the same
|
|
@@ -210,7 +270,11 @@ def create_HYPERPINN(
|
|
|
210
270
|
|
|
211
271
|
Returns
|
|
212
272
|
-------
|
|
213
|
-
|
|
273
|
+
hyperpinn
|
|
274
|
+
A HYPERPINN instance or, when `shared_pinn_ouput` is not None,
|
|
275
|
+
a list of HYPERPINN instances with the same structure is returned,
|
|
276
|
+
only differing by there final slicing of the network output.
|
|
277
|
+
|
|
214
278
|
|
|
215
279
|
Raises
|
|
216
280
|
------
|
|
@@ -253,53 +317,94 @@ def create_HYPERPINN(
|
|
|
253
317
|
|
|
254
318
|
if output_transform is None:
|
|
255
319
|
|
|
256
|
-
def output_transform(_in_pinn, _out_pinn):
|
|
320
|
+
def output_transform(_in_pinn, _out_pinn, _params):
|
|
257
321
|
return _out_pinn
|
|
258
322
|
|
|
259
323
|
key, subkey = jax.random.split(key, 2)
|
|
260
|
-
mlp = _MLP(subkey, eqx_list)
|
|
324
|
+
mlp = _MLP(key=subkey, eqx_list=eqx_list)
|
|
261
325
|
# quick partitioning to get the params to get the correct number of neurons
|
|
262
326
|
# for the last layer of hyper network
|
|
263
327
|
params_mlp, _ = eqx.partition(mlp, eqx.is_inexact_array)
|
|
264
328
|
pinn_params_sum, _ = _get_param_nb(params_mlp)
|
|
265
329
|
# the number of parameters for the pinn will be the number of ouputs
|
|
266
330
|
# for the hyper network
|
|
267
|
-
|
|
268
|
-
eqx_list_hyper[
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
eqx_list_hyper
|
|
273
|
-
|
|
274
|
-
|
|
331
|
+
if len(eqx_list_hyper[-1]) > 1:
|
|
332
|
+
eqx_list_hyper = eqx_list_hyper[:-1] + (
|
|
333
|
+
(eqx_list_hyper[-1][:2] + (pinn_params_sum,)),
|
|
334
|
+
)
|
|
335
|
+
else:
|
|
336
|
+
eqx_list_hyper = (
|
|
337
|
+
eqx_list_hyper[:-2]
|
|
338
|
+
+ ((eqx_list_hyper[-2][:2] + (pinn_params_sum,)),)
|
|
339
|
+
+ eqx_list_hyper[-1]
|
|
340
|
+
)
|
|
341
|
+
if len(eqx_list_hyper[0]) > 1:
|
|
342
|
+
eqx_list_hyper = (
|
|
343
|
+
(
|
|
344
|
+
(eqx_list_hyper[0][0],)
|
|
345
|
+
+ (hypernet_input_size,)
|
|
346
|
+
+ (eqx_list_hyper[0][2],)
|
|
347
|
+
),
|
|
348
|
+
) + eqx_list_hyper[1:]
|
|
349
|
+
else:
|
|
350
|
+
eqx_list_hyper = (
|
|
351
|
+
eqx_list_hyper[0]
|
|
352
|
+
+ (
|
|
353
|
+
(
|
|
354
|
+
(eqx_list_hyper[1][0],)
|
|
355
|
+
+ (hypernet_input_size,)
|
|
356
|
+
+ (eqx_list_hyper[1][2],)
|
|
357
|
+
),
|
|
358
|
+
)
|
|
359
|
+
+ eqx_list_hyper[2:]
|
|
360
|
+
)
|
|
275
361
|
key, subkey = jax.random.split(key, 2)
|
|
276
|
-
|
|
362
|
+
|
|
363
|
+
with warnings.catch_warnings():
|
|
364
|
+
# TODO check why this warning is raised here and not in the PINN
|
|
365
|
+
# context ?
|
|
366
|
+
warnings.filterwarnings("ignore", message="A JAX array is being set as static!")
|
|
367
|
+
hyper_mlp = _MLP(key=subkey, eqx_list=eqx_list_hyper)
|
|
277
368
|
|
|
278
369
|
if shared_pinn_outputs is not None:
|
|
279
370
|
hyperpinns = []
|
|
280
371
|
for output_slice in shared_pinn_outputs:
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
372
|
+
with warnings.catch_warnings():
|
|
373
|
+
# Catch the equinox warning because we put the number of
|
|
374
|
+
# parameters as static while being jnp.Array. This this time
|
|
375
|
+
# this is correct to do so, because they are used as indices
|
|
376
|
+
# and will never be modified
|
|
377
|
+
warnings.filterwarnings(
|
|
378
|
+
"ignore", message="A JAX array is being set as static!"
|
|
379
|
+
)
|
|
380
|
+
hyperpinn = HYPERPINN(
|
|
381
|
+
mlp=mlp,
|
|
382
|
+
hyper_mlp=hyper_mlp,
|
|
383
|
+
slice_solution=slice_solution,
|
|
384
|
+
eq_type=eq_type,
|
|
385
|
+
input_transform=input_transform,
|
|
386
|
+
output_transform=output_transform,
|
|
387
|
+
hyperparams=hyperparams,
|
|
388
|
+
hypernet_input_size=hypernet_input_size,
|
|
389
|
+
output_slice=output_slice,
|
|
390
|
+
)
|
|
292
391
|
hyperpinns.append(hyperpinn)
|
|
293
392
|
return hyperpinns
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
393
|
+
with warnings.catch_warnings():
|
|
394
|
+
# Catch the equinox warning because we put the number of
|
|
395
|
+
# parameters as static while being jnp.Array. This this time
|
|
396
|
+
# this is correct to do so, because they are used as indices
|
|
397
|
+
# and will never be modified
|
|
398
|
+
warnings.filterwarnings("ignore", message="A JAX array is being set as static!")
|
|
399
|
+
hyperpinn = HYPERPINN(
|
|
400
|
+
mlp=mlp,
|
|
401
|
+
hyper_mlp=hyper_mlp,
|
|
402
|
+
slice_solution=slice_solution,
|
|
403
|
+
eq_type=eq_type,
|
|
404
|
+
input_transform=input_transform,
|
|
405
|
+
output_transform=output_transform,
|
|
406
|
+
hyperparams=hyperparams,
|
|
407
|
+
hypernet_input_size=hypernet_input_size,
|
|
408
|
+
output_slice=None,
|
|
409
|
+
)
|
|
305
410
|
return hyperpinn
|