jinns 0.8.2__py3-none-any.whl → 0.8.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1101,8 +1101,9 @@ class DataGeneratorParameter:
1101
1101
  key,
1102
1102
  n,
1103
1103
  param_batch_size,
1104
- param_ranges,
1104
+ param_ranges=None,
1105
1105
  method="grid",
1106
+ user_data=None,
1106
1107
  data_exists=False,
1107
1108
  ):
1108
1109
  r"""
@@ -1140,25 +1141,47 @@ class DataGeneratorParameter:
1140
1141
  Must be left to `False` when created by the user. Avoids the
1141
1142
  regeneration of :math:`\Omega`, :math:`\partial\Omega` and
1142
1143
  time points at each pytree flattening and unflattening.
1144
+ user_data
1145
+ A dictionary containing user-provided data for parameters.
1146
+ As for `param_ranges`, the key corresponds to the parameter name,
1147
+ the keys must match the keys in `params["eq_params"]` and only
1148
+ unidimensional arrays are supported. Therefore, the jnp arrays
1149
+ found at `user_data[k]` must have shape `(n, 1)` or `(n,)`.
1150
+ Note that if the same key appears in `param_ranges` and `user_data`
1151
+ priority goes for the content in `user_data`.
1152
+ Defaults to None.
1143
1153
  """
1144
1154
  self.data_exists = data_exists
1145
1155
  self.method = method
1146
- if not isinstance(key, dict):
1147
- self._keys = dict(
1148
- zip(param_ranges.keys(), jax.random.split(key, len(param_ranges)))
1156
+
1157
+ if n < param_batch_size:
1158
+ raise ValueError(
1159
+ f"Number of data points ({n}) is smaller than the"
1160
+ f"number of batch points ({param_batch_size})."
1149
1161
  )
1162
+
1163
+ if user_data is None:
1164
+ user_data = {}
1165
+ if param_ranges is None:
1166
+ param_ranges = {}
1167
+ if not isinstance(key, dict):
1168
+ all_keys = set().union(param_ranges, user_data)
1169
+ self._keys = dict(zip(all_keys, jax.random.split(key, len(all_keys))))
1150
1170
  else:
1151
1171
  self._keys = key
1152
1172
  self.n = n
1153
1173
  self.param_batch_size = param_batch_size
1154
1174
  self.param_ranges = param_ranges
1175
+ self.user_data = user_data
1155
1176
 
1156
1177
  if not self.data_exists:
1157
1178
  self.generate_data()
1158
1179
  # The previous call to self.generate_data() has created
1159
- # the dict self.param_n_samples
1180
+ # the dict self.param_n_samples and then we will only use this one
1181
+ # because it has merged the scattered data between `user_data` and
1182
+ # `param_ranges`
1160
1183
  self.curr_param_idx = {}
1161
- for k in self.param_ranges.keys():
1184
+ for k in self.param_n_samples.keys():
1162
1185
  self.curr_param_idx[k] = 0
1163
1186
  (
1164
1187
  self._keys[k],
@@ -1167,22 +1190,40 @@ class DataGeneratorParameter:
1167
1190
  ) = _reset_batch_idx_and_permute(self._get_param_operands(k))
1168
1191
 
1169
1192
  def generate_data(self):
1170
- # Generate param n samples
1193
+ """
1194
+ Generate parameter samples, either through generation
1195
+ or using user-provided data.
1196
+ """
1171
1197
  self.param_n_samples = {}
1172
- for k, e in self.param_ranges.items():
1173
- if self.method == "grid":
1174
- xmin, xmax = e[0], e[1]
1175
- self.partial = (xmax - xmin) / self.n
1176
- # shape (n, 1)
1177
- self.param_n_samples[k] = jnp.arange(xmin, xmax, self.partial)[:, None]
1178
- elif self.method == "uniform":
1179
- xmin, xmax = e[0], e[1]
1180
- self._keys[k], subkey = random.split(self._keys[k], 2)
1181
- self.param_n_samples[k] = random.uniform(
1182
- subkey, shape=(self.n, 1), minval=xmin, maxval=xmax
1183
- )
1198
+
1199
+ all_keys = set().union(self.param_ranges, self.user_data)
1200
+ for k in all_keys:
1201
+ if self.user_data and k in self.user_data:
1202
+ if self.user_data[k].shape == (self.n, 1):
1203
+ self.param_n_samples[k] = self.user_data[k]
1204
+ if self.user_data[k].shape == (self.n,):
1205
+ self.param_n_samples[k] = self.user_data[k][:, None]
1206
+ else:
1207
+ raise ValueError(
1208
+ "Wrong shape for user provided parameters"
1209
+ f" in user_data dictionary at key='{k}'"
1210
+ )
1184
1211
  else:
1185
- raise ValueError("Method " + self.method + " is not implemented.")
1212
+ if self.method == "grid":
1213
+ xmin, xmax = self.param_ranges[k][0], self.param_ranges[k][1]
1214
+ self.partial = (xmax - xmin) / self.n
1215
+ # shape (n, 1)
1216
+ self.param_n_samples[k] = jnp.arange(xmin, xmax, self.partial)[
1217
+ :, None
1218
+ ]
1219
+ elif self.method == "uniform":
1220
+ xmin, xmax = self.param_ranges[k][0], self.param_ranges[k][1]
1221
+ self._keys[k], subkey = random.split(self._keys[k], 2)
1222
+ self.param_n_samples[k] = random.uniform(
1223
+ subkey, shape=(self.n, 1), minval=xmin, maxval=xmax
1224
+ )
1225
+ else:
1226
+ raise ValueError("Method " + self.method + " is not implemented.")
1186
1227
 
1187
1228
  def _get_param_operands(self, k):
1188
1229
  return (
@@ -1247,12 +1288,7 @@ class DataGeneratorParameter:
1247
1288
  )
1248
1289
  aux_data = {
1249
1290
  k: vars(self)[k]
1250
- for k in [
1251
- "n",
1252
- "param_batch_size",
1253
- "method",
1254
- "param_ranges",
1255
- ]
1291
+ for k in ["n", "param_batch_size", "method", "param_ranges", "user_data"]
1256
1292
  }
1257
1293
  return (children, aux_data)
1258
1294
 
@@ -154,7 +154,7 @@ class PDEStatio(DynamicLoss):
154
154
  _params = {
155
155
  "nn_params": params["nn_params"],
156
156
  "eq_params": self.eval_heterogeneous_parameters(
157
- t, u, params, self.eq_params_heterogeneity
157
+ x, u, params, self.eq_params_heterogeneity
158
158
  ),
159
159
  }
160
160
  new_args = args[:-1] + (_params,)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: jinns
3
- Version: 0.8.2
3
+ Version: 0.8.4
4
4
  Summary: Physics Informed Neural Network with JAX
5
5
  Author-email: Hugo Gangloff <hugo.gangloff@inrae.fr>, Nicolas Jouvin <nicolas.jouvin@inrae.fr>
6
6
  Maintainer-email: Hugo Gangloff <hugo.gangloff@inrae.fr>, Nicolas Jouvin <nicolas.jouvin@inrae.fr>
@@ -1,11 +1,11 @@
1
1
  jinns/__init__.py,sha256=Nw5pdlmDhJwco3bXX3YttkeCF8czX_6m0poh8vu0lDQ,113
2
- jinns/data/_DataGenerators.py,sha256=qiGxuNlS2E1N1gaukA2N379iYn9Gw-s8AbSQN_JQbaI,60397
2
+ jinns/data/_DataGenerators.py,sha256=N4-U4z3MG46UIzHCbKScv9Z7AN40w1wlLY_VsVNj2sI,62293
3
3
  jinns/data/__init__.py,sha256=yBOmoavSD-cABp4XcjQY1zsEVO0mDyIhi2MJ5WNp0l8,326
4
4
  jinns/data/_display.py,sha256=6renz4H7kHktutmLY7HM6PmxYH7cBfGHpC7GQa1Fnlk,7778
5
5
  jinns/experimental/__init__.py,sha256=3jCIy2R2i_0Erwxg-HwISdH79Nt1XCXhS9yY1F5awiY,208
6
6
  jinns/experimental/_diffrax_solver.py,sha256=sLT22byqh-6015_fhe1xtMWlFOYcCjzYKET4sLhA9R4,6818
7
7
  jinns/loss/_DynamicLoss.py,sha256=L4CVmmF0rTPbHntgqsLLHlnrlQgLHsetUocpJm7ZYag,27461
8
- jinns/loss/_DynamicLossAbstract.py,sha256=cXUJoRVphP607WPWZ5PGSHCKPCOtolB0Q6lC09PPeZY,8504
8
+ jinns/loss/_DynamicLossAbstract.py,sha256=kTQlhLx7SBuH5dIDmYaE79sVHUZt1nUFa8LxPU5IHhM,8504
9
9
  jinns/loss/_LossODE.py,sha256=sxpgiDR6mfoREuc-qe0AkirOe5K_5oblaYCnodTNxoI,21912
10
10
  jinns/loss/_LossPDE.py,sha256=_yX3R-FrAScTn9_QfVC8PfDYRE4UQ5lnzITUYgNFitA,61766
11
11
  jinns/loss/_Losses.py,sha256=XOL3MFiKEd3ndsc78Qnpi1vbgR0B2HaAWOGGW2meDM8,11190
@@ -24,8 +24,8 @@ jinns/utils/_save_load.py,sha256=qgZ23nUcB8-B5IZ2guuUWC4M7r5Lxd_Ms3staScdyJo,566
24
24
  jinns/utils/_spinn.py,sha256=aeIC3DBY7f_N8HABjvBNv375dMyjll3zt6KjY2bEIkM,8058
25
25
  jinns/utils/_utils.py,sha256=8dgvWXX9NT7_7-zltWp0C9tG45ZFNwXxueyxPBb4hjo,6740
26
26
  jinns/utils/_utils_uspinn.py,sha256=qcKcOw3zrwWSQyGVj6fD8c9GinHt_U6JWN_k0auTtXM,26039
27
- jinns-0.8.2.dist-info/LICENSE,sha256=BIAkGtXB59Q_BG8f6_OqtQ1BHPv60ggE9mpXJYz2dRM,11337
28
- jinns-0.8.2.dist-info/METADATA,sha256=hTNXy_y_YGU0yGTnJWSsCB6Gj4P40v5m47tmnwyNDcU,2482
29
- jinns-0.8.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
30
- jinns-0.8.2.dist-info/top_level.txt,sha256=RXbkr2hzy8WBE8aiRyrJYFqn3JeMJIhMdybLjjLTB9c,6
31
- jinns-0.8.2.dist-info/RECORD,,
27
+ jinns-0.8.4.dist-info/LICENSE,sha256=BIAkGtXB59Q_BG8f6_OqtQ1BHPv60ggE9mpXJYz2dRM,11337
28
+ jinns-0.8.4.dist-info/METADATA,sha256=QAq8dRIxqTZaBMb0YVOymae5X2kO5XqeHJXJHfe0380,2482
29
+ jinns-0.8.4.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
30
+ jinns-0.8.4.dist-info/top_level.txt,sha256=RXbkr2hzy8WBE8aiRyrJYFqn3JeMJIhMdybLjjLTB9c,6
31
+ jinns-0.8.4.dist-info/RECORD,,
File without changes
File without changes