jijmodeling 1.4.0__cp311-cp311-manylinux_2_28_aarch64.whl → 1.5.0__cp311-cp311-manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of jijmodeling might be problematic. Click here for more details.
- jijmodeling/_jijmodeling.cpython-311-aarch64-linux-gnu.so +0 -0
- jijmodeling/dataset.pyi +71 -5
- jijmodeling/experimental.py +1 -1
- jijmodeling/experimental.pyi +25 -0
- {jijmodeling-1.4.0.dist-info → jijmodeling-1.5.0.dist-info}/METADATA +2 -2
- jijmodeling-1.5.0.dist-info/RECORD +12 -0
- {jijmodeling-1.4.0.dist-info → jijmodeling-1.5.0.dist-info}/WHEEL +1 -1
- jijmodeling-1.4.0.dist-info/RECORD +0 -12
- {jijmodeling-1.4.0.dist-info → jijmodeling-1.5.0.dist-info}/license_files/LICENSE.txt +0 -0
|
Binary file
|
jijmodeling/dataset.pyi
CHANGED
|
@@ -6,21 +6,36 @@ from enum import Enum, auto
|
|
|
6
6
|
@final
|
|
7
7
|
class Miplib:
|
|
8
8
|
r"""
|
|
9
|
-
MIPLIB dataset
|
|
9
|
+
Automatically load problems from the MIPLIB dataset.
|
|
10
|
+
|
|
11
|
+
Warning: the whole dataset is downloaded and cached in your filesystem when
|
|
12
|
+
first used. It is quite large (~300MB download, ~600MB extracted), so the
|
|
13
|
+
time it takes to download will likely be significant. We recommend first
|
|
14
|
+
trying to use this class in a REPL to assure the dataset has been cached.
|
|
15
|
+
|
|
16
|
+
The dataset is stored at `{data_dir}/jijmodeling/miplib`, where
|
|
17
|
+
`{data_dir}` depends on your operating system:
|
|
18
|
+
|
|
19
|
+
|Platform| {data_dir} location | Example/System Default |
|
|
20
|
+
|:-------|:---------------------------------------|:-----------------------------------------|
|
|
21
|
+
|Linux |`$XDG_DATA_HOME` or `$HOME/.local/share`|`/home/alice/.local/share` |
|
|
22
|
+
|macOS |`$HOME/Library/Application Support` |`/Users/Alice/Library/Application Support`|
|
|
23
|
+
|Windows |`%AppData% |`C:\Users\Alice\AppData\Roaming` |
|
|
24
|
+
|
|
10
25
|
|
|
11
26
|
Examples
|
|
12
27
|
---------
|
|
13
28
|
```python
|
|
14
29
|
>>> import jijmodeling.dataset
|
|
15
30
|
|
|
16
|
-
|
|
31
|
+
Initialize the dataset. If not cached in your filesystem, this will take several minutes.
|
|
17
32
|
>>> miplib = jijmodeling.dataset.Miplib()
|
|
18
33
|
|
|
19
|
-
Show names of each
|
|
34
|
+
Show names of each available instance.
|
|
20
35
|
>>> miplib.available_names # doctest: +ELLIPSIS
|
|
21
36
|
[...]
|
|
22
37
|
|
|
23
|
-
|
|
38
|
+
Get basic statistics of a specific instance.
|
|
24
39
|
>>> miplib.instance_statistics["unitcal_7"]
|
|
25
40
|
{'variable': 25755, 'constraint': 48939, 'binary': 2856, 'integer': 0, 'continuous': 22899, 'non_zero': 127595}
|
|
26
41
|
|
|
@@ -34,7 +49,58 @@ class Miplib:
|
|
|
34
49
|
def __new__(cls,verbose = ...): ...
|
|
35
50
|
def load(self, name) -> Any:
|
|
36
51
|
r"""
|
|
37
|
-
Load a problem from MIPLIB dataset.
|
|
52
|
+
Load a problem from the MIPLIB dataset.
|
|
53
|
+
"""
|
|
54
|
+
...
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
@final
|
|
58
|
+
class Qplib:
|
|
59
|
+
r"""
|
|
60
|
+
Automatically load problems from the MIPLIB dataset.
|
|
61
|
+
|
|
62
|
+
Warning: the whole dataset is downloaded and cached in your filesystem when
|
|
63
|
+
first used. It is quite large (~700MB download, ~1.5GB extracted), so the
|
|
64
|
+
time it takes to download will likely be significant. We recommend first
|
|
65
|
+
trying to use this class in a REPL to assure the dataset has been cached.
|
|
66
|
+
|
|
67
|
+
The dataset is stored at `{data_dir}/jijmodeling/qplib`, where
|
|
68
|
+
`{data_dir}` depends on your operating system:
|
|
69
|
+
|
|
70
|
+
|Platform| {data_dir} location | Example/System Default |
|
|
71
|
+
|:-------|:---------------------------------------|:-----------------------------------------|
|
|
72
|
+
|Linux |`$XDG_DATA_HOME` or `$HOME/.local/share`|`/home/alice/.local/share` |
|
|
73
|
+
|macOS |`$HOME/Library/Application Support` |`/Users/Alice/Library/Application Support`|
|
|
74
|
+
|Windows |`%AppData% |`C:\Users\Alice\AppData\Roaming` |
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
Examples
|
|
78
|
+
---------
|
|
79
|
+
```python
|
|
80
|
+
>>> import jijmodeling.dataset
|
|
81
|
+
|
|
82
|
+
Initialize the dataset. If not cached in your filesystem, this will take several minutes.
|
|
83
|
+
>>> qplib = jijmodeling.dataset.Qplib()
|
|
84
|
+
|
|
85
|
+
Show the names of each available instance.
|
|
86
|
+
>>> qplib.available_names # doctest: +ELLIPSIS
|
|
87
|
+
[...]
|
|
88
|
+
|
|
89
|
+
Get basic statistics of a specific instance.
|
|
90
|
+
>>> qplib.instance_statistics["QPLIB_2205"]
|
|
91
|
+
{'variables': 2884, 'constraints': 2874, 'binary': 958, 'integer': 0, 'continuous': 1926, 'non_zero': 13013}
|
|
92
|
+
|
|
93
|
+
Load a problem instance from QPLIB.
|
|
94
|
+
>>> problem, instance_data = qplib.load("QPLIB_1976")
|
|
95
|
+
|
|
96
|
+
```
|
|
97
|
+
"""
|
|
98
|
+
available_names: List[str]
|
|
99
|
+
instance_statistics: Any
|
|
100
|
+
def __new__(cls,verbose = ...): ...
|
|
101
|
+
def load(self, name) -> Any:
|
|
102
|
+
r"""
|
|
103
|
+
Load a problem from the QPLIB dataset.
|
|
38
104
|
"""
|
|
39
105
|
...
|
|
40
106
|
|
jijmodeling/experimental.py
CHANGED
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
# and exposes all the components in `jijmodeling.jijmodeling.experimental`
|
|
7
7
|
#
|
|
8
8
|
|
|
9
|
-
from ._jijmodeling import experimental as _experimental
|
|
9
|
+
from ._jijmodeling import experimental as _experimental # type: ignore
|
|
10
10
|
import sys
|
|
11
11
|
|
|
12
12
|
for component in _experimental.__all__:
|
jijmodeling/experimental.pyi
CHANGED
|
@@ -74,12 +74,37 @@ class Sample:
|
|
|
74
74
|
def __repr__(self) -> str:
|
|
75
75
|
...
|
|
76
76
|
|
|
77
|
+
def __eq__(self, other) -> bool:
|
|
78
|
+
...
|
|
79
|
+
|
|
77
80
|
def is_feasible(self, epsilon = ...) -> bool:
|
|
78
81
|
...
|
|
79
82
|
|
|
80
83
|
def to_dense(self) -> Dict[str, Any]:
|
|
81
84
|
...
|
|
82
85
|
|
|
86
|
+
@staticmethod
|
|
87
|
+
def from_dict(dict) -> Any:
|
|
88
|
+
r"""
|
|
89
|
+
Converts a python dictionary into a SampleSet.
|
|
90
|
+
|
|
91
|
+
This is intended to be used primarily with dictionaries generated by
|
|
92
|
+
the `to_dict()` method. As such sparse value maps must be represented as
|
|
93
|
+
association lists.
|
|
94
|
+
"""
|
|
95
|
+
...
|
|
96
|
+
|
|
97
|
+
def to_dict(self) -> Any:
|
|
98
|
+
r"""
|
|
99
|
+
Converts this SampleSet into a regular python dictionary.
|
|
100
|
+
|
|
101
|
+
Note that this dictionary has a slightly different structure to better support JSON
|
|
102
|
+
serialization of the output dictionary: sparse values are stored differently. Any mapping
|
|
103
|
+
with tuples as keys is transformed into an association list of key-value pairs,
|
|
104
|
+
that is, `[(k1, v1), (k2, v2), ...]`.
|
|
105
|
+
"""
|
|
106
|
+
...
|
|
107
|
+
|
|
83
108
|
|
|
84
109
|
@final
|
|
85
110
|
class SampleIter:
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
jijmodeling-1.5.0.dist-info/METADATA,sha256=CewsMGcCQUNWBa6N9JIH3vPSgSqSjuM_vU3dXQXqJTs,12760
|
|
2
|
+
jijmodeling-1.5.0.dist-info/WHEEL,sha256=lMHlp5RjIULt5Q-n5pd7Bw1z1RcqfLLG9y_BdXxdxEI,109
|
|
3
|
+
jijmodeling-1.5.0.dist-info/license_files/LICENSE.txt,sha256=T5HdEbP5NWG8fZbvF9pofeteW3HrS30V3_LvtPUHFYM,3400
|
|
4
|
+
jijmodeling/experimental.py,sha256=Of-tUY3kfpFHpjGbIcclbMenCP2BMW07me895YH7tG8,575
|
|
5
|
+
jijmodeling/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
|
+
jijmodeling/experimental.pyi,sha256=D_ejdT0zxLXqe_8sx2_8cY84OaZwacEhJuuXDLm0l0g,8288
|
|
7
|
+
jijmodeling/dataset.py,sha256=S4piVIiUGJMi8MlG3kFV-8JIkzvnktAS0IdkbJ655hw,185
|
|
8
|
+
jijmodeling/__init__.pyi,sha256=jOljniwoDuLFMqYyDHh-VAQT9gtXmrhtfbZnXzfsTyc,114639
|
|
9
|
+
jijmodeling/dataset.pyi,sha256=x77frITd2LuKQ_kG457wyBGG-Fi5K-Ym0hKFC_CNOxw,4022
|
|
10
|
+
jijmodeling/__init__.py,sha256=43DV_WzDxS0n6FseNyfJZ6oQucO31T4qqbz3bx9JMtE,44
|
|
11
|
+
jijmodeling/_jijmodeling.cpython-311-aarch64-linux-gnu.so,sha256=aiRMy0Tzfgan14algFSrg6hAfAghuTVYds09HqkhBpk,3865096
|
|
12
|
+
jijmodeling-1.5.0.dist-info/RECORD,,
|
|
@@ -1,12 +0,0 @@
|
|
|
1
|
-
jijmodeling-1.4.0.dist-info/METADATA,sha256=hBdT6bK2QBcQF27oINPPVEAABPldLJihdNA2d5l6cVA,12760
|
|
2
|
-
jijmodeling-1.4.0.dist-info/WHEEL,sha256=4oU5hQkHMH-NQIlDCRXx93d0G8yKhRXTQtDgFJMr8og,109
|
|
3
|
-
jijmodeling-1.4.0.dist-info/license_files/LICENSE.txt,sha256=T5HdEbP5NWG8fZbvF9pofeteW3HrS30V3_LvtPUHFYM,3400
|
|
4
|
-
jijmodeling/dataset.py,sha256=S4piVIiUGJMi8MlG3kFV-8JIkzvnktAS0IdkbJ655hw,185
|
|
5
|
-
jijmodeling/dataset.pyi,sha256=b_RsiyIWQwvlOu1TmgA2inTBV-9Yua3klQlQB5IEEc4,1116
|
|
6
|
-
jijmodeling/__init__.pyi,sha256=jOljniwoDuLFMqYyDHh-VAQT9gtXmrhtfbZnXzfsTyc,114639
|
|
7
|
-
jijmodeling/__init__.py,sha256=43DV_WzDxS0n6FseNyfJZ6oQucO31T4qqbz3bx9JMtE,44
|
|
8
|
-
jijmodeling/experimental.py,sha256=52Hhua5YkQjLtElzorBMPKSM5WWMzoJoIBmwPXj6qjI,574
|
|
9
|
-
jijmodeling/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
|
-
jijmodeling/experimental.pyi,sha256=LadFGzSSdP4IX1_PF1DhAIdRvdCBorLu2k1mf88rpMk,7434
|
|
11
|
-
jijmodeling/_jijmodeling.cpython-311-aarch64-linux-gnu.so,sha256=VJPHbJkE3zR6PQe1OG9zqVO9YPxqdZp0DOpSkeCX8n0,3762600
|
|
12
|
-
jijmodeling-1.4.0.dist-info/RECORD,,
|
|
File without changes
|