jijmodeling 1.4.0__cp310-cp310-manylinux_2_28_x86_64.whl → 1.5.0__cp310-cp310-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of jijmodeling might be problematic. Click here for more details.

jijmodeling/dataset.pyi CHANGED
@@ -6,21 +6,36 @@ from enum import Enum, auto
6
6
  @final
7
7
  class Miplib:
8
8
  r"""
9
- MIPLIB dataset
9
+ Automatically load problems from the MIPLIB dataset.
10
+
11
+ Warning: the whole dataset is downloaded and cached in your filesystem when
12
+ first used. It is quite large (~300MB download, ~600MB extracted), so the
13
+ time it takes to download will likely be significant. We recommend first
14
+ trying to use this class in a REPL to assure the dataset has been cached.
15
+
16
+ The dataset is stored at `{data_dir}/jijmodeling/miplib`, where
17
+ `{data_dir}` depends on your operating system:
18
+
19
+ |Platform| {data_dir} location | Example/System Default |
20
+ |:-------|:---------------------------------------|:-----------------------------------------|
21
+ |Linux |`$XDG_DATA_HOME` or `$HOME/.local/share`|`/home/alice/.local/share` |
22
+ |macOS |`$HOME/Library/Application Support` |`/Users/Alice/Library/Application Support`|
23
+ |Windows |`%AppData% |`C:\Users\Alice\AppData\Roaming` |
24
+
10
25
 
11
26
  Examples
12
27
  ---------
13
28
  ```python
14
29
  >>> import jijmodeling.dataset
15
30
 
16
- Download if not cached in your filesystem. It will take several minutes.
31
+ Initialize the dataset. If not cached in your filesystem, this will take several minutes.
17
32
  >>> miplib = jijmodeling.dataset.Miplib()
18
33
 
19
- Show names of each dataset
34
+ Show names of each available instance.
20
35
  >>> miplib.available_names # doctest: +ELLIPSIS
21
36
  [...]
22
37
 
23
- Dict of name to instance statistics defined in https://miplib.zib.de/statistics.html
38
+ Get basic statistics of a specific instance.
24
39
  >>> miplib.instance_statistics["unitcal_7"]
25
40
  {'variable': 25755, 'constraint': 48939, 'binary': 2856, 'integer': 0, 'continuous': 22899, 'non_zero': 127595}
26
41
 
@@ -34,7 +49,58 @@ class Miplib:
34
49
  def __new__(cls,verbose = ...): ...
35
50
  def load(self, name) -> Any:
36
51
  r"""
37
- Load a problem from MIPLIB dataset.
52
+ Load a problem from the MIPLIB dataset.
53
+ """
54
+ ...
55
+
56
+
57
+ @final
58
+ class Qplib:
59
+ r"""
60
+ Automatically load problems from the MIPLIB dataset.
61
+
62
+ Warning: the whole dataset is downloaded and cached in your filesystem when
63
+ first used. It is quite large (~700MB download, ~1.5GB extracted), so the
64
+ time it takes to download will likely be significant. We recommend first
65
+ trying to use this class in a REPL to assure the dataset has been cached.
66
+
67
+ The dataset is stored at `{data_dir}/jijmodeling/qplib`, where
68
+ `{data_dir}` depends on your operating system:
69
+
70
+ |Platform| {data_dir} location | Example/System Default |
71
+ |:-------|:---------------------------------------|:-----------------------------------------|
72
+ |Linux |`$XDG_DATA_HOME` or `$HOME/.local/share`|`/home/alice/.local/share` |
73
+ |macOS |`$HOME/Library/Application Support` |`/Users/Alice/Library/Application Support`|
74
+ |Windows |`%AppData% |`C:\Users\Alice\AppData\Roaming` |
75
+
76
+
77
+ Examples
78
+ ---------
79
+ ```python
80
+ >>> import jijmodeling.dataset
81
+
82
+ Initialize the dataset. If not cached in your filesystem, this will take several minutes.
83
+ >>> qplib = jijmodeling.dataset.Qplib()
84
+
85
+ Show the names of each available instance.
86
+ >>> qplib.available_names # doctest: +ELLIPSIS
87
+ [...]
88
+
89
+ Get basic statistics of a specific instance.
90
+ >>> qplib.instance_statistics["QPLIB_2205"]
91
+ {'variables': 2884, 'constraints': 2874, 'binary': 958, 'integer': 0, 'continuous': 1926, 'non_zero': 13013}
92
+
93
+ Load a problem instance from QPLIB.
94
+ >>> problem, instance_data = qplib.load("QPLIB_1976")
95
+
96
+ ```
97
+ """
98
+ available_names: List[str]
99
+ instance_statistics: Any
100
+ def __new__(cls,verbose = ...): ...
101
+ def load(self, name) -> Any:
102
+ r"""
103
+ Load a problem from the QPLIB dataset.
38
104
  """
39
105
  ...
40
106
 
@@ -6,7 +6,7 @@
6
6
  # and exposes all the components in `jijmodeling.jijmodeling.experimental`
7
7
  #
8
8
 
9
- from ._jijmodeling import experimental as _experimental # type: ignore
9
+ from ._jijmodeling import experimental as _experimental # type: ignore
10
10
  import sys
11
11
 
12
12
  for component in _experimental.__all__:
@@ -74,12 +74,37 @@ class Sample:
74
74
  def __repr__(self) -> str:
75
75
  ...
76
76
 
77
+ def __eq__(self, other) -> bool:
78
+ ...
79
+
77
80
  def is_feasible(self, epsilon = ...) -> bool:
78
81
  ...
79
82
 
80
83
  def to_dense(self) -> Dict[str, Any]:
81
84
  ...
82
85
 
86
+ @staticmethod
87
+ def from_dict(dict) -> Any:
88
+ r"""
89
+ Converts a python dictionary into a SampleSet.
90
+
91
+ This is intended to be used primarily with dictionaries generated by
92
+ the `to_dict()` method. As such sparse value maps must be represented as
93
+ association lists.
94
+ """
95
+ ...
96
+
97
+ def to_dict(self) -> Any:
98
+ r"""
99
+ Converts this SampleSet into a regular python dictionary.
100
+
101
+ Note that this dictionary has a slightly different structure to better support JSON
102
+ serialization of the output dictionary: sparse values are stored differently. Any mapping
103
+ with tuples as keys is transformed into an association list of key-value pairs,
104
+ that is, `[(k1, v1), (k2, v2), ...]`.
105
+ """
106
+ ...
107
+
83
108
 
84
109
  @final
85
110
  class SampleIter:
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.3
2
2
  Name: jijmodeling
3
- Version: 1.4.0
3
+ Version: 1.5.0
4
4
  Classifier: Development Status :: 5 - Production/Stable
5
5
  Classifier: Operating System :: POSIX :: Linux
6
6
  Classifier: Operating System :: MacOS
@@ -0,0 +1,12 @@
1
+ jijmodeling-1.5.0.dist-info/METADATA,sha256=CewsMGcCQUNWBa6N9JIH3vPSgSqSjuM_vU3dXQXqJTs,12760
2
+ jijmodeling-1.5.0.dist-info/WHEEL,sha256=kcrPAlYtt3cq3KZuqMkcb7ZkQEWrpAiQckydQ7yOoHw,108
3
+ jijmodeling-1.5.0.dist-info/license_files/LICENSE.txt,sha256=T5HdEbP5NWG8fZbvF9pofeteW3HrS30V3_LvtPUHFYM,3400
4
+ jijmodeling/experimental.py,sha256=Of-tUY3kfpFHpjGbIcclbMenCP2BMW07me895YH7tG8,575
5
+ jijmodeling/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ jijmodeling/experimental.pyi,sha256=D_ejdT0zxLXqe_8sx2_8cY84OaZwacEhJuuXDLm0l0g,8288
7
+ jijmodeling/dataset.py,sha256=S4piVIiUGJMi8MlG3kFV-8JIkzvnktAS0IdkbJ655hw,185
8
+ jijmodeling/__init__.pyi,sha256=jOljniwoDuLFMqYyDHh-VAQT9gtXmrhtfbZnXzfsTyc,114639
9
+ jijmodeling/dataset.pyi,sha256=x77frITd2LuKQ_kG457wyBGG-Fi5K-Ym0hKFC_CNOxw,4022
10
+ jijmodeling/__init__.py,sha256=43DV_WzDxS0n6FseNyfJZ6oQucO31T4qqbz3bx9JMtE,44
11
+ jijmodeling/_jijmodeling.cpython-310-x86_64-linux-gnu.so,sha256=mvNiT2KZXftjKT7C8feqvzDsIN3hZyYpv1Ow6tJmF9Y,4608576
12
+ jijmodeling-1.5.0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: maturin (1.4.0)
2
+ Generator: maturin (1.6.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp310-cp310-manylinux_2_28_x86_64
@@ -1,12 +0,0 @@
1
- jijmodeling-1.4.0.dist-info/METADATA,sha256=hBdT6bK2QBcQF27oINPPVEAABPldLJihdNA2d5l6cVA,12760
2
- jijmodeling-1.4.0.dist-info/WHEEL,sha256=OlWy9toj9UMJGQNIx8YvqfHZAn_YZ80c4Ju19X8fbSY,108
3
- jijmodeling-1.4.0.dist-info/license_files/LICENSE.txt,sha256=T5HdEbP5NWG8fZbvF9pofeteW3HrS30V3_LvtPUHFYM,3400
4
- jijmodeling/dataset.py,sha256=S4piVIiUGJMi8MlG3kFV-8JIkzvnktAS0IdkbJ655hw,185
5
- jijmodeling/dataset.pyi,sha256=b_RsiyIWQwvlOu1TmgA2inTBV-9Yua3klQlQB5IEEc4,1116
6
- jijmodeling/__init__.pyi,sha256=jOljniwoDuLFMqYyDHh-VAQT9gtXmrhtfbZnXzfsTyc,114639
7
- jijmodeling/__init__.py,sha256=43DV_WzDxS0n6FseNyfJZ6oQucO31T4qqbz3bx9JMtE,44
8
- jijmodeling/experimental.py,sha256=52Hhua5YkQjLtElzorBMPKSM5WWMzoJoIBmwPXj6qjI,574
9
- jijmodeling/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
- jijmodeling/experimental.pyi,sha256=LadFGzSSdP4IX1_PF1DhAIdRvdCBorLu2k1mf88rpMk,7434
11
- jijmodeling/_jijmodeling.cpython-310-x86_64-linux-gnu.so,sha256=AfxVvPkwk3qpLdveupy00lb89vfcwibJAWzV3qTR5pM,4538832
12
- jijmodeling-1.4.0.dist-info/RECORD,,