jetson-examples 0.1.5__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. {jetson_examples-0.1.5.dist-info → jetson_examples-0.1.6.dist-info}/METADATA +35 -15
  2. jetson_examples-0.1.6.dist-info/RECORD +127 -0
  3. {jetson_examples-0.1.5.dist-info → jetson_examples-0.1.6.dist-info}/WHEEL +1 -1
  4. reComputer/main.py +1 -1
  5. reComputer/scripts/MoveNet-Lightning/clean.sh +8 -0
  6. reComputer/scripts/MoveNet-Lightning/getVersion.sh +59 -0
  7. reComputer/scripts/MoveNet-Lightning/images/dance_movenet.gif +0 -0
  8. reComputer/scripts/MoveNet-Lightning/init.sh +6 -0
  9. reComputer/scripts/MoveNet-Lightning/readme.md +30 -0
  10. reComputer/scripts/MoveNet-Lightning/run.sh +19 -0
  11. reComputer/scripts/MoveNet-Thunder/clean.sh +7 -0
  12. reComputer/scripts/MoveNet-Thunder/getVersion.sh +59 -0
  13. reComputer/scripts/MoveNet-Thunder/images/dance_movenet.gif +0 -0
  14. reComputer/scripts/MoveNet-Thunder/init.sh +6 -0
  15. reComputer/scripts/MoveNet-Thunder/readme.md +31 -0
  16. reComputer/scripts/MoveNet-Thunder/run.sh +18 -0
  17. reComputer/scripts/MoveNetJS/clean.sh +4 -0
  18. reComputer/scripts/MoveNetJS/images/dance.gif +0 -0
  19. reComputer/scripts/MoveNetJS/readme.md +56 -0
  20. reComputer/scripts/MoveNetJS/run.sh +13 -0
  21. reComputer/scripts/comfyui/LICENSE +21 -0
  22. reComputer/scripts/comfyui/README.md +127 -0
  23. reComputer/scripts/comfyui/clean.sh +7 -0
  24. reComputer/scripts/comfyui/config.yaml +29 -0
  25. reComputer/scripts/comfyui/images/comfyui.png +0 -0
  26. reComputer/scripts/comfyui/init.sh +163 -0
  27. reComputer/scripts/comfyui/run.sh +30 -0
  28. reComputer/scripts/depth-anything/README.md +33 -0
  29. reComputer/scripts/depth-anything/clean.sh +6 -1
  30. reComputer/scripts/depth-anything/config.yaml +31 -0
  31. reComputer/scripts/depth-anything/init.sh +164 -0
  32. reComputer/scripts/depth-anything/run.sh +20 -10
  33. reComputer/scripts/depth-anything-v2/Dockerfile +6 -0
  34. reComputer/scripts/depth-anything-v2/LICENSE +21 -0
  35. reComputer/scripts/depth-anything-v2/README.md +135 -0
  36. reComputer/scripts/depth-anything-v2/clean.sh +8 -0
  37. reComputer/scripts/depth-anything-v2/config.yaml +31 -0
  38. reComputer/scripts/depth-anything-v2/images/Autonomous Driving.png +0 -0
  39. reComputer/scripts/depth-anything-v2/images/Indoor Scenes.png +0 -0
  40. reComputer/scripts/depth-anything-v2/images/Opr.png +0 -0
  41. reComputer/scripts/depth-anything-v2/images/Security.png +0 -0
  42. reComputer/scripts/depth-anything-v2/images/Underwater Scenes.png +0 -0
  43. reComputer/scripts/depth-anything-v2/images/WebUI.png +0 -0
  44. reComputer/scripts/depth-anything-v2/images/teaser.png +0 -0
  45. reComputer/scripts/depth-anything-v2/init.sh +164 -0
  46. reComputer/scripts/depth-anything-v2/run.sh +22 -0
  47. reComputer/scripts/llama-factory/README.md +5 -4
  48. reComputer/scripts/llama-factory/assets/training.gif +0 -0
  49. reComputer/scripts/llama-factory/init.sh +0 -0
  50. reComputer/scripts/llama3/clean.sh +22 -0
  51. reComputer/scripts/ollama/clean.sh +22 -0
  52. reComputer/scripts/parler-tts/clean.sh +7 -0
  53. reComputer/scripts/parler-tts/getVersion.sh +59 -0
  54. reComputer/scripts/parler-tts/images/audio1.png +0 -0
  55. reComputer/scripts/parler-tts/images/audio2.png +0 -0
  56. reComputer/scripts/parler-tts/init.sh +8 -0
  57. reComputer/scripts/parler-tts/readme.md +63 -0
  58. reComputer/scripts/parler-tts/run.sh +17 -0
  59. reComputer/scripts/run.sh +5 -0
  60. reComputer/scripts/ultralytics-yolo/LICENSE +0 -0
  61. reComputer/scripts/ultralytics-yolo/README.md +78 -4
  62. reComputer/scripts/ultralytics-yolo/clean.sh +5 -1
  63. reComputer/scripts/ultralytics-yolo/config.yaml +32 -0
  64. reComputer/scripts/ultralytics-yolo/images/Ultralytics-yolo.gif +0 -0
  65. reComputer/scripts/ultralytics-yolo/images/ultralytics_fig1.png +0 -0
  66. reComputer/scripts/ultralytics-yolo/images/ultralytics_fig2.png +0 -0
  67. reComputer/scripts/ultralytics-yolo/init.sh +163 -0
  68. reComputer/scripts/ultralytics-yolo/run.sh +22 -9
  69. jetson_examples-0.1.5.dist-info/RECORD +0 -79
  70. reComputer/scripts/yolov8:detect/Dockerfile +0 -9
  71. reComputer/scripts/yolov8:detect/README.txt +0 -32
  72. reComputer/scripts/yolov8:detect/app.py +0 -47
  73. reComputer/scripts/yolov8:detect/run.sh +0 -3
  74. reComputer/scripts/yolov8:detect/templates/index.html +0 -27
  75. {jetson_examples-0.1.5.dist-info → jetson_examples-0.1.6.dist-info}/LICENSE +0 -0
  76. {jetson_examples-0.1.5.dist-info → jetson_examples-0.1.6.dist-info}/entry_points.txt +0 -0
  77. {jetson_examples-0.1.5.dist-info → jetson_examples-0.1.6.dist-info}/top_level.txt +0 -0
@@ -1,12 +1,22 @@
1
- # Jetson-Example: Run Ultralytics YOLO on NVIDIA Jetson Orin 🚀
1
+ # Jetson-Example: Run Ultralytics YOLO Platform Service on NVIDIA Jetson Orin 🚀
2
2
 
3
- ## Experience all task models of Ultralytics YOLO with a single command.
3
+ ## "One-Click Quick Deployment of Plug-and-Play Ultralytics YOLOv8 for All Task Models with Web UI and HTTP API Interface"
4
4
  <p align="center">
5
5
  <img src="images/Ultralytics-yolo.gif" alt="Ultralytics YOLO">
6
6
  </p>
7
7
 
8
8
  ## Introduction 📘
9
- This project enables you to deploy and experience all task models of Ultralytics YOLO on NVIDIA Jetson Orin devices with a single command. By accessing [http://127.0.0.1:5000](http://127.0.0.1:5000) on your local machine or within the same LAN, you can quickly start using Ultralytics YOLO. You can also upload your own trained models and test them with images, videos, or real-time camera feeds.
9
+ In this project, you can quickly deploy all YOLOv8 task models on Nvidia Jetson Orin devices with one click. This setup enables object detection, segmentation, human pose estimation, and classification. It supports uploading local videos, images, and using a webcam, and also allows one-click TensorRT model conversion. By accessing [http://127.0.0.1:5001](http://127.0.0.1:5001) on your local machine or within the same LAN, you can quickly start using Ultralytics YOLO. Additionally, an HTTP API method has been added at [http://127.0.0.1:5001/results](http://127.0.0.1:5001/results) to display detection data results for any task, and an additional Python script is provided to read YOLOv8 detection data within Docker.
10
+
11
+ ## **Key Features**:
12
+
13
+ 1. **One-Click Deployment and Plug-and-Play**: Quickly deploy all YOLOv8 task models on Nvidia Jetson Orin devices.
14
+ 2. **Comprehensive Task Support**: Enables object detection, segmentation, human pose estimation, and classification.
15
+ 3. **Versatile Input Options**: Supports uploading local videos, images, and using a webcam.
16
+ 4. **TensorRT Model Conversion**: Allows one-click conversion of models to TensorRT.
17
+ 5. **Web UI Access**: Easy access via [`http://127.0.0.1:5001`](http://127.0.0.1:5001) on the local machine or within the same LAN.
18
+ 6. **HTTP API Interface**: Added HTTP API at [`http://127.0.0.1:5001/results`](http://127.0.0.1:5001/results) to display detection data results.
19
+ 7. **Python Script Support**: Provides an additional Python script to read YOLOv8 detection data within Docker.
10
20
 
11
21
  [![My Project](images/tasks.png)](https://github.com/ultralytics/ultralytics?tab=readme-ov-file#models)
12
22
  All models implemented in this project are from the official [Ultralytics Yolo](https://github.com/ultralytics/ultralytics?tab=readme-ov-file#models).
@@ -19,6 +29,36 @@ All models implemented in this project are from the official [Ultralytics Yolo](
19
29
 
20
30
  ## Quickstart ⚡
21
31
 
32
+ ### Modify Docker Daemon Configuration (Optional)
33
+ To enhance the experience of quickly loading models in Docker, you need to add the following content to the `/etc/docker/daemon.json` file:
34
+
35
+ ```json
36
+ {
37
+ "default-runtime": "nvidia",
38
+ "runtimes": {
39
+ "nvidia": {
40
+ "path": "nvidia-container-runtime",
41
+ "runtimeArgs": []
42
+ }
43
+ },
44
+ "storage-driver": "overlay2",
45
+ "data-root": "/var/lib/docker",
46
+ "log-driver": "json-file",
47
+ "log-opts": {
48
+ "max-size": "100m",
49
+ "max-file": "3"
50
+ },
51
+ "no-new-privileges": true,
52
+ "experimental": false
53
+ }
54
+ ```
55
+
56
+ After modifying the `daemon.json` file, you need to restart the Docker service to apply the configuration:
57
+
58
+ ```sh
59
+ sudo systemctl restart docker
60
+ ```
61
+
22
62
  ### Installation via PyPI (Recommended) 🐍
23
63
  1. Install the package:
24
64
  ```sh
@@ -34,11 +74,45 @@ All models implemented in this project are from the official [Ultralytics Yolo](
34
74
  ```sh
35
75
  reComputer run ultralytics-yolo
36
76
  ```
77
+ 4. "Enter [`http://127.0.0.1:5001`](http://127.0.0.1:5001) or http://device_IP:5001 in your browser to access the Web UI."
78
+ <p align="center">
79
+ <img src="images/ultralytics_fig1.png" alt="Ultralytics YOLO">
80
+ </p>
81
+
82
+ - **Choose Model**: Select YOLOv8 n, s, l, m, x models and various tasks such as object detection, classification, segmentation, human pose estimation, OBB, etc.
83
+ - **Upload Custom Model**: Users can upload their own trained YOLOv8 models.
84
+ - **Choose Input Type**: Users can select to input locally uploaded images, videos, or real-time camera devices.
85
+ - **Enable TensorRT**: Choose whether to convert and use the TensorRT model. The initial conversion may require varying amounts of time.
86
+
87
+ 5. If you want to see the detection result data, you can enter [`http://127.0.0.1:5001/results`](http://127.0.0.1:5001/results) in your browser to view the `JSON` formatted data results. These results include `boxes` for object detection, `masks` for segmentation, `keypoints` for human pose estimation, and the `names` corresponding to all numerical categories.
88
+ <p align="center">
89
+ <img src="images/ultralytics_fig2.png" alt="Ultralytics YOLO">
90
+ </p>
91
+ We also provide a Python script to help users integrate the data into their own programs.
92
+
93
+ ```python
94
+ import requests
95
+
96
+ def fetch_results():
97
+ response = requests.get('http://localhost:5001/results')
98
+ if response.status_code == 200:
99
+ results = response.json()
100
+ return results
101
+ else:
102
+ print('Failed to fetch results')
103
+ return None
104
+
105
+ results = fetch_results()
106
+ print(results)
107
+ ```
108
+
37
109
 
38
110
  ## Notes 📝
39
- - The first time you start the code for detection, there will be a wait of at least 30 seconds for loading; this is normal.
40
111
  - To stop detection at any time, press the Stop button.
41
112
  - When accessing the WebUI from other devices within the same LAN, use the URL: `http://{Jetson_IP}:5001`.
113
+ - You can view the JSON formatted detection results by accessing http://{Jetson_IP}:5001/results.
114
+ - The first model conversion may require different amounts of time depending on the hardware and network environment, so please be patient.
115
+
42
116
 
43
117
  ## Further Development 🔧
44
118
  - [Training a YOLOv8 Model](https://wiki.seeedstudio.com/How_to_Train_and_Deploy_YOLOv8_on_reComputer/)
@@ -1,3 +1,7 @@
1
1
  #!/bin/bash
2
+ CONTAINER_NAME="ultralytics-yolo"
3
+ IMAGE_NAME="yaohui1998/ultralytics-yolo:latest"
2
4
 
3
- sudo docker rmi yaohui1998/ultralytics-yolo:latest
5
+ sudo docker stop $CONTAINER_NAME
6
+ sudo docker rm $CONTAINER_NAME
7
+ sudo docker rmi $IMAGE_NAME
@@ -0,0 +1,32 @@
1
+ allowed_l4t_versions:
2
+ - 35.3.1
3
+ - 35.4.1
4
+ - 35.5.0
5
+ - 36.3.0 # Add your version here
6
+ required_disk_space: 20 # in GB
7
+ min_mem_gb: 4
8
+ min_swap_gb: 2
9
+ nvidia_jetson_package: "nvidia-jetpack"
10
+ packages:
11
+ #- "ros-noetic-ros-base"
12
+ #- "flask"
13
+ docker:
14
+ desired_daemon_json: |
15
+ {
16
+ "default-runtime": "nvidia",
17
+ "runtimes": {
18
+ "nvidia": {
19
+ "path": "nvidia-container-runtime",
20
+ "runtimeArgs": []
21
+ }
22
+ },
23
+ "storage-driver": "overlay2",
24
+ "data-root": "/var/lib/docker",
25
+ "log-driver": "json-file",
26
+ "log-opts": {
27
+ "max-size": "100m",
28
+ "max-file": "3"
29
+ },
30
+ "no-new-privileges": true,
31
+ "experimental": false
32
+ }
@@ -0,0 +1,163 @@
1
+ #!/bin/bash
2
+ #set color value
3
+ RED=$(tput setaf 1)
4
+ GREEN=$(tput setaf 2)
5
+ YELLOW=$(tput setaf 3)
6
+ BLUE=$(tput setaf 4)
7
+ MAGENTA=$(tput setaf 5)
8
+ CYAN=$(tput setaf 6)
9
+ RESET=$(tput sgr0)
10
+
11
+ echo "${CYAN}This script will install the necessary packages and configurations for running ultralytics-yolo on a Jetson Nano.${RESET}"
12
+
13
+ # Install yq for parsing YAML files
14
+ sudo apt-get update
15
+ sudo apt-get install -y jq
16
+ # Read configuration
17
+ CURRENT_DIR="ultralytics-yolo"
18
+ CONFIG_FILE="./jetson-examples/reComputer/scripts/${CURRENT_DIR}/config.yaml"
19
+ ALLOWED_L4T_VERSIONS=$(yq -r '.allowed_l4t_versions[]' $CONFIG_FILE)
20
+ ALLOWED_L4T_VERSIONS_ARRAY=($ALLOWED_L4T_VERSIONS)
21
+ REQUIRED_DISK_SPACE=$(yq -r '.required_disk_space' $CONFIG_FILE)
22
+ MIN_MEM_GB=$(yq -r '.min_mem_gb' $CONFIG_FILE)
23
+ MIN_SWAP_GB=$(yq -r '.min_swap_gb' $CONFIG_FILE)
24
+ NVIDIA_JETSON_PACKAGE=$(yq -r '.nvidia_jetson_package' $CONFIG_FILE)
25
+ PACKAGES=$(yq -r '.packages[]' $CONFIG_FILE)
26
+ DESIRED_DAEMON_JSON=$(yq -r '.docker.desired_daemon_json' $CONFIG_FILE)
27
+ CURRENT_DISK_SPACE=$(df -BG --output=avail / | tail -1 | sed 's/[^0-9]*//g')
28
+ MEM_GB=$(free -g | awk '/^Mem:/{print $2}')
29
+ SWAP_GB=$(free -g | awk '/^Swap:/{print $2}')
30
+
31
+ echo "${MAGENTA}Allowed L4T versions:${RESET} ${GREEN}$ALLOWED_L4T_VERSIONS ${RESET}"
32
+ echo "${MAGENTA}Required disk space: ${GREEN}${REQUIRED_DISK_SPACE}G ${RESET}"
33
+ echo "${MAGENTA}Minimum memory: ${GREEN}${MIN_MEM_GB}G ${RESET}"
34
+ echo "${MAGENTA}Minimum swap: ${GREEN}${MIN_SWAP_GB}G ${RESET}"
35
+ echo "${MAGENTA}NVIDIA Jetson package:${RESET} ${GREEN}$NVIDIA_JETSON_PACKAGE ${RESET}"
36
+ echo "${MAGENTA}Additional packages: ${RESET} ${GREEN}$PACKAGES ${RESET}"
37
+
38
+ # Check if NVIDIA Jetson package is installed
39
+ if ! dpkg -l | grep -qw "$NVIDIA_JETSON_PACKAGE"; then
40
+ echo "$NVIDIA_JETSON_PACKAGE is not installed. Installing $NVIDIA_JETSON_PACKAGE..."
41
+ sudo apt-get install -y $NVIDIA_JETSON_PACKAGE
42
+ else
43
+ echo "$NVIDIA_JETSON_PACKAGE is installed: ${GREEN}OK!${RESET}"
44
+ fi
45
+
46
+ # Install additional packages
47
+ for PACKAGE in $PACKAGES; do
48
+ if ! dpkg -l | grep -qw "$PACKAGE"; then
49
+ echo "$PACKAGE is not installed. Installing $PACKAGE..."
50
+ sudo apt-get install -y $PACKAGE
51
+ else
52
+ echo "$PACKAGE is installed: ${GREEN}OK!${RESET}"
53
+ fi
54
+ done
55
+
56
+ # Get system architecture
57
+ ARCH=$(uname -i)
58
+ if [ "$ARCH" = "aarch64" ]; then
59
+ # Check for L4T version string
60
+ L4T_VERSION_STRING=$(head -n 1 /etc/nv_tegra_release)
61
+
62
+ if [ -z "$L4T_VERSION_STRING" ]; then
63
+ L4T_VERSION_STRING=$(dpkg-query --showformat='${Version}' --show nvidia-l4t-core)
64
+ fi
65
+
66
+ L4T_RELEASE=$(echo "$L4T_VERSION_STRING" | cut -f 2 -d ' ' | grep -Po '(?<=R)[^;]+')
67
+ L4T_REVISION=$(echo "$L4T_VERSION_STRING" | cut -f 2 -d ',' | grep -Po '(?<=REVISION: )[^;]+')
68
+ L4T_VERSION="$L4T_RELEASE.$L4T_REVISION"
69
+
70
+ elif [ "$ARCH" = "x86_64" ]; then
71
+ echo "${RED}Unsupported architecture: $ARCH${RESET}"
72
+ exit 1
73
+ fi
74
+
75
+
76
+ # Check L4T version
77
+ if [[ " ${ALLOWED_L4T_VERSIONS_ARRAY[@]} " =~ " ${L4T_VERSION} " ]]; then
78
+ echo "L4T VERSION ${GREEN}${L4T_VERSION}${RESET} is in the allowed: ${GREEN}OK!${RESET}"
79
+ else
80
+ echo "${RED}L4T VERSION ${GREEN}${L4T_VERSION}${RESET}${RED} is not in the allowed versions list.${RESET}"
81
+ exit 1
82
+ fi
83
+
84
+ # Check disk space
85
+ if [ "$CURRENT_DISK_SPACE" -lt "$REQUIRED_DISK_SPACE" ]; then
86
+ echo "${RED}Insufficient disk space. Required: ${REQUIRED_DISK_SPACE}G, Available: ${CURRENT_DISK_SPACE}G. ${RESET}"
87
+ exit 1
88
+ else
89
+ echo "Required ${GREEN}${REQUIRED_DISK_SPACE}${RESET} G disk space: ${GREEN}OK!${RESET}"
90
+ fi
91
+
92
+ # Check memory and swap space
93
+ if [ "$MEM_GB" -lt "$MIN_MEM_GB" ]; then
94
+ echo "${RED}Insufficient memory: $MEM_GB GB (minimum required: $MIN_MEM_GB GB).${RESET}"
95
+ exit 1
96
+ else
97
+ echo "Required ${GREEN}$MIN_MEM_GB${RESET} G memory space: ${GREEN}OK!${RESET}"
98
+ fi
99
+
100
+ if [ "$SWAP_GB" -lt "$MIN_SWAP_GB" ]; then
101
+ echo "${RED}Insufficient swap space: $SWAP_GB GB (minimum required: $MIN_SWAP_GB GB). ${RESET}"
102
+ exit 1
103
+ else
104
+ echo "Required ${GREEN}$MIN_SWAP_GB${RESET} G swap space: ${GREEN}OK!${RESET}"
105
+ fi
106
+
107
+ # Check if Docker is installed
108
+ if ! command -v docker &> /dev/null; then
109
+ echo "${BLUE}Docker is not installed. Installing Docker...${RESET}"
110
+
111
+ sudo apt-get install -y \
112
+ apt-transport-https \
113
+ ca-certificates \
114
+ curl \
115
+ software-properties-common
116
+
117
+ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
118
+ sudo add-apt-repository \
119
+ "deb [arch=arm64] https://download.docker.com/linux/ubuntu \
120
+ $(lsb_release -cs) \
121
+ stable"
122
+
123
+ sudo apt-get update
124
+ sudo apt-get install -y docker-ce
125
+ sudo systemctl enable docker
126
+ sudo systemctl start docker
127
+ sudo usermod -aG docker $USER
128
+ sudo systemctl restart docker
129
+ newgrp docker
130
+
131
+ echo "Docker has been installed and configured."
132
+ fi
133
+
134
+ # Check if the current user has permissions to use Docker
135
+ if ! docker info &> /dev/null; then
136
+ echo "The current user does not have permissions to use Docker. Adding permissions..."
137
+ sudo usermod -aG docker $USER
138
+ sudo systemctl restart docker
139
+ newgrp docker
140
+ echo "${BLUE}Permissions added. Please log out and log back in for the changes to take effect.${RESET}"
141
+ else
142
+ echo "${GREEN}Docker is installed and the current user has permissions to use it.${RESET}"
143
+ fi
144
+
145
+ DAEMON_JSON_PATH="/etc/docker/daemon.json"
146
+ if [ ! -f "$DAEMON_JSON_PATH" ] || [ "$(cat $DAEMON_JSON_PATH)" != "$DESIRED_DAEMON_JSON" ]; then
147
+ echo "${BLUE}Creating/updating $DAEMON_JSON_PATH with the desired content...${RESET}"
148
+ echo "$DESIRED_DAEMON_JSON" | sudo tee $DAEMON_JSON_PATH > /dev/null
149
+ sudo systemctl restart docker
150
+ echo "${GREEN}$DAEMON_JSON_PATH has been created/updated.${RESET}"
151
+ else
152
+ echo "${GREEN}$DAEMON_JSON_PATH already exists and has the correct content.${RESET}"
153
+ fi
154
+
155
+ # Install additional packages
156
+ for PACKAGE in $PACKAGES; do
157
+ if ! dpkg -l | grep -qw "$PACKAGE"; then
158
+ echo "${CYAN}$PACKAGE${RESET} ${BLUE}is not installed. Installing $PACKAGE...${RESET}"
159
+ sudo apt-get install -y $PACKAGE
160
+ else
161
+ echo "${GREEN}$PACKAGE${RESET} is already installed: ${GREEN}OK!${RESET}"
162
+ fi
163
+ done
@@ -1,12 +1,25 @@
1
1
  #!/bin/bash
2
2
 
3
- docker pull yaohui1998/bolt_inspection:1.0
3
+ CONTAINER_NAME="ultralytics-yolo"
4
+ IMAGE_NAME="yaohui1998/ultralytics-yolo:latest"
4
5
 
5
- docker run --rm -it \
6
- --privileged \
7
- --network host \
8
- -v /tmp/.X11-unix:/tmp/.X11-unix[@] \
9
- -v /dev/*:/dev/* \
10
- -v /etc/localtime:/etc/localtime:ro \
11
- --runtime nvidia \
12
- yaohui1998/ultralytics-yolo:latest
6
+ # Pull the latest image
7
+ docker pull $IMAGE_NAME
8
+
9
+ # Check if the container with the specified name already exists
10
+ if [ $(docker ps -a -q -f name=^/${CONTAINER_NAME}$) ]; then
11
+ echo "Container $CONTAINER_NAME already exists. Starting and attaching..."
12
+ docker start $CONTAINER_NAME
13
+ docker exec -it $CONTAINER_NAME /bin/bash
14
+ else
15
+ echo "Container $CONTAINER_NAME does not exist. Creating and starting..."
16
+ docker run -it \
17
+ --name $CONTAINER_NAME \
18
+ --privileged \
19
+ --network host \
20
+ -v /tmp/.X11-unix:/tmp/.X11-unix \
21
+ -v /dev/*:/dev/* \
22
+ -v /etc/localtime:/etc/localtime:ro \
23
+ --runtime nvidia \
24
+ $IMAGE_NAME
25
+ fi
@@ -1,79 +0,0 @@
1
- reComputer/__init__.py,sha256=XEqb2aiIn8fzGE68Mph4ck1FtQqsR_am0wRWvrYPffQ,22
2
- reComputer/main.py,sha256=A9otIJQ69cwKq6ZrRKPMRuR5Xe5uHHtUy-KwcK_9YZM,2088
3
- reComputer/scripts/check.sh,sha256=cUMwAjHpgJoaD5a8gTLJG7QWjF9CyKPgQ-ewRNK3FD8,127
4
- reComputer/scripts/clean.sh,sha256=TlGas1IKqSX7MEkZe4VvCQJgjDNEvfQyuAeXtKraNMA,898
5
- reComputer/scripts/run.sh,sha256=7a6eIwyaJ-Fp_toqsw135WyGUZPDnUfDh3z3CxktAqo,1032
6
- reComputer/scripts/update.sh,sha256=9Pw9-laO8NU2-4t4UisjFEwHPY5-ZAIoDi3AqWBzBbs,900
7
- reComputer/scripts/Sheared-LLaMA-2.7B-ShareGPT/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
8
- reComputer/scripts/Sheared-LLaMA-2.7B-ShareGPT/run.sh,sha256=uPDPZ4zM3uKgnLg1oU19E3XlzI-8xio2Bub4Zx-3Oig,237
9
- reComputer/scripts/audiocraft/README.md,sha256=EGEoK1Rq-Vczri24APoe2kK8e5VmJHn_gRGdvGPI8lg,951
10
- reComputer/scripts/audiocraft/clean.sh,sha256=0mk1BHYa1IlnPOXZt_Vy8TqxTLGAnXPIDuClMwzdTmM,77
11
- reComputer/scripts/audiocraft/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
12
- reComputer/scripts/audiocraft/run.sh,sha256=b0kjEeZnA5diQw6vjyrkOX-Svs5XVKGt0ABbWtZsZEs,160
13
- reComputer/scripts/depth-anything/Dockerfile,sha256=gJ2Q1g2E06_z4hy9C-m1bA4X2IMqRWuo42izFfQ_E5Y,279
14
- reComputer/scripts/depth-anything/LICENSE,sha256=feSgondqafLDgk7Dp9gnVBE5Y9K5X9mal_DGYKALzXQ,1073
15
- reComputer/scripts/depth-anything/README.md,sha256=nHFcFIEZyoy3_n7bFuQ_3zT3IKRwLmRkxuXj9YE4sWw,4205
16
- reComputer/scripts/depth-anything/clean.sh,sha256=81oScb0iXcFQ6-3X9bfIJRcE6hBuVETGDyNbQwMhQ7Q,75
17
- reComputer/scripts/depth-anything/run.sh,sha256=m8g6LHQHPssKuOftLil0y3IbZaIwFIkHGt_laecCRBs,315
18
- reComputer/scripts/depth-anything/images/Autonomous Driving.png,sha256=oHdvvCyA5-ifHNWz4MxnBGT4HSy5Bbud9vbxlilS2-w,331869
19
- reComputer/scripts/depth-anything/images/Indoor Scenes.png,sha256=bnTMltdVecbP4TjRk7t-ldE3Rj7CmUh53RK8A6dK2lo,625925
20
- reComputer/scripts/depth-anything/images/Opr.png,sha256=9ppsKQZ2SWI7NFKWuQMLyxyfpsHAyN1dhp1ufYuPt4k,45174
21
- reComputer/scripts/depth-anything/images/Security.png,sha256=F25Ay65Mz6jWAP-P20fmG4-RftkijuNM6uFhUNW2rtY,235206
22
- reComputer/scripts/depth-anything/images/Underwater Scenes.png,sha256=xpBV1VoCoQqgomAjHQKQYofJha0r4tUTNUGG6XWCm20,598471
23
- reComputer/scripts/depth-anything/images/WebUI.png,sha256=HtlUbq6KSOqR6vV1n7mFaV_Kz5DLs2W4UcAVvEG4c-4,721506
24
- reComputer/scripts/depth-anything/images/teaser.png,sha256=J1VpUd71nshdWgZ1dS0LUl9ppJn-Rm2-ZPX9YuM4C38,5657444
25
- reComputer/scripts/live-llava/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
26
- reComputer/scripts/live-llava/run.sh,sha256=4sWld5d8Fkr9GUVqLH2S1RyOKOjobhjojSzuJu8EuCg,10137
27
- reComputer/scripts/llama-factory/README.md,sha256=N727Q8X-OGo-_d4ZIAhwbWtcOyjto0XwfzmI2Zw8wHg,2449
28
- reComputer/scripts/llama-factory/clean.sh,sha256=cRpFDKCkKDCgaCoXdmF60dQ_RLAcIHbYZ5w-8PLKRr8,133
29
- reComputer/scripts/llama-factory/init.sh,sha256=FAaIlBQxLdenS6aW8Vpo5OqBZgV0NmkrCpkbJMwkwtU,1633
30
- reComputer/scripts/llama-factory/run.sh,sha256=NsxvjSkwFQ-b5DoPRN5DlCYsyvq1_wpZmubVN9y4nQs,231
31
- reComputer/scripts/llama-factory/assets/llama-factory-Jetson.png,sha256=bUoDJWCiGfGRM_cQBEve-7nJyJFxCS5E0ekBcc1fpUg,574732
32
- reComputer/scripts/llama-factory/assets/webui.png,sha256=RXaMyX3cIqZVoO27z5kn0rmbfEapdMuWN2JmPZlJlB0,419226
33
- reComputer/scripts/llama3/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
34
- reComputer/scripts/llama3/run.sh,sha256=IkHvMwh_U8fp7AH2qWFUMWywHZDbZKHlp8ODzfHgqBQ,328
35
- reComputer/scripts/llava/clean.sh,sha256=7t2SIxj6_elOpHxtTjl9ofnU5d9Ir2r5eyNAj6lAI68,70
36
- reComputer/scripts/llava/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
37
- reComputer/scripts/llava/run.sh,sha256=w5AAak8rDX3drwPiwtzpIbMxN-Tzw3DcmtJPhfKCbH8,251
38
- reComputer/scripts/llava-v1.5-7b/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
39
- reComputer/scripts/llava-v1.5-7b/run.sh,sha256=w5AAak8rDX3drwPiwtzpIbMxN-Tzw3DcmtJPhfKCbH8,251
40
- reComputer/scripts/llava-v1.6-vicuna-7b/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
41
- reComputer/scripts/llava-v1.6-vicuna-7b/run.sh,sha256=s0KKqqvIGkRNhWZmHSd1HrARYcr9VCjSsp1bInTE6fg,269
42
- reComputer/scripts/nanodb/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
43
- reComputer/scripts/nanodb/readme.md,sha256=kzWnCq4qAB95Sssj8mFs_VrH5ju3phSqygLjSRO3ceQ,247
44
- reComputer/scripts/nanodb/run.sh,sha256=YHuLNtWcmx82QBnTa4vGzhFjNM9MJUbyi_XYbMG6hfQ,2571
45
- reComputer/scripts/nanoowl/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
46
- reComputer/scripts/nanoowl/run.sh,sha256=jXG3JoE1MQOb6UjOwf0SNmbX5MsAA5weMEQLihspI0c,264
47
- reComputer/scripts/ollama/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
48
- reComputer/scripts/ollama/run.sh,sha256=JQNDtIlpuGNJm4XuUC_Sy4qPmSOfeAsd8VOrxAvyavU,246
49
- reComputer/scripts/stable-diffusion-webui/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
50
- reComputer/scripts/stable-diffusion-webui/run.sh,sha256=E0_KRJK5BLFsBzAiJw-Ir81bvmIU4GV-TLJRgda2XHM,160
51
- reComputer/scripts/text-generation-webui/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
52
- reComputer/scripts/text-generation-webui/run.sh,sha256=mRlWxZTArGXoyyeHbgZvPbVKTflQSsFCKUERKoHYHHE,407
53
- reComputer/scripts/ultralytics-yolo/LICENSE,sha256=feSgondqafLDgk7Dp9gnVBE5Y9K5X9mal_DGYKALzXQ,1073
54
- reComputer/scripts/ultralytics-yolo/README.md,sha256=xmK-K6EIONhyOBzSTq30G39b6NiYkvGWL8WTTGmymSY,2397
55
- reComputer/scripts/ultralytics-yolo/clean.sh,sha256=0sS0YZI0B1GdydOyDJU4IG1cVmAssWZS60Qt8LJobdE,63
56
- reComputer/scripts/ultralytics-yolo/run.sh,sha256=yxXAFIKVa_nknnhowCMxfIo2_3dej9I9b9Wa23KQlho,287
57
- reComputer/scripts/ultralytics-yolo/images/Ultralytics-yolo.gif,sha256=_xF_n-Gfa-Er-evCcJ1tBSgNkSc9oqitgDXmq4ggwBw,12628076
58
- reComputer/scripts/ultralytics-yolo/images/tasks.png,sha256=ILhKVHoGiwZM1BQdbjcb8RM07ijq_2s3c5XqBM5rRx0,275724
59
- reComputer/scripts/whisper/init.sh,sha256=ktAKm4XFtJYntnSR-oAK4G5OhCSSoKw511mR9qk6xGw,428
60
- reComputer/scripts/whisper/run.sh,sha256=UKiY7Ie5uyGrdvAob1XwPSlpdEL27HR5vcMtnVOrph4,146
61
- reComputer/scripts/yolov10/Dockerfile,sha256=G25SPvYE9yYpMi0nRWcqKXbXJNdomnPV4tIZUVkmhWw,466
62
- reComputer/scripts/yolov10/README.md,sha256=oMIr-1IBN0VZdovILqX-bLjfUT8cHQRGotqefTm0MVQ,3623
63
- reComputer/scripts/yolov10/clean.sh,sha256=ErryX-k5UNlOj3IoIxEs5j55e7hysO3rlo5KenN4QWE,106
64
- reComputer/scripts/yolov10/init.sh,sha256=juYjv4_djBF0T05G0o6gsmitv3jxQT7LU9SneETIAX8,1679
65
- reComputer/scripts/yolov10/run.sh,sha256=xPZ9pvoi_AyY9F4ujT-xGcockqeQOZzSC45J-6qyHwE,289
66
- reComputer/scripts/yolov10/assets/webui.png,sha256=gNOLP0ptxTcFk16zktRE5qEJ9aIkOmWeMBU08FeB9YM,2600779
67
- reComputer/scripts/yolov8-rail-inspection/readme.md,sha256=awuvn2sLDnr-U4Q5pTTyieJMYNy27NRQyFhiQyiUNFI,2008
68
- reComputer/scripts/yolov8-rail-inspection/run.sh,sha256=rTpjiwMgn6iA3IJ6QDFR9wkOMDVCQ-qgTbFo2YKiX-c,809
69
- reComputer/scripts/yolov8:detect/Dockerfile,sha256=V4E0x1EAAqPwHIpvwgM6QgS4VkmC9XQszpafS9we6fY,167
70
- reComputer/scripts/yolov8:detect/README.txt,sha256=gLAXjOR1X9gXJM0XA0c1P12nz81zvUoZyT5DBK4ZY9w,1122
71
- reComputer/scripts/yolov8:detect/app.py,sha256=63o2icb_av9owTBW6nL6wJfXdYEyZRt8feBL6YqrWTw,1307
72
- reComputer/scripts/yolov8:detect/run.sh,sha256=iq5o5iy2iPaUfC471sOWY4HhYWIOZ1geauqNQ-fg-2Y,130
73
- reComputer/scripts/yolov8:detect/templates/index.html,sha256=Q0mRmqax_F4cZq8Zau_JLtwvCpFH_Al6lUisu9Uaids,524
74
- jetson_examples-0.1.5.dist-info/LICENSE,sha256=ac_LOi8ChcJhymEfBulX98Y06wTI2IMcQnqCXZ5yay4,1066
75
- jetson_examples-0.1.5.dist-info/METADATA,sha256=389saGoBSnNuJzwFBxj07iucvIAQgHbJcKSR0FkY9lY,5323
76
- jetson_examples-0.1.5.dist-info/WHEEL,sha256=y4mX-SOX4fYIkonsAGA5N0Oy-8_gI4FXw5HNI1xqvWg,91
77
- jetson_examples-0.1.5.dist-info/entry_points.txt,sha256=5-OdcBifoDjVXE9KjNoN6tQa8l_XSXhdbBEgL2hxeDM,58
78
- jetson_examples-0.1.5.dist-info/top_level.txt,sha256=SI-liiUOkoGwOJfMP7d7k63JKgdcbiEj6DEC8QIKI90,11
79
- jetson_examples-0.1.5.dist-info/RECORD,,
@@ -1,9 +0,0 @@
1
- FROM ultralytics/ultralytics:latest-jetson
2
-
3
- WORKDIR /usr/src/ultralytics
4
- COPY . /usr/src/ultralytics
5
-
6
- RUN pip install --no-cache-dir flask
7
-
8
- CMD ["python3", "app.py"]
9
-
@@ -1,32 +0,0 @@
1
- # Run YOLOv8 Detect Model on Jetson in One Line
2
-
3
- ## Introduction
4
-
5
- This is a simple demo about how to quickly run the ultralytics YOLOv8 detection model on Jetson device.
6
-
7
- ## Getting Started
8
-
9
- - install **jetson-examples** by pip:
10
- ```sh
11
- pip3 install jetson-examples
12
- ```
13
- - restart reComputer
14
- ```sh
15
- sudo restart
16
- ```
17
- - run yolov8 detect model on jetson in one line:
18
- ```sh
19
- reComputer run yolov8-counter
20
- ```
21
-
22
- ## FAQs
23
- 1. The project has been tested on the Jetson Orin platform, and its execution entails the use of Docker; therefore, it is essential to ensure that all necessary Docker components are fully installed and functional.
24
- 2. During program execution, you may encounter an ```ERROR: Could not open requirements file.``` This error message does not impact the normal operation of the program and can be safely ignored.
25
- 3. If you want to run `Docker` commands without using `sudo` you can configure it with the following commands:
26
- ```sh
27
- sudo groupadd docker
28
- sudo gpasswd -a ${USER} docker
29
- sudo systemctl restart docker
30
- sudo chmod a+rw /var/run/docker.sock
31
- ```
32
-
@@ -1,47 +0,0 @@
1
- from flask import Flask, render_template, Response
2
- import cv2 as cv
3
- from ultralytics import YOLO
4
- import numpy
5
-
6
-
7
- class JetsonExampleYoloV8:
8
-
9
- def __init__(self):
10
- self.app = Flask(__name__)
11
- self.cap = cv.VideoCapture(0)
12
- assert self.cap.isOpened(), "Error reading video file"
13
-
14
- print("prepare yolo model")
15
- self.model = YOLO("/usr/src/ultralytics/yolov8n.pt")
16
- print("done")
17
- self.setup_routes()
18
-
19
- def setup_routes(self):
20
- @self.app.route('/')
21
- def index():
22
- return render_template("index.html")
23
-
24
- @self.app.route('/video-feed')
25
- def video_feed():
26
- return Response(self.gen_frames(),mimetype='multipart/x-mixed-replace; boundary=frame')
27
-
28
- def gen_frames(self):
29
- while True:
30
- ret0, frame= self.cap.read()
31
-
32
- if not ret0:break
33
-
34
- results = self.model.predict(frame, show=False)
35
- annotated_frame = results[0].plot()
36
-
37
- ret1, buffer = cv.imencode('.jpg',annotated_frame)
38
- frame = buffer.tobytes()
39
- yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
40
-
41
- def run(self):
42
- self.app.run()
43
-
44
-
45
- if __name__=='__main__':
46
- yolo = JetsonExampleYoloV8()
47
- yolo.run()
@@ -1,3 +0,0 @@
1
- #!/bin/bash
2
-
3
- sudo docker run -it --rm --network host --ipc=host --runtime=nvidia --device=/dev/video0 youjiang9977/yolov8:detect
@@ -1,27 +0,0 @@
1
- <!DOCTYPE html>
2
- <html lang="en">
3
- <head>
4
- <meta charset="UTF-8">
5
- <title>ultralytics YOLOv8</title>
6
- <style>
7
- .container{
8
- width: 60%;
9
- margin: 0 auto;
10
- display: flex;
11
- justify-content: center;
12
- align-items: center;
13
- }
14
- .container img {
15
- width: 100%;
16
- height: auto;
17
- }
18
- </style>
19
- </head>
20
-
21
- <body>
22
- <div class="container">
23
- <img src="{{url_for('video_feed')}}" alt="YOLOv8 Output">
24
- </div>
25
- </body>
26
-
27
- </html>