jaxspec 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,334 @@
1
+ SIMPLE = T / file does conform to FITS standard BITPIX = 8 / number of bits per data pixel NAXIS = 0 / number of data axes EXTEND = T / FITS dataset may contain extensions COMMENT FITS (Flexible Image Transport System) format is defined in 'AstronomyCOMMENT and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H END XTENSION= 'BINTABLE' / binary table extension BITPIX = 8 / 8-bit bytes NAXIS = 2 / 2-dimensional binary table NAXIS1 = 12 / width of table in bytes NAXIS2 = 4096 / number of rows in table PCOUNT = 0 / size of special data area GCOUNT = 1 / one data group (required keyword) TFIELDS = 4 / number of fields in each row TTYPE1 = 'CHANNEL ' / label for field 1 TFORM1 = 'J ' / data format of field: 4-byte INTEGER TTYPE2 = 'COUNTS ' / label for field 2 TFORM2 = 'J ' / data format of field: 4-byte INTEGER TTYPE3 = 'QUALITY ' / label for field 3 TFORM3 = 'I ' / data format of field: 2-byte INTEGER TTYPE4 = 'GROUPING' / label for field 4 TFORM4 = 'I ' / data format of field: 2-byte INTEGER EXTNAME = 'SPECTRUM' / name of this binary table extension HDUCLASS= 'OGIP ' / format conforms to OGIP standard HDUCLAS1= 'SPECTRUM' / PHA dataset (OGIP memo OGIP-92-007) HDUVERS = '1.2.1 ' / Version of format (OGIP memo OGIP-92-007a) TELESCOP= 'XMM ' / mission/satellite name INSTRUME= 'EPN ' / instrument name DETNAM = 'UNKNOWN ' / detector name FILTER = 'Medium ' / filter name STOKESPR= 'UNKNOWN ' / Stokes parameter(s) STOKESWT= 'UNKNOWN ' / Stokes weighting CHANTYPE= 'PI ' / channel type (PHA, PI etc) DATE = '2024-03-20T11:51:55' / file creation date (YYYY-MM-DDThh:mm:ss UT) HISTORY Fake data file created by XSPEC version: 12.13.1 "fakeit" command FKSRC001= 'cutoffpl' FKRSP001= 'PN.rmf ' FKARF001= 'PN.arf ' RESPFILE= 'PN.rmf ' / associated redistrib matrix filename ANCRFILE= 'PN.arf ' / associated ancillary response filename CORRFILE= ' ' / associated correction filename CORRSCAL= 1. / correction file scaling factor BACKFILE= ' ' / associated background filename EXPOSURE= 10000. / exposure (in seconds) TLMIN1 = 0 / Lowest legal channel number TLMAX1 = 4095 / Highest legal channel number DETCHANS= 4096 / total number possible channels POISSERR= T / Pois. err assumed ? AREASCAL= 1. / area scaling factor BACKSCAL= 1. / background file scaling factor END �!�x��� ��a��$8 0�
2
+ ;{ D- L�
3
+ �����������8������<��H�����������~�������#��|�����n�����������������/�������X��"��_��i��-�� �����Z��������������������N�����q��<�����q��������������_��������������������A�����������a��������Y��2�����n�����d��������!���?�_�` ��
4
+ �� �+ �+
5
+ &�'��(��)��*�+�<,�-�Q.��/��0��1�02�3�4�^5��6�[7�8�(9�a:�H;~�<�=~>}??|c@|A|8B{�C{mDy�E{�F{HGyHymIy�JxtKy�Ly Mx�Nw�Ow�PxRQw�RxSvTv�UvtVu�WuXXv4Yu�ZuY[u�\u�]t�^t�_t,`s�ar�bqNcr�drBeq�fp�gpxhn�im�jm�kk�ll�mk�ni
6
+ oipg�qgUre�sd�tc�ub�v`�wa�x`�y`Oz^�{]�|]�}] ~]_\��[��]�\(�[��[F�Z��[�Z��Zn�ZH�Y��Y��X��YK�Y.�W��X�V��W��X�WN�X��W`�U��U��U��V�V&�U�T��T��T��Ty�T0�S�S�Sl�R'�R*�R��QZ�Q3�QA�P}�O��O��N��NR�L��L��K��K}�JN�I��H+�G,�F=�EI�E��D��C)�B,�Ap�@��?Z�=��=��<L�:��:X�9(�9 �7t�7��5�6��4��4#�3��3b�2{�2��2$�1��1q�0�/��/��0M�/��/|�0n�/��/��/��/5�/��/�.��/x�0,�0 �/�/��.��/��/D�.��/5�.��0�.��0,�/I�/e�/�/2�/d�/
7
+ .4 -� -�
8
+ � ��!
9
+ �!� �� �� �� �� ���� 1� �� >� x� � � u� �� 9� A� *� /��� �� �T� � �����_�v���i�q���n�v���'���:�'��������&��}�lm����Z �
10
+ . d �
11
+ I � �
12
+ !  
13
+ �q 3r
14
+ �s t u
15
+ �v w
16
+ �x $y z
17
+ �{
18
+ �|
19
+ �} (~
20
+ o
21
+ ��
22
+ f�
23
+ ��
24
+ ��
25
+ ��
26
+ �� �
27
+ ��
28
+ ��
29
+ Y�
30
+ ��
31
+ x�
32
+ t�
33
+ ,�
34
+ i�
35
+ H�
36
+ +�
37
+ ��
38
+ b�
39
+ u�
40
+ �
41
+ n�
42
+ *�
43
+ � ��
44
+ h�
45
+ � ��
46
+ �
47
+ �
48
+ � �� �� �� �� �� �� �� ��
49
+ "� �� W� �� �� �� �� `� l� 1� o� N� x� g� � I� i� C� 5� � �� =� <� j� %� i��� D� M� 1� <��� F������� L��������� ��� �[�x�����U���v���������=���p�I�]�0����:�}�������D���D�(� ���E����p�������"�����|���������������}� �
50
+ � D �
51
+ 0�1�2�3�4 5�6�7�8�9�:�;�<�=�>S?~@�A�B�C�DpE]FLGVHvI"JsK�L�MZN�O�P.Q_R'SST�UxVWX�YWZ�[�\R]�^�_R`9ab!c d�e�f�g�h�i�j�k:lm�n�o�p�q�r�s�t�u�v�w�x�y�z�{�|�}�~�����������~���g�������F�I�^�p�i�V�R�\�s�U�*�E�v�1�p� �=���E�����=���#����������8�'�.�M�������������������������� �����������������������������h�������������������o�u�r�p���S�w�9�j�G�i��������!��R����T��Z�7�>�-�i� �5�����+�
52
+ ��S���.�����;�360�� �
53
+ �  �
54
+ � � �
55
+ � � �
56
+ *
57
+ +
58
+ -
59
+ +
60
+ &
61
+ 3
62
+ '
63
+ &
64
+ 1
65
+ -
66
+
67
+ 1
68
+ &
69
+ -
70
+
71
+ !
72
+  
73
+ *
74
+ 
75
+ *
76
+ 
77
+ ,
78
+ '
79
+ ,
80
+ !
81
+ "
82
+ 1
83
+ (
84
+ )
85
+ *
86
+ %
87
+ '
88
+ /
89
+ 
90
+ !,
91
+ ",
92
+ #0
93
+ $)
94
+ %#
95
+ &
96
+ '
97
+ (,
98
+ )
99
+ *
100
+ +,
101
+ ,
102
+ -'
103
+ .
104
+ /!
105
+ 0
106
+ 1&
107
+ 2 
108
+ 3
109
+ 4%
110
+ 5
111
+ 6#
112
+ 7
113
+ 8
114
+ 9&
115
+ :
116
+ ;
117
+ <
118
+ =
119
+ >%
120
+ ?/
121
+ @
122
+ A"
123
+ B'
124
+ C'
125
+ D%
126
+ E
127
+ F
128
+ G
129
+ H(
130
+ I
131
+ J#
132
+ K
133
+ L
134
+ M-
135
+ N
136
+ O#
137
+ P
138
+ Q
139
+ R
140
+ S!
141
+ T
142
+ U
143
+ V%
144
+ W
145
+ X"
146
+ Y
147
+ Z
148
+ [
149
+ \
150
+ ]
151
+ ^
152
+ _
153
+ `
154
+ a 
155
+ b
156
+ c
157
+ d
158
+ e
159
+ f
160
+ g
161
+ h
162
+ i
163
+ j
164
+ k
165
+ l
166
+ m
167
+ n
168
+ o
169
+ p 
170
+ q
171
+ r
172
+ s
173
+ t
174
+ u
175
+ v
176
+ w
177
+ x
178
+ y
179
+ z
180
+ {
181
+ |
182
+ }
183
+ ~
184
+ 
185
+ �
186
+ �
187
+ �
188
+ �
189
+ �
190
+ �
191
+ �
192
+ �
193
+ �
194
+ �
195
+ �
196
+ �
197
+ �
198
+ �
199
+ �
200
+ �
201
+ �
202
+ �
203
+ �
204
+ �
205
+ �
206
+
207
+ �
208
+ �
209
+ �
210
+
211
+ �
212
+ �
213
+ �
214
+ �
215
+ �
216
+
217
+ �
218
+
219
+ �
220
+ �
221
+ � 
222
+ �
223
+ � 
224
+ �
225
+ �
226
+ �
227
+ �
228
+
229
+ �
230
+ �
231
+ �
232
+
233
+ �
234
+
235
+ 
236
+ � 
237
+ �
238
+ � 
239
+ �
240
+ �
241
+ � 
242
+ �
243
+ �
244
+ � 
245
+ � 
246
+
247
+ �
248
+ �
249
+ �
250
+ � 
251
+ �
252
+ �
253
+ �
254
+ �
255
+ �
256
+
257
+ 
258
+ �
259
+ � 
260
+ � 
261
+ � 
262
+ �
263
+ �
264
+ � 
265
+
266
+ � 
267
+ � 
268
+ � 
269
+ �
270
+
271
+
272
+ �
273
+ �
274
+ �
275
+ �
276
+ � 
277
+ �
278
+
279
+ 
280
+ �
281
+ � 
282
+ �
283
+ �
284
+ �
285
+ �
286
+
287
+ � 
288
+ � 
289
+
290
+
291
+ 
292
+ �
293
+ �
294
+ � 
295
+ �
296
+ � 
297
+ � 
298
+ �
299
+
300
+ � 
301
+
302
+ 
303
+ � 
304
+ �
305
+ �
306
+ � 
307
+ �
308
+ �
309
+ �
310
+ �
311
+ �
312
+ �
313
+ �
314
+ � 
315
+ � 
316
+ �
317
+ �           
318
+  
319
+  
320
+ 
321
+                
322
+    
323
+   
324
+   !
325
+  +  ,  - . /  0 1 2 3 4  5  6 7 8 9 : ; < = > ? @ A B C D
326
+  E F G  H
327
+  I J K L M N  O P Q  R
328
+  S T U V W X Y
329
+  Z [ \ ] ^ _ ` a b  c d e f g h i j k l m n o  p q r s t u
330
+  v w x y z { | } ~  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �          
331
+   
332
+ 
333
  
334
+ 
1
- 
335
+   
336
+   
@@ -72,8 +72,6 @@ class Instrument(xr.Dataset):
72
72
  Parameters:
73
73
  rmf_path: The RMF file path.
74
74
  arf_path: The ARF file path.
75
- exposure: The exposure time in second.
76
- grouping: The grouping matrix.
77
75
  """
78
76
 
79
77
  rmf = DataRMF.from_file(rmf_path)
jaxspec/data/obsconf.py CHANGED
@@ -1,14 +1,11 @@
1
1
  import numpy as np
2
2
  import xarray as xr
3
3
  import sparse
4
+ import scipy
4
5
  from .instrument import Instrument
5
6
  from .observation import Observation
6
7
 
7
8
 
8
- def densify_xarray(xarray):
9
- return xr.DataArray(xarray.data.todense(), dims=xarray.dims, coords=xarray.coords, attrs=xarray.attrs, name=xarray.name)
10
-
11
-
12
9
  class ObsConfiguration(xr.Dataset):
13
10
  """
14
11
  Class to store the data of a folding model, which is the link between the unfolded and folded spectra.
@@ -56,8 +53,8 @@ class ObsConfiguration(xr.Dataset):
56
53
 
57
54
  out_energies = np.stack(
58
55
  (
59
- np.asarray(self.coords["e_min_folded"].data.todense(), dtype=np.float64),
60
- np.asarray(self.coords["e_max_folded"].data.todense(), dtype=np.float64),
56
+ np.asarray(self.coords["e_min_folded"].data, dtype=np.float64),
57
+ np.asarray(self.coords["e_max_folded"].data, dtype=np.float64),
61
58
  )
62
59
  )
63
60
 
@@ -67,34 +64,16 @@ class ObsConfiguration(xr.Dataset):
67
64
  def from_pha_file(
68
65
  cls, pha_path, rmf_path=None, arf_path=None, bkg_path=None, low_energy: float = 1e-20, high_energy: float = 1e20
69
66
  ):
70
- from .util import data_loader
67
+ from .util import data_path_finder
71
68
 
72
- pha, arf, rmf, bkg, metadata = data_loader(pha_path, arf_path=arf_path, rmf_path=rmf_path, bkg_path=bkg_path)
69
+ arf_path_default, rmf_path_default, bkg_path_default = data_path_finder(pha_path)
73
70
 
74
- instrument = Instrument.from_matrix(
75
- rmf.sparse_matrix,
76
- arf.specresp if arf is not None else np.ones_like(rmf.energ_lo),
77
- rmf.energ_lo,
78
- rmf.energ_hi,
79
- rmf.e_min,
80
- rmf.e_max,
81
- )
71
+ arf_path = arf_path_default if arf_path is None else arf_path
72
+ rmf_path = rmf_path_default if rmf_path is None else rmf_path
73
+ bkg_path = bkg_path_default if bkg_path is None else bkg_path
82
74
 
83
- if bkg is not None:
84
- backratio = np.where(bkg.backscal > 0.0, pha.backscal / np.where(bkg.backscal > 0, bkg.backscal, 1.0), 0.0)
85
- else:
86
- backratio = np.ones_like(pha.counts)
87
-
88
- observation = Observation.from_matrix(
89
- pha.counts,
90
- pha.grouping,
91
- pha.channel,
92
- pha.quality,
93
- pha.exposure,
94
- background=bkg.counts if bkg is not None else None,
95
- backratio=backratio,
96
- attributes=metadata,
97
- )
75
+ instrument = Instrument.from_ogip_file(rmf_path, arf_path=arf_path)
76
+ observation = Observation.from_pha_file(pha_path, bkg_path=bkg_path)
98
77
 
99
78
  return cls.from_instrument(instrument, observation, low_energy=low_energy, high_energy=high_energy)
100
79
 
@@ -102,57 +81,108 @@ class ObsConfiguration(xr.Dataset):
102
81
  def from_instrument(
103
82
  cls, instrument: Instrument, observation: Observation, low_energy: float = 1e-20, high_energy: float = 1e20
104
83
  ):
105
- # Exclude the bins flagged with bad quality
106
- quality_filter = observation.quality == 0
107
- grouping = observation.grouping * quality_filter
84
+ # First we unpack all the xarray data to classical np array for efficiency
85
+ # We also exclude the bins that are flagged with bad quality on the instrument
86
+ quality_filter = observation.quality.data == 0
87
+ grouping = scipy.sparse.csr_array(observation.grouping.data.to_scipy_sparse()) * quality_filter
88
+ e_min_channel = instrument.coords["e_min_channel"].data
89
+ e_max_channel = instrument.coords["e_max_channel"].data
90
+ e_min_unfolded = instrument.coords["e_min_unfolded"].data
91
+ e_max_unfolded = instrument.coords["e_max_unfolded"].data
92
+ redistribution = scipy.sparse.csr_array(instrument.redistribution.data.to_scipy_sparse())
93
+ area = instrument.area.data
94
+ exposure = observation.exposure.data
108
95
 
109
96
  # Computing the lower and upper energies of the bins after grouping
110
97
  # This is just a trick to compute it without 10 lines of code
111
- e_min = (xr.where(grouping > 0, grouping, np.nan) * instrument.coords["e_min_channel"]).min(
112
- skipna=True, dim="instrument_channel"
113
- )
98
+ grouping_nan = observation.grouping.data * quality_filter
99
+ grouping_nan.fill_value = np.nan
100
+ e_min = sparse.nanmin(grouping_nan * e_min_channel, axis=1).todense()
101
+ e_max = sparse.nanmax(grouping_nan * e_max_channel, axis=1).todense()
114
102
 
115
- e_max = (xr.where(grouping > 0, grouping, np.nan) * instrument.coords["e_max_channel"]).max(
116
- skipna=True, dim="instrument_channel"
117
- )
118
-
119
- transfer_matrix = grouping @ (instrument.redistribution * instrument.area * observation.exposure)
120
- transfer_matrix = transfer_matrix.assign_coords({"e_min_folded": e_min, "e_max_folded": e_max})
103
+ # Compute the transfer matrix
104
+ transfer_matrix = grouping @ (redistribution * area * exposure)
121
105
 
122
106
  # Exclude bins out of the considered energy range, and bins without contribution from the RMF
123
- row_idx = densify_xarray(((e_min > low_energy) & (e_max < high_energy)) * (grouping.sum(dim="instrument_channel") > 0))
124
-
125
- col_idx = densify_xarray(
126
- (instrument.coords["e_min_unfolded"] > 0) * (instrument.redistribution.sum(dim="instrument_channel") > 0)
127
- )
128
107
 
129
- # The transfer matrix is converted locally to csr format to allow FAST slicing
130
- transfer_matrix_scipy = transfer_matrix.data.to_scipy_sparse().tocsr()
131
- transfer_matrix_reduced = transfer_matrix_scipy[row_idx.data][:, col_idx.data]
132
- transfer_matrix_reduced = sparse.COO.from_scipy_sparse(transfer_matrix_reduced)
108
+ row_idx = (e_min > low_energy) & (e_max < high_energy) & (grouping.sum(axis=1) > 0)
109
+ col_idx = (e_min_unfolded > 0) & (redistribution.sum(axis=0) > 0)
133
110
 
134
- # A dummy zero matrix is put so that the slicing in xarray is fast
135
- transfer_matrix.data = sparse.zeros_like(transfer_matrix.data)
136
- transfer_matrix = transfer_matrix[row_idx][:, col_idx]
137
-
138
- # The reduced transfer matrix is put back in the xarray
139
- transfer_matrix.data = transfer_matrix_reduced
140
-
141
- folded_counts = observation.folded_counts.copy().where(row_idx, drop=True)
111
+ # Apply this reduction to all the relevant arrays
112
+ transfer_matrix = sparse.COO.from_scipy_sparse(transfer_matrix[row_idx][:, col_idx])
113
+ folded_counts = observation.folded_counts.data[row_idx]
114
+ folded_backratio = observation.folded_backratio.data[row_idx]
115
+ area = instrument.area.data[col_idx]
116
+ e_min_folded = e_min[row_idx]
117
+ e_max_folded = e_max[row_idx]
118
+ e_min_unfolded = e_min_unfolded[col_idx]
119
+ e_max_unfolded = e_max_unfolded[col_idx]
142
120
 
143
121
  if observation.folded_background is not None:
144
- folded_background = observation.folded_background.copy().where(row_idx, drop=True)
145
-
122
+ folded_background = observation.folded_background.data[row_idx]
146
123
  else:
147
- folded_background = None
124
+ folded_background = np.zeros_like(folded_counts)
125
+
126
+ data_dict = {
127
+ "transfer_matrix": (
128
+ ["folded_channel", "unfolded_channel"],
129
+ transfer_matrix,
130
+ {
131
+ "description": "Transfer matrix to use to fold the incoming spectrum. It is built and restricted using the grouping, redistribution matrix, effective area, quality flags and energy bands defined by the user."
132
+ },
133
+ ),
134
+ "area": (
135
+ ["unfolded_channel"],
136
+ area,
137
+ {"description": "Effective area with the same restrictions as the transfer matrix.", "units": "cm^2"},
138
+ ),
139
+ "exposure": ([], exposure, {"description": "Total exposure", "unit": "s"}),
140
+ "folded_counts": (
141
+ ["folded_channel"],
142
+ folded_counts,
143
+ {
144
+ "description": "Folded counts after grouping, with the same restrictions as the transfer matrix.",
145
+ "unit": "photons",
146
+ },
147
+ ),
148
+ "folded_backratio": (
149
+ ["folded_channel"],
150
+ folded_backratio,
151
+ {"description": "Background scaling after grouping, with the same restrictions as the transfer matrix."},
152
+ ),
153
+ "folded_background": (
154
+ ["folded_channel"],
155
+ folded_background,
156
+ {
157
+ "description": "Folded background counts after grouping, with the same restrictions as the transfer matrix.",
158
+ "unit": "photons",
159
+ },
160
+ ),
161
+ }
148
162
 
149
163
  return cls(
150
- {
151
- "transfer_matrix": transfer_matrix,
152
- "area": instrument.area.copy().where(col_idx, drop=True),
153
- "exposure": observation.exposure,
154
- "folded_backratio": observation.folded_backratio.copy().where(row_idx, drop=True),
155
- "folded_counts": folded_counts,
156
- "folded_background": folded_background,
157
- }
164
+ data_dict,
165
+ coords={
166
+ "e_min_folded": (
167
+ ["folded_channel"],
168
+ e_min_folded,
169
+ {"description": "Low energy of folded channel"},
170
+ ),
171
+ "e_max_folded": (
172
+ ["folded_channel"],
173
+ e_max_folded,
174
+ {"description": "High energy of folded channel"},
175
+ ),
176
+ "e_min_unfolded": (
177
+ ["unfolded_channel"],
178
+ e_min_unfolded,
179
+ {"description": "Low energy of unfolded channel"},
180
+ ),
181
+ "e_max_unfolded": (
182
+ ["unfolded_channel"],
183
+ e_max_unfolded,
184
+ {"description": "High energy of unfolded channel"},
185
+ ),
186
+ },
187
+ attrs=observation.attrs | instrument.attrs,
158
188
  )
@@ -1,6 +1,6 @@
1
- import os
2
1
  import numpy as np
3
2
  import xarray as xr
3
+ from .ogip import DataPHA
4
4
 
5
5
 
6
6
  class Observation(xr.Dataset):
@@ -95,11 +95,7 @@ class Observation(xr.Dataset):
95
95
  )
96
96
 
97
97
  @classmethod
98
- def from_pha_file(cls, pha_file: str | os.PathLike, **kwargs):
99
- from .util import data_loader
100
-
101
- pha, arf, rmf, bkg, metadata = data_loader(pha_file)
102
-
98
+ def from_ogip_container(cls, pha: DataPHA, bkg: DataPHA | None = None, **metadata):
103
99
  if bkg is not None:
104
100
  backratio = np.nan_to_num((pha.backscal * pha.exposure * pha.areascal) / (bkg.backscal * bkg.exposure * bkg.areascal))
105
101
  else:
@@ -116,6 +112,28 @@ class Observation(xr.Dataset):
116
112
  attributes=metadata,
117
113
  )
118
114
 
115
+ @classmethod
116
+ def from_pha_file(cls, pha_path: str, bkg_path: str | None = None, **metadata):
117
+ from .util import data_path_finder
118
+
119
+ arf_path, rmf_path, bkg_path_default = data_path_finder(pha_path)
120
+ bkg_path = bkg_path_default if bkg_path is None else bkg_path
121
+
122
+ pha = DataPHA.from_file(pha_path)
123
+ bkg = DataPHA.from_file(bkg_path) if bkg_path is not None else None
124
+
125
+ if metadata is None:
126
+ metadata = {}
127
+
128
+ metadata.update(
129
+ observation_file=pha_path,
130
+ background_file=bkg_path,
131
+ response_matrix_file=rmf_path,
132
+ ancillary_response_file=arf_path,
133
+ )
134
+
135
+ return cls.from_ogip_container(pha, bkg=bkg, **metadata)
136
+
119
137
  def plot_counts(self, **kwargs):
120
138
  """
121
139
  Plot the counts
jaxspec/data/ogip.py CHANGED
@@ -75,6 +75,24 @@ class DataPHA:
75
75
  data = QTable.read(pha_file, "SPECTRUM")
76
76
  header = fits.getheader(pha_file, "SPECTRUM")
77
77
 
78
+ if header.get("HDUCLAS2") == "NET":
79
+ raise ValueError(
80
+ f"The HDUCLAS2={header.get('HDUCLAS2')} keyword in the PHA file is not supported."
81
+ f"Please open an issue if this is required."
82
+ )
83
+
84
+ if header.get("HDUCLAS3") == "RATE":
85
+ raise ValueError(
86
+ f"The HDUCLAS3={header.get('HDUCLAS3')} keyword in the PHA file is not supported."
87
+ f"Please open an issue if this is required."
88
+ )
89
+
90
+ if header.get("HDUCLAS4") == "TYPE:II":
91
+ raise ValueError(
92
+ f"The HDUCLAS4={header.get('HDUCLAS4')} keyword in the PHA file is not supported."
93
+ f"Please open an issue if this is required."
94
+ )
95
+
78
96
  if header.get("GROUPING") == 0:
79
97
  grouping = None
80
98
  elif "GROUPING" in data.colnames: