jaxsim 0.2.dev188__py3-none-any.whl → 0.2.dev364__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- jaxsim/__init__.py +3 -4
- jaxsim/_version.py +2 -2
- jaxsim/api/__init__.py +3 -1
- jaxsim/api/com.py +240 -0
- jaxsim/api/common.py +13 -2
- jaxsim/api/contact.py +120 -43
- jaxsim/api/data.py +112 -71
- jaxsim/api/joint.py +77 -36
- jaxsim/api/kin_dyn_parameters.py +777 -0
- jaxsim/api/link.py +150 -75
- jaxsim/api/model.py +542 -269
- jaxsim/api/ode.py +88 -72
- jaxsim/api/ode_data.py +694 -0
- jaxsim/api/references.py +12 -11
- jaxsim/integrators/__init__.py +2 -2
- jaxsim/integrators/common.py +110 -24
- jaxsim/integrators/fixed_step.py +11 -67
- jaxsim/integrators/variable_step.py +610 -0
- jaxsim/math/__init__.py +11 -0
- jaxsim/math/adjoint.py +24 -2
- jaxsim/math/joint_model.py +335 -0
- jaxsim/math/quaternion.py +44 -3
- jaxsim/math/rotation.py +4 -4
- jaxsim/math/transform.py +93 -0
- jaxsim/parsers/descriptions/collision.py +14 -0
- jaxsim/parsers/descriptions/link.py +13 -2
- jaxsim/parsers/kinematic_graph.py +5 -0
- jaxsim/parsers/rod/utils.py +7 -8
- jaxsim/rbda/__init__.py +7 -0
- jaxsim/rbda/aba.py +295 -0
- jaxsim/rbda/collidable_points.py +142 -0
- jaxsim/{physics/algos → rbda}/crba.py +43 -42
- jaxsim/rbda/forward_kinematics.py +113 -0
- jaxsim/rbda/jacobian.py +201 -0
- jaxsim/rbda/rnea.py +237 -0
- jaxsim/rbda/soft_contacts.py +296 -0
- jaxsim/rbda/utils.py +152 -0
- jaxsim/terrain/__init__.py +2 -0
- jaxsim/{physics/algos → terrain}/terrain.py +4 -6
- jaxsim/utils/__init__.py +1 -4
- jaxsim/utils/hashless.py +18 -0
- jaxsim/utils/jaxsim_dataclass.py +281 -30
- {jaxsim-0.2.dev188.dist-info → jaxsim-0.2.dev364.dist-info}/METADATA +4 -6
- jaxsim-0.2.dev364.dist-info/RECORD +64 -0
- {jaxsim-0.2.dev188.dist-info → jaxsim-0.2.dev364.dist-info}/WHEEL +1 -1
- jaxsim/high_level/__init__.py +0 -2
- jaxsim/high_level/common.py +0 -11
- jaxsim/high_level/joint.py +0 -148
- jaxsim/high_level/link.py +0 -259
- jaxsim/high_level/model.py +0 -1686
- jaxsim/math/conv.py +0 -114
- jaxsim/math/joint.py +0 -102
- jaxsim/math/plucker.py +0 -100
- jaxsim/physics/__init__.py +0 -12
- jaxsim/physics/algos/__init__.py +0 -0
- jaxsim/physics/algos/aba.py +0 -254
- jaxsim/physics/algos/aba_motors.py +0 -284
- jaxsim/physics/algos/forward_kinematics.py +0 -79
- jaxsim/physics/algos/jacobian.py +0 -98
- jaxsim/physics/algos/rnea.py +0 -180
- jaxsim/physics/algos/rnea_motors.py +0 -196
- jaxsim/physics/algos/soft_contacts.py +0 -523
- jaxsim/physics/algos/utils.py +0 -69
- jaxsim/physics/model/__init__.py +0 -0
- jaxsim/physics/model/ground_contact.py +0 -55
- jaxsim/physics/model/physics_model.py +0 -388
- jaxsim/physics/model/physics_model_state.py +0 -283
- jaxsim/simulation/__init__.py +0 -4
- jaxsim/simulation/integrators.py +0 -393
- jaxsim/simulation/ode.py +0 -290
- jaxsim/simulation/ode_data.py +0 -96
- jaxsim/simulation/ode_integration.py +0 -62
- jaxsim/simulation/simulator.py +0 -543
- jaxsim/simulation/simulator_callbacks.py +0 -79
- jaxsim/simulation/utils.py +0 -15
- jaxsim/sixd/__init__.py +0 -2
- jaxsim/utils/oop.py +0 -536
- jaxsim/utils/vmappable.py +0 -117
- jaxsim-0.2.dev188.dist-info/RECORD +0 -81
- {jaxsim-0.2.dev188.dist-info → jaxsim-0.2.dev364.dist-info}/LICENSE +0 -0
- {jaxsim-0.2.dev188.dist-info → jaxsim-0.2.dev364.dist-info}/top_level.txt +0 -0
jaxsim/simulation/integrators.py
DELETED
@@ -1,393 +0,0 @@
|
|
1
|
-
import enum
|
2
|
-
from typing import Any, Callable
|
3
|
-
|
4
|
-
import jax
|
5
|
-
import jax.numpy as jnp
|
6
|
-
from jax.tree_util import tree_map
|
7
|
-
|
8
|
-
import jaxsim.typing as jtp
|
9
|
-
from jaxsim.math.quaternion import Quaternion
|
10
|
-
from jaxsim.physics.algos.soft_contacts import SoftContactsState
|
11
|
-
from jaxsim.physics.model.physics_model_state import PhysicsModelState
|
12
|
-
from jaxsim.simulation.ode_data import ODEState
|
13
|
-
from jaxsim.sixd import se3, so3
|
14
|
-
|
15
|
-
Time = jtp.FloatLike
|
16
|
-
TimeStep = jtp.FloatLike
|
17
|
-
TimeHorizon = jtp.VectorLike
|
18
|
-
|
19
|
-
State = jtp.PyTree
|
20
|
-
StateDerivative = jtp.PyTree
|
21
|
-
|
22
|
-
StateDerivativeCallable = Callable[
|
23
|
-
[State, Time], tuple[StateDerivative, dict[str, Any]]
|
24
|
-
]
|
25
|
-
|
26
|
-
|
27
|
-
class IntegratorType(enum.IntEnum):
|
28
|
-
RungeKutta4 = enum.auto()
|
29
|
-
EulerForward = enum.auto()
|
30
|
-
EulerSemiImplicit = enum.auto()
|
31
|
-
EulerSemiImplicitManifold = enum.auto()
|
32
|
-
|
33
|
-
|
34
|
-
# =======================
|
35
|
-
# Single-step integration
|
36
|
-
# =======================
|
37
|
-
|
38
|
-
|
39
|
-
def integrator_fixed_single_step(
|
40
|
-
dx_dt: StateDerivativeCallable,
|
41
|
-
x0: State | ODEState,
|
42
|
-
t0: Time,
|
43
|
-
tf: Time,
|
44
|
-
integrator_type: IntegratorType,
|
45
|
-
num_sub_steps: int = 1,
|
46
|
-
) -> tuple[State | ODEState, dict[str, Any]]:
|
47
|
-
"""
|
48
|
-
Advance a state vector by integrating a sytem dynamics with a fixed-step integrator.
|
49
|
-
|
50
|
-
Args:
|
51
|
-
dx_dt: Callable that computes the state derivative.
|
52
|
-
x0: Initial state.
|
53
|
-
t0: Initial time.
|
54
|
-
tf: Final time.
|
55
|
-
integrator_type: Integrator type.
|
56
|
-
num_sub_steps: Number of sub-steps to break the integration into.
|
57
|
-
|
58
|
-
Returns:
|
59
|
-
The final state and a dictionary including auxiliary data at t0.
|
60
|
-
"""
|
61
|
-
|
62
|
-
# Compute the sub-step size.
|
63
|
-
# We break dt in configurable sub-steps.
|
64
|
-
dt = tf - t0
|
65
|
-
sub_step_dt = dt / num_sub_steps
|
66
|
-
|
67
|
-
# Initialize the carry
|
68
|
-
Carry = tuple[State | ODEState, Time]
|
69
|
-
carry_init: Carry = (x0, t0)
|
70
|
-
|
71
|
-
def forward_euler_body_fun(carry: Carry, xs: None) -> tuple[Carry, None]:
|
72
|
-
"""
|
73
|
-
Forward Euler integrator.
|
74
|
-
"""
|
75
|
-
|
76
|
-
# Unpack the carry
|
77
|
-
x_t0, t0 = carry
|
78
|
-
|
79
|
-
# Compute the state derivative
|
80
|
-
dxdt_t0, _ = dx_dt(x_t0, t0)
|
81
|
-
|
82
|
-
# Integrate the dynamics
|
83
|
-
x_tf = jax.tree_util.tree_map(
|
84
|
-
lambda x, dxdt: x + sub_step_dt * dxdt, x_t0, dxdt_t0
|
85
|
-
)
|
86
|
-
|
87
|
-
# Update the time
|
88
|
-
tf = t0 + sub_step_dt
|
89
|
-
|
90
|
-
# Pack the carry
|
91
|
-
carry = (x_tf, tf)
|
92
|
-
|
93
|
-
return carry, None
|
94
|
-
|
95
|
-
def rk4_body_fun(carry: Carry, xs: None) -> tuple[Carry, None]:
|
96
|
-
"""
|
97
|
-
Runge-Kutta 4 integrator.
|
98
|
-
"""
|
99
|
-
|
100
|
-
# Unpack the carry
|
101
|
-
x_t0, t0 = carry
|
102
|
-
|
103
|
-
# Helper to forward the state to compute k2 and k3 at midpoint and k4 at final
|
104
|
-
euler_mid = lambda x, dxdt: x + (0.5 * sub_step_dt) * dxdt
|
105
|
-
euler_fin = lambda x, dxdt: x + sub_step_dt * dxdt
|
106
|
-
|
107
|
-
# Compute the RK4 slopes
|
108
|
-
k1, _ = dx_dt(x_t0, t0)
|
109
|
-
k2, _ = dx_dt(tree_map(euler_mid, x_t0, k1), t0 + 0.5 * sub_step_dt)
|
110
|
-
k3, _ = dx_dt(tree_map(euler_mid, x_t0, k2), t0 + 0.5 * sub_step_dt)
|
111
|
-
k4, _ = dx_dt(tree_map(euler_fin, x_t0, k3), t0 + sub_step_dt)
|
112
|
-
|
113
|
-
# Average the slopes and compute the RK4 state derivative
|
114
|
-
average = lambda k1, k2, k3, k4: (k1 + 2 * k2 + 2 * k3 + k4) / 6
|
115
|
-
dxdt = jax.tree_util.tree_map(average, k1, k2, k3, k4)
|
116
|
-
|
117
|
-
# Integrate the dynamics
|
118
|
-
x_tf = jax.tree_util.tree_map(euler_fin, x_t0, dxdt)
|
119
|
-
|
120
|
-
# Update the time
|
121
|
-
tf = t0 + sub_step_dt
|
122
|
-
|
123
|
-
# Pack the carry
|
124
|
-
carry = (x_tf, tf)
|
125
|
-
|
126
|
-
return carry, None
|
127
|
-
|
128
|
-
def semi_implicit_euler_body_fun(carry: Carry, xs: None) -> tuple[Carry, None]:
|
129
|
-
"""
|
130
|
-
Semi-implicit Euler integrator.
|
131
|
-
"""
|
132
|
-
|
133
|
-
# Unpack the carry
|
134
|
-
x_t0, t0 = carry
|
135
|
-
|
136
|
-
# Compute the state derivative.
|
137
|
-
# We only keep the quantities related to the acceleration and discard those
|
138
|
-
# related to the velocity since we are going to use those implicitly integrated
|
139
|
-
# from the accelerations.
|
140
|
-
StateDerivative = ODEState
|
141
|
-
dxdt_t0: StateDerivative = dx_dt(x_t0, t0)[0]
|
142
|
-
|
143
|
-
# Extract the initial position ∈ ℝ⁷⁺ⁿ and initial velocity ∈ ℝ⁶⁺ⁿ.
|
144
|
-
# This integrator, contrarily to most of the other ones, is not generic.
|
145
|
-
# It expects to operate on an x object of class ODEState.
|
146
|
-
pos_t0 = x_t0.physics_model.position()
|
147
|
-
vel_t0 = x_t0.physics_model.velocity()
|
148
|
-
|
149
|
-
# Extract the velocity derivative
|
150
|
-
d_vel_dt = dxdt_t0.physics_model.velocity()
|
151
|
-
|
152
|
-
# =============================================
|
153
|
-
# Perform semi-implicit Euler integration [1-4]
|
154
|
-
# =============================================
|
155
|
-
|
156
|
-
# 1. Integrate the accelerations obtaining the implicit velocities
|
157
|
-
# 2. Compute the derivative of the generalized position
|
158
|
-
# 3. Integrate the implicit velocities
|
159
|
-
# 4. Integrate the remaining state
|
160
|
-
# 5. Outside the loop: integrate the quaternion on SO(3) manifold
|
161
|
-
|
162
|
-
# ----------------------------------------------------------------
|
163
|
-
# 1. Integrate the accelerations obtaining the implicit velocities
|
164
|
-
# ----------------------------------------------------------------
|
165
|
-
|
166
|
-
vel_tf = vel_t0 + sub_step_dt * d_vel_dt
|
167
|
-
|
168
|
-
# -----------------------------------------------------
|
169
|
-
# 2. Compute the derivative of the generalized position
|
170
|
-
# -----------------------------------------------------
|
171
|
-
|
172
|
-
# Extract the implicit angular velocity and the initial base quaternion
|
173
|
-
W_ω_WB = vel_tf[3:6]
|
174
|
-
W_Q_B = x_t0.physics_model.base_quaternion
|
175
|
-
|
176
|
-
# Compute the quaternion derivative and the base position derivative
|
177
|
-
W_Qd_B = Quaternion.derivative(
|
178
|
-
quaternion=W_Q_B, omega=W_ω_WB, omega_in_body_fixed=False
|
179
|
-
).squeeze()
|
180
|
-
|
181
|
-
# Compute the transform of the mixed base frame at t0
|
182
|
-
W_H_BW = jnp.vstack(
|
183
|
-
[
|
184
|
-
jnp.block([jnp.eye(3), jnp.vstack(x_t0.physics_model.base_position)]),
|
185
|
-
jnp.array([0, 0, 0, 1]),
|
186
|
-
]
|
187
|
-
)
|
188
|
-
|
189
|
-
# The derivative W_ṗ_B of the base position is the linear component of the
|
190
|
-
# mixed velocity B[W]_v_WB. We need to compute it from the velocity in
|
191
|
-
# inertial-fixed representation W_vl_WB.
|
192
|
-
W_v_WB = vel_tf[0:6]
|
193
|
-
BW_Xv_W = se3.SE3.from_matrix(W_H_BW).inverse().adjoint()
|
194
|
-
BW_vl_WB = (BW_Xv_W @ W_v_WB)[0:3]
|
195
|
-
|
196
|
-
# Compute the derivative of the generalized position
|
197
|
-
d_pos_tf = (
|
198
|
-
jnp.hstack([BW_vl_WB, vel_tf[6:]])
|
199
|
-
if integrator_type is IntegratorType.EulerSemiImplicitManifold
|
200
|
-
else jnp.hstack([BW_vl_WB, W_Qd_B, vel_tf[6:]])
|
201
|
-
)
|
202
|
-
|
203
|
-
# ------------------------------------
|
204
|
-
# 3. Integrate the implicit velocities
|
205
|
-
# ------------------------------------
|
206
|
-
|
207
|
-
pos_tf = pos_t0 + sub_step_dt * d_pos_tf
|
208
|
-
joint_positions = (
|
209
|
-
pos_tf[3:]
|
210
|
-
if integrator_type is IntegratorType.EulerSemiImplicitManifold
|
211
|
-
else pos_tf[7:]
|
212
|
-
)
|
213
|
-
base_quaternion = (
|
214
|
-
jnp.zeros_like(x_t0.base_quaternion)
|
215
|
-
if integrator_type is IntegratorType.EulerSemiImplicitManifold
|
216
|
-
else pos_tf[3:7]
|
217
|
-
)
|
218
|
-
|
219
|
-
# ---------------------------------
|
220
|
-
# 4. Integrate the remaining state
|
221
|
-
# ---------------------------------
|
222
|
-
|
223
|
-
# Integrate the derivative of the tangential material deformation
|
224
|
-
m = x_t0.soft_contacts.tangential_deformation
|
225
|
-
ṁ = dxdt_t0.soft_contacts.tangential_deformation
|
226
|
-
tangential_deformation_tf = m + sub_step_dt * ṁ
|
227
|
-
|
228
|
-
# Pack the new state into an ODEState object
|
229
|
-
x_tf = ODEState(
|
230
|
-
physics_model=PhysicsModelState(
|
231
|
-
base_position=pos_tf[0:3],
|
232
|
-
base_quaternion=base_quaternion,
|
233
|
-
joint_positions=joint_positions,
|
234
|
-
base_linear_velocity=vel_tf[0:3],
|
235
|
-
base_angular_velocity=vel_tf[3:6],
|
236
|
-
joint_velocities=vel_tf[6:],
|
237
|
-
),
|
238
|
-
soft_contacts=SoftContactsState(
|
239
|
-
tangential_deformation=tangential_deformation_tf
|
240
|
-
),
|
241
|
-
)
|
242
|
-
|
243
|
-
# Update the time
|
244
|
-
tf = t0 + sub_step_dt
|
245
|
-
|
246
|
-
# Pack the carry
|
247
|
-
carry = (x_tf, tf)
|
248
|
-
|
249
|
-
return carry, None
|
250
|
-
|
251
|
-
_integrator_registry = {
|
252
|
-
IntegratorType.RungeKutta4: rk4_body_fun,
|
253
|
-
IntegratorType.EulerForward: forward_euler_body_fun,
|
254
|
-
IntegratorType.EulerSemiImplicit: semi_implicit_euler_body_fun,
|
255
|
-
IntegratorType.EulerSemiImplicitManifold: semi_implicit_euler_body_fun,
|
256
|
-
}
|
257
|
-
|
258
|
-
# Get the body function for the selected integrator
|
259
|
-
body_fun = _integrator_registry[integrator_type]
|
260
|
-
|
261
|
-
# Integrate over the given horizon
|
262
|
-
(x_tf, _), _ = jax.lax.scan(
|
263
|
-
f=body_fun, init=carry_init, xs=None, length=num_sub_steps
|
264
|
-
)
|
265
|
-
|
266
|
-
if integrator_type is IntegratorType.EulerSemiImplicitManifold:
|
267
|
-
# Indices to convert quaternions between serializations
|
268
|
-
to_xyzw = jnp.array([1, 2, 3, 0])
|
269
|
-
to_wxyz = jnp.array([3, 0, 1, 2])
|
270
|
-
|
271
|
-
# Get the initial quaternion and the implicitly integrated angular velocity
|
272
|
-
W_ω_WB_tf = x_tf.physics_model.base_angular_velocity
|
273
|
-
W_Q_B_t0 = so3.SO3.from_quaternion_xyzw(
|
274
|
-
x0.physics_model.base_quaternion[to_xyzw]
|
275
|
-
)
|
276
|
-
|
277
|
-
# Integrate the quaternion on its manifold using the implicit angular velocity,
|
278
|
-
# transformed in body-fixed representation since jaxlie uses this convention
|
279
|
-
B_R_W = W_Q_B_t0.inverse().as_matrix()
|
280
|
-
W_Q_B_tf = W_Q_B_t0 @ so3.SO3.exp(tangent=dt * B_R_W @ W_ω_WB_tf)
|
281
|
-
|
282
|
-
# Store the quaternion in the final state
|
283
|
-
x_tf = x_tf.replace(
|
284
|
-
physics_model=x_tf.physics_model.replace(
|
285
|
-
base_quaternion=W_Q_B_tf.as_quaternion_xyzw()[to_wxyz]
|
286
|
-
)
|
287
|
-
)
|
288
|
-
|
289
|
-
# Compute the aux dictionary at t0
|
290
|
-
_, aux_t0 = dx_dt(x0, t0)
|
291
|
-
|
292
|
-
return x_tf, aux_t0
|
293
|
-
|
294
|
-
|
295
|
-
# ===============================
|
296
|
-
# Adapter: single step -> horizon
|
297
|
-
# ===============================
|
298
|
-
|
299
|
-
|
300
|
-
def integrate_single_step_over_horizon(
|
301
|
-
integrator_single_step: Callable[[Time, Time, State], tuple[State, dict[str, Any]]],
|
302
|
-
t: TimeHorizon,
|
303
|
-
x0: State,
|
304
|
-
) -> tuple[State, dict[str, Any]]:
|
305
|
-
"""
|
306
|
-
Integrate a single-step integrator over a given horizon.
|
307
|
-
|
308
|
-
Args:
|
309
|
-
integrator_single_step: A single-step integrator.
|
310
|
-
t: The vector of time instants of the integration horizon.
|
311
|
-
x0: The initial state of the integration horizon.
|
312
|
-
|
313
|
-
Returns:
|
314
|
-
The final state and auxiliary data produced by the integrator.
|
315
|
-
"""
|
316
|
-
|
317
|
-
# Initialize the carry
|
318
|
-
carry_init = (x0, t)
|
319
|
-
|
320
|
-
def body_fun(carry: tuple, idx: int) -> tuple[tuple, jtp.PyTree]:
|
321
|
-
# Unpack the carry
|
322
|
-
x_t0, horizon = carry
|
323
|
-
|
324
|
-
# Get the integration interval
|
325
|
-
t0 = horizon[idx]
|
326
|
-
tf = horizon[idx + 1]
|
327
|
-
|
328
|
-
# Perform a single-step integration of the ODE
|
329
|
-
x_tf, aux_t0 = integrator_single_step(t0, tf, x_t0)
|
330
|
-
|
331
|
-
# Prepare returned data
|
332
|
-
out = (x_t0, aux_t0)
|
333
|
-
carry = (x_tf, horizon)
|
334
|
-
|
335
|
-
return carry, out
|
336
|
-
|
337
|
-
# Integrate over the given horizon
|
338
|
-
_, (x_horizon, aux_horizon) = jax.lax.scan(
|
339
|
-
f=body_fun, init=carry_init, xs=jnp.arange(start=0, stop=len(t), dtype=int)
|
340
|
-
)
|
341
|
-
|
342
|
-
return x_horizon, aux_horizon
|
343
|
-
|
344
|
-
|
345
|
-
# ===================================================================
|
346
|
-
# Integration over horizon (same APIs of jax.experimental.ode.odeint)
|
347
|
-
# ===================================================================
|
348
|
-
|
349
|
-
|
350
|
-
def odeint(
|
351
|
-
func,
|
352
|
-
y0: State,
|
353
|
-
t: TimeHorizon,
|
354
|
-
*args,
|
355
|
-
num_sub_steps: int = 1,
|
356
|
-
return_aux: bool = False,
|
357
|
-
integrator_type: IntegratorType = None,
|
358
|
-
):
|
359
|
-
"""
|
360
|
-
Integrate a system of ODEs with a fixed-step integrator.
|
361
|
-
|
362
|
-
Args:
|
363
|
-
func: A function that computes the time-derivative of the state.
|
364
|
-
y0: The initial state.
|
365
|
-
t: The vector of time instants of the integration horizon.
|
366
|
-
*args: Additional arguments to be passed to the function func.
|
367
|
-
num_sub_steps: The number of sub-steps to be performed within each integration step.
|
368
|
-
return_aux: Whether to return the auxiliary data produced by the integrator.
|
369
|
-
|
370
|
-
Returns:
|
371
|
-
The state of the system at the end of the integration horizon, and optionally
|
372
|
-
the auxiliary data produced by the integrator.
|
373
|
-
"""
|
374
|
-
|
375
|
-
# Close func over additional inputs and parameters
|
376
|
-
dx_dt_closure = lambda x, ts: func(x, ts, *args)
|
377
|
-
|
378
|
-
# Close one-step integration over its arguments
|
379
|
-
integrator_single_step = lambda t0, tf, x0: integrator_fixed_single_step(
|
380
|
-
dx_dt=dx_dt_closure,
|
381
|
-
x0=x0,
|
382
|
-
t0=t0,
|
383
|
-
tf=tf,
|
384
|
-
num_sub_steps=num_sub_steps,
|
385
|
-
integrator_type=integrator_type,
|
386
|
-
)
|
387
|
-
|
388
|
-
# Integrate the state and compute optional auxiliary data over the horizon
|
389
|
-
out, aux = integrate_single_step_over_horizon(
|
390
|
-
integrator_single_step=integrator_single_step, t=t, x0=y0
|
391
|
-
)
|
392
|
-
|
393
|
-
return (out, aux) if return_aux else out
|
jaxsim/simulation/ode.py
DELETED
@@ -1,290 +0,0 @@
|
|
1
|
-
from typing import Any, Dict, Tuple
|
2
|
-
|
3
|
-
import jax
|
4
|
-
import jax.numpy as jnp
|
5
|
-
import numpy as np
|
6
|
-
|
7
|
-
import jaxsim.typing as jtp
|
8
|
-
from jaxsim.physics import algos
|
9
|
-
from jaxsim.physics.algos.soft_contacts import (
|
10
|
-
SoftContacts,
|
11
|
-
SoftContactsParams,
|
12
|
-
collidable_points_pos_vel,
|
13
|
-
)
|
14
|
-
from jaxsim.physics.algos.terrain import FlatTerrain, Terrain
|
15
|
-
from jaxsim.physics.model.physics_model import PhysicsModel
|
16
|
-
|
17
|
-
from . import ode_data
|
18
|
-
|
19
|
-
|
20
|
-
def compute_contact_forces(
|
21
|
-
physics_model: PhysicsModel,
|
22
|
-
ode_state: ode_data.ODEState,
|
23
|
-
soft_contacts_params: SoftContactsParams = SoftContactsParams(),
|
24
|
-
terrain: Terrain = FlatTerrain(),
|
25
|
-
) -> Tuple[jtp.Matrix, jtp.Matrix, jtp.Matrix]:
|
26
|
-
"""
|
27
|
-
Compute the contact forces acting on the collidable points of the model.
|
28
|
-
|
29
|
-
Args:
|
30
|
-
physics_model: The physics model to consider.
|
31
|
-
ode_state: The state of the ODE corresponding to the physics model.
|
32
|
-
soft_contacts_params: The parameters of the soft contacts model.
|
33
|
-
terrain: The terrain model.
|
34
|
-
|
35
|
-
Returns:
|
36
|
-
A tuple containing:
|
37
|
-
- The contact forces expressed in the world frame acting on the model's links.
|
38
|
-
- The derivative of the tangential deformation of the terrain dynamics.
|
39
|
-
- The contact forces expressed in the world frame acting on the model's collidable points.
|
40
|
-
"""
|
41
|
-
|
42
|
-
# Compute position and linear mixed velocity of all model's collidable points
|
43
|
-
# collidable_points_kinematics
|
44
|
-
pos_cp, vel_cp = collidable_points_pos_vel(
|
45
|
-
model=physics_model,
|
46
|
-
q=ode_state.physics_model.joint_positions,
|
47
|
-
qd=ode_state.physics_model.joint_velocities,
|
48
|
-
xfb=ode_state.physics_model.xfb(),
|
49
|
-
)
|
50
|
-
|
51
|
-
# Compute the forces acting on the collidable points due to contact with
|
52
|
-
# the compliant ground surface. Apply vmap to process all points together.
|
53
|
-
contact_forces_points, tangential_deformation_dot = jax.vmap(
|
54
|
-
SoftContacts(parameters=soft_contacts_params, terrain=terrain).contact_model
|
55
|
-
)(pos_cp.T, vel_cp.T, ode_state.soft_contacts.tangential_deformation.T)
|
56
|
-
|
57
|
-
contact_forces_points = contact_forces_points.T
|
58
|
-
tangential_deformation_dot = tangential_deformation_dot.T
|
59
|
-
|
60
|
-
# Initialize the contact forces, one per body
|
61
|
-
contact_forces_links = jnp.zeros_like(
|
62
|
-
ode_data.ODEInput.zero(physics_model).physics_model.f_ext
|
63
|
-
)
|
64
|
-
|
65
|
-
# Combine the contact forces of all collidable points belonging to the same body
|
66
|
-
for body_idx in set(physics_model.gc.body):
|
67
|
-
body_idx = int(body_idx)
|
68
|
-
contact_forces_links = contact_forces_links.at[body_idx, :].set(
|
69
|
-
jnp.sum(contact_forces_points[:, physics_model.gc.body == body_idx], axis=1)
|
70
|
-
)
|
71
|
-
|
72
|
-
return contact_forces_links, tangential_deformation_dot, contact_forces_points.T
|
73
|
-
|
74
|
-
|
75
|
-
def dx_dt(
|
76
|
-
x: ode_data.ODEState,
|
77
|
-
t: jtp.Float | None,
|
78
|
-
physics_model: PhysicsModel,
|
79
|
-
soft_contacts_params: SoftContactsParams = SoftContactsParams(),
|
80
|
-
ode_input: ode_data.ODEInput | None = None,
|
81
|
-
terrain: Terrain = FlatTerrain(),
|
82
|
-
) -> Tuple[ode_data.ODEState, Dict[str, Any]]:
|
83
|
-
"""
|
84
|
-
Compute the state derivative of the ODE corresponding to the physics model.
|
85
|
-
|
86
|
-
Args:
|
87
|
-
x: The state of the ODE.
|
88
|
-
t: The current time.
|
89
|
-
physics_model: The physics model to consider.
|
90
|
-
soft_contacts_params: The parameters of the soft contacts model.
|
91
|
-
ode_input: The input of the ODE.
|
92
|
-
terrain: The terrain model.
|
93
|
-
|
94
|
-
Returns:
|
95
|
-
A tuple containing:
|
96
|
-
- The state derivative of the ODE.
|
97
|
-
- A dictionary containing auxiliary information.
|
98
|
-
"""
|
99
|
-
|
100
|
-
if t is not None and isinstance(t, np.ndarray) and t.size != 1:
|
101
|
-
raise ValueError(t.size)
|
102
|
-
|
103
|
-
# Initialize arguments
|
104
|
-
ode_state = x
|
105
|
-
ode_input = (
|
106
|
-
ode_input
|
107
|
-
if ode_input is not None
|
108
|
-
else ode_data.ODEInput.zero(physics_model=physics_model)
|
109
|
-
)
|
110
|
-
|
111
|
-
# ======================
|
112
|
-
# Compute contact forces
|
113
|
-
# ======================
|
114
|
-
|
115
|
-
# Initialize the collidable points contact forces
|
116
|
-
contact_forces_points = None
|
117
|
-
|
118
|
-
# Initialize the contact forces, one per body
|
119
|
-
contact_forces_links = jnp.zeros_like(ode_input.physics_model.f_ext)
|
120
|
-
|
121
|
-
# Initialize the derivative of the tangential deformation
|
122
|
-
tangential_deformation_dot = jnp.zeros_like(
|
123
|
-
ode_state.soft_contacts.tangential_deformation
|
124
|
-
)
|
125
|
-
|
126
|
-
if physics_model.gc.body.size > 0:
|
127
|
-
(
|
128
|
-
contact_forces_links,
|
129
|
-
tangential_deformation_dot,
|
130
|
-
contact_forces_points,
|
131
|
-
) = compute_contact_forces(
|
132
|
-
physics_model=physics_model,
|
133
|
-
soft_contacts_params=soft_contacts_params,
|
134
|
-
ode_state=ode_state,
|
135
|
-
terrain=terrain,
|
136
|
-
)
|
137
|
-
|
138
|
-
# =====================
|
139
|
-
# Joint position limits
|
140
|
-
# =====================
|
141
|
-
|
142
|
-
if physics_model.dofs() > 0:
|
143
|
-
# Get the joint position limits
|
144
|
-
s_min, s_max = jnp.array(
|
145
|
-
[j.position_limit for j in physics_model.description.joints_dict.values()]
|
146
|
-
).T
|
147
|
-
|
148
|
-
# Get the spring/damper parameters of joint limits enforcement
|
149
|
-
k_damper = jnp.array(list(physics_model._joint_limit_damper.values()))
|
150
|
-
|
151
|
-
# Compute the joint torques that enforce joint limits
|
152
|
-
s = ode_state.physics_model.joint_positions
|
153
|
-
tau_min = jnp.where(s <= s_min, k_damper * (s_min - s), 0)
|
154
|
-
tau_max = jnp.where(s >= s_max, k_damper * (s_max - s), 0)
|
155
|
-
tau_limit = tau_max + tau_min
|
156
|
-
|
157
|
-
else:
|
158
|
-
tau_limit = jnp.zeros_like(ode_input.physics_model.tau)
|
159
|
-
|
160
|
-
# ==============
|
161
|
-
# Joint friction
|
162
|
-
# ==============
|
163
|
-
|
164
|
-
if physics_model.dofs() > 0:
|
165
|
-
# Static and viscous joint friction parameters
|
166
|
-
kc = jnp.array(list(physics_model._joint_friction_static.values()))
|
167
|
-
kv = jnp.array(list(physics_model._joint_friction_viscous.values()))
|
168
|
-
|
169
|
-
# Compute the joint friction torque
|
170
|
-
tau_friction = -(
|
171
|
-
jnp.diag(kc) @ jnp.sign(ode_state.physics_model.joint_positions)
|
172
|
-
+ jnp.diag(kv) @ ode_state.physics_model.joint_velocities
|
173
|
-
)
|
174
|
-
|
175
|
-
else:
|
176
|
-
tau_friction = jnp.zeros_like(ode_input.physics_model.tau)
|
177
|
-
|
178
|
-
# ========================
|
179
|
-
# Compute forward dynamics
|
180
|
-
# ========================
|
181
|
-
|
182
|
-
# Compute the total forces applied to the bodies
|
183
|
-
total_forces = ode_input.physics_model.f_ext + contact_forces_links
|
184
|
-
|
185
|
-
# Compute the joint torques to actuate
|
186
|
-
tau = ode_input.physics_model.tau + tau_friction + tau_limit
|
187
|
-
|
188
|
-
# Compute forward dynamics with the ABA algorithm
|
189
|
-
W_a_WB, qdd = algos.aba.aba(
|
190
|
-
model=physics_model,
|
191
|
-
xfb=ode_state.physics_model.xfb(),
|
192
|
-
q=ode_state.physics_model.joint_positions,
|
193
|
-
qd=ode_state.physics_model.joint_velocities,
|
194
|
-
tau=tau,
|
195
|
-
f_ext=total_forces,
|
196
|
-
)
|
197
|
-
|
198
|
-
# =========================================
|
199
|
-
# Compute the state derivative of base link
|
200
|
-
# =========================================
|
201
|
-
|
202
|
-
if not physics_model.is_floating_base:
|
203
|
-
W_Qd_B = jnp.zeros(4)
|
204
|
-
BW_v_WB = jnp.zeros(3)
|
205
|
-
|
206
|
-
else:
|
207
|
-
from jaxsim.math.conv import Convert
|
208
|
-
from jaxsim.math.quaternion import Quaternion
|
209
|
-
|
210
|
-
W_Qd_B = Quaternion.derivative(
|
211
|
-
quaternion=ode_state.physics_model.base_quaternion,
|
212
|
-
omega=ode_state.physics_model.base_angular_velocity,
|
213
|
-
omega_in_body_fixed=False,
|
214
|
-
).squeeze()
|
215
|
-
|
216
|
-
# Compute linear component of mixed velocity
|
217
|
-
BW_v_WB = Convert.velocities_threed(
|
218
|
-
v_6d=jnp.hstack(
|
219
|
-
[
|
220
|
-
ode_state.physics_model.base_linear_velocity,
|
221
|
-
ode_state.physics_model.base_angular_velocity,
|
222
|
-
]
|
223
|
-
),
|
224
|
-
p=ode_state.physics_model.base_position,
|
225
|
-
).squeeze()
|
226
|
-
|
227
|
-
# Derivative of xfb (floating-base state)
|
228
|
-
xd_fb = jnp.hstack([W_Qd_B, BW_v_WB, W_a_WB.squeeze()]).squeeze()
|
229
|
-
|
230
|
-
# =====================================
|
231
|
-
# Build the full derivative of ODEState
|
232
|
-
# =====================================
|
233
|
-
|
234
|
-
def fix_one_dof(vector: jtp.Vector) -> jtp.Vector | None:
|
235
|
-
"""Fix the shape of computed quantities for models with just 1 DoF."""
|
236
|
-
|
237
|
-
if vector is None:
|
238
|
-
return None
|
239
|
-
|
240
|
-
return jnp.array([vector]) if vector.shape == () else vector
|
241
|
-
|
242
|
-
# Fill the PhysicsModelState object included in the input ODEState to store the
|
243
|
-
# returned PhysicsModelState derivative
|
244
|
-
physics_model_state_derivative = ode_state.physics_model.replace(
|
245
|
-
joint_positions=fix_one_dof(ode_state.physics_model.joint_velocities.squeeze()),
|
246
|
-
joint_velocities=fix_one_dof(qdd.squeeze()),
|
247
|
-
base_quaternion=xd_fb.squeeze()[0:4],
|
248
|
-
base_position=xd_fb.squeeze()[4:7],
|
249
|
-
base_angular_velocity=xd_fb.squeeze()[10:13],
|
250
|
-
base_linear_velocity=xd_fb.squeeze()[7:10],
|
251
|
-
)
|
252
|
-
|
253
|
-
# Fill the SoftContactsState object included in the input ODEState to store the
|
254
|
-
# returned SoftContactsState derivative
|
255
|
-
soft_contacts_state_derivative = ode_state.soft_contacts.replace(
|
256
|
-
tangential_deformation=tangential_deformation_dot.squeeze(),
|
257
|
-
)
|
258
|
-
|
259
|
-
# We store the state derivative using the ODEState class so that the pytree
|
260
|
-
# structure remains consistent, allowing to use our generic pytree integrators
|
261
|
-
state_derivative = ode_data.ODEState(
|
262
|
-
physics_model=physics_model_state_derivative,
|
263
|
-
soft_contacts=soft_contacts_state_derivative,
|
264
|
-
)
|
265
|
-
|
266
|
-
# ===============================
|
267
|
-
# Build auxiliary data and return
|
268
|
-
# ===============================
|
269
|
-
|
270
|
-
# Real ODEInput containing the real joint forces that have been actuated and
|
271
|
-
# the total external forces (= original external forces + terrain + limits)
|
272
|
-
ode_input_real = ode_data.ODEInput(
|
273
|
-
physics_model=ode_data.PhysicsModelInput(tau=tau, f_ext=total_forces)
|
274
|
-
)
|
275
|
-
|
276
|
-
# Pack the inertial-fixed floating-base acceleration
|
277
|
-
W_nud_WB = jnp.hstack([W_a_WB.squeeze(), qdd.squeeze()])
|
278
|
-
|
279
|
-
# Build the auxiliary data
|
280
|
-
aux_dict = {
|
281
|
-
"model_acceleration": W_nud_WB,
|
282
|
-
"ode_input": ode_input,
|
283
|
-
"ode_input_real": ode_input_real,
|
284
|
-
"contact_forces_links": contact_forces_links,
|
285
|
-
"contact_forces_points": contact_forces_points,
|
286
|
-
"tangential_deformation_dot": tangential_deformation_dot,
|
287
|
-
}
|
288
|
-
|
289
|
-
# Return the state derivative as a generic PyTree, and the dict with auxiliary info
|
290
|
-
return state_derivative, aux_dict
|