jarviscore-framework 0.3.0__py3-none-any.whl → 0.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. examples/cloud_deployment_example.py +3 -3
  2. examples/{listeneragent_cognitive_discovery_example.py → customagent_cognitive_discovery_example.py} +6 -6
  3. examples/fastapi_integration_example.py +4 -4
  4. jarviscore/__init__.py +8 -11
  5. jarviscore/cli/smoketest.py +1 -1
  6. jarviscore/core/mesh.py +9 -0
  7. jarviscore/data/examples/cloud_deployment_example.py +3 -3
  8. jarviscore/data/examples/custom_profile_decorator.py +134 -0
  9. jarviscore/data/examples/custom_profile_wrap.py +168 -0
  10. jarviscore/data/examples/{listeneragent_cognitive_discovery_example.py → customagent_cognitive_discovery_example.py} +6 -6
  11. jarviscore/data/examples/fastapi_integration_example.py +4 -4
  12. jarviscore/docs/API_REFERENCE.md +32 -45
  13. jarviscore/docs/CHANGELOG.md +42 -0
  14. jarviscore/docs/CONFIGURATION.md +1 -1
  15. jarviscore/docs/CUSTOMAGENT_GUIDE.md +246 -153
  16. jarviscore/docs/GETTING_STARTED.md +186 -329
  17. jarviscore/docs/TROUBLESHOOTING.md +1 -1
  18. jarviscore/docs/USER_GUIDE.md +8 -9
  19. jarviscore/integrations/fastapi.py +4 -4
  20. jarviscore/p2p/peer_client.py +29 -2
  21. jarviscore/profiles/__init__.py +2 -4
  22. jarviscore/profiles/customagent.py +295 -74
  23. {jarviscore_framework-0.3.0.dist-info → jarviscore_framework-0.3.1.dist-info}/METADATA +61 -46
  24. {jarviscore_framework-0.3.0.dist-info → jarviscore_framework-0.3.1.dist-info}/RECORD +30 -29
  25. tests/test_13_dx_improvements.py +37 -37
  26. tests/test_15_llm_cognitive_discovery.py +18 -18
  27. tests/test_16_unified_dx_flow.py +3 -3
  28. jarviscore/profiles/listeneragent.py +0 -292
  29. {jarviscore_framework-0.3.0.dist-info → jarviscore_framework-0.3.1.dist-info}/WHEEL +0 -0
  30. {jarviscore_framework-0.3.0.dist-info → jarviscore_framework-0.3.1.dist-info}/licenses/LICENSE +0 -0
  31. {jarviscore_framework-0.3.0.dist-info → jarviscore_framework-0.3.1.dist-info}/top_level.txt +0 -0
@@ -28,10 +28,10 @@ import sys
28
28
 
29
29
  sys.path.insert(0, '.')
30
30
 
31
- from jarviscore.profiles import ListenerAgent
31
+ from jarviscore.profiles import CustomAgent
32
32
 
33
33
 
34
- class StandaloneProcessor(ListenerAgent):
34
+ class StandaloneProcessor(CustomAgent):
35
35
  """
36
36
  Example standalone agent that joins mesh independently.
37
37
 
@@ -143,7 +143,7 @@ async def main():
143
143
  print("Listening for peer requests...")
144
144
  print("Press Ctrl+C to stop.\n")
145
145
 
146
- # Run agent (ListenerAgent's run() handles the message loop)
146
+ # Run agent (CustomAgent's run() handles the message loop)
147
147
  try:
148
148
  await agent.run()
149
149
  except asyncio.CancelledError:
@@ -1,9 +1,9 @@
1
1
  """
2
- ListenerAgent + Cognitive Discovery Example
2
+ CustomAgent + Cognitive Discovery Example
3
3
 
4
4
  Demonstrates two v0.3.0 features:
5
5
 
6
- 1. ListenerAgent - Handler-based P2P agents (no run() loop needed)
6
+ 1. CustomAgent - Handler-based P2P agents (no run() loop needed)
7
7
  - on_peer_request() handles incoming requests
8
8
  - on_peer_notify() handles broadcast notifications
9
9
 
@@ -25,18 +25,18 @@ from pathlib import Path
25
25
  sys.path.insert(0, str(Path(__file__).parent.parent))
26
26
 
27
27
  from jarviscore import Mesh
28
- from jarviscore.profiles import ListenerAgent
28
+ from jarviscore.profiles import CustomAgent
29
29
 
30
30
 
31
31
  # ═══════════════════════════════════════════════════════════════════════════════
32
32
  # SPECIALIST AGENT - Responds to requests from other agents
33
33
  # ═══════════════════════════════════════════════════════════════════════════════
34
34
 
35
- class AnalystAgent(ListenerAgent):
35
+ class AnalystAgent(CustomAgent):
36
36
  """
37
37
  Specialist agent that handles analysis requests.
38
38
 
39
- Uses ListenerAgent profile - just implement handlers, no run() loop needed.
39
+ Uses CustomAgent profile - just implement handlers, no run() loop needed.
40
40
  """
41
41
  role = "analyst"
42
42
  capabilities = ["data_analysis", "statistics", "insights"]
@@ -62,7 +62,7 @@ class AnalystAgent(ListenerAgent):
62
62
  # COORDINATOR AGENT - Uses LLM with cognitive discovery
63
63
  # ═══════════════════════════════════════════════════════════════════════════════
64
64
 
65
- class CoordinatorAgent(ListenerAgent):
65
+ class CoordinatorAgent(CustomAgent):
66
66
  """
67
67
  Coordinator agent that uses LLM with dynamic peer discovery.
68
68
 
@@ -5,7 +5,7 @@ Demonstrates JarvisLifespan for 3-line FastAPI integration with autonomous agent
5
5
 
6
6
  Features shown:
7
7
  1. JarvisLifespan - Automatic agent lifecycle management
8
- 2. ListenerAgent - API-first agents with on_peer_request handlers
8
+ 2. CustomAgent - API-first agents with on_peer_request handlers
9
9
  3. Cognitive Discovery - get_cognitive_context() for LLM awareness
10
10
  4. Autonomous Agents - Each agent has MESH as a TOOL, LLM decides when to delegate
11
11
 
@@ -45,14 +45,14 @@ except ImportError:
45
45
  FASTAPI_AVAILABLE = False
46
46
  print("FastAPI not installed. Run: pip install fastapi uvicorn")
47
47
 
48
- from jarviscore.profiles import ListenerAgent
48
+ from jarviscore.profiles import CustomAgent
49
49
 
50
50
 
51
51
  # ═══════════════════════════════════════════════════════════════════════════════
52
52
  # LLM-POWERED AGENT BASE - Each agent can discover and delegate
53
53
  # ═══════════════════════════════════════════════════════════════════════════════
54
54
 
55
- class LLMAgent(ListenerAgent):
55
+ class LLMAgent(CustomAgent):
56
56
  """
57
57
  Base for LLM-powered agents that can discover and delegate to peers.
58
58
 
@@ -544,7 +544,7 @@ def main():
544
544
  print("=" * 60)
545
545
  print("\n - FastAPI Integration:")
546
546
  print(" - JarvisLifespan for one-line integration")
547
- print(" - ListenerAgent with on_peer_request handlers")
547
+ print(" - CustomAgent with on_peer_request handlers")
548
548
  print(" - Cognitive discovery via get_cognitive_context()")
549
549
  print("\n - Cloud Deployment:")
550
550
  print(" - Each agent has MESH as a TOOL")
jarviscore/__init__.py CHANGED
@@ -4,16 +4,15 @@ JarvisCore - P2P Distributed Agent Framework
4
4
  A production-grade framework for building autonomous agent systems with:
5
5
  - P2P coordination via SWIM protocol
6
6
  - Workflow orchestration with dependencies
7
- - Three agent profiles: AutoAgent, CustomAgent, and ListenerAgent
7
+ - Two agent profiles: AutoAgent and CustomAgent
8
8
 
9
9
  Profiles:
10
- AutoAgent - LLM generates and executes code from prompts (autonomous mode)
11
- CustomAgent - You provide execute_task() or run() (p2p/distributed modes)
12
- ListenerAgent - API-first agents with background P2P (just implement handlers)
10
+ AutoAgent - LLM generates and executes code from prompts (autonomous mode)
11
+ CustomAgent - You provide handlers or execute_task() (p2p/distributed modes)
13
12
 
14
13
  Modes:
15
14
  autonomous - Workflow engine only (AutoAgent)
16
- p2p - P2P coordinator only (CustomAgent/ListenerAgent with run() loops)
15
+ p2p - P2P coordinator only (CustomAgent with run() loop)
17
16
  distributed - Both workflow + P2P (CustomAgent with execute_task())
18
17
 
19
18
  Quick Start (AutoAgent - autonomous mode):
@@ -30,12 +29,12 @@ Quick Start (AutoAgent - autonomous mode):
30
29
  await mesh.start()
31
30
  results = await mesh.workflow("calc", [{"agent": "calculator", "task": "Calculate 10!"}])
32
31
 
33
- Quick Start (ListenerAgent + FastAPI):
32
+ Quick Start (CustomAgent + FastAPI):
34
33
  from fastapi import FastAPI
35
- from jarviscore.profiles import ListenerAgent
34
+ from jarviscore.profiles import CustomAgent
36
35
  from jarviscore.integrations.fastapi import JarvisLifespan
37
36
 
38
- class MyAgent(ListenerAgent):
37
+ class MyAgent(CustomAgent):
39
38
  role = "processor"
40
39
  capabilities = ["processing"]
41
40
 
@@ -61,7 +60,7 @@ Quick Start (CustomAgent - distributed mode):
61
60
  results = await mesh.workflow("demo", [{"agent": "processor", "task": "hello"}])
62
61
  """
63
62
 
64
- __version__ = "0.3.0"
63
+ __version__ = "0.3.1"
65
64
  __author__ = "JarvisCore Contributors"
66
65
  __license__ = "MIT"
67
66
 
@@ -73,7 +72,6 @@ from jarviscore.core.mesh import Mesh, MeshMode
73
72
  # Execution profiles
74
73
  from jarviscore.profiles.autoagent import AutoAgent
75
74
  from jarviscore.profiles.customagent import CustomAgent
76
- from jarviscore.profiles.listeneragent import ListenerAgent
77
75
 
78
76
  # Custom Profile: Decorator, Wrapper, and Context
79
77
  from jarviscore.adapter import jarvis_agent, wrap
@@ -99,7 +97,6 @@ __all__ = [
99
97
  # Profiles
100
98
  "AutoAgent",
101
99
  "CustomAgent",
102
- "ListenerAgent",
103
100
 
104
101
  # Custom Profile (decorator and wrapper)
105
102
  "jarvis_agent",
@@ -313,7 +313,7 @@ class SmokeTest:
313
313
  print("\nJarvisCore is working correctly. Next steps:")
314
314
  print(" 1. AutoAgent example: python examples/calculator_agent_example.py")
315
315
  print(" 2. CustomAgent P2P: python examples/customagent_p2p_example.py")
316
- print(" 3. ListenerAgent (v0.3): python examples/listeneragent_cognitive_discovery_example.py")
316
+ print(" 3. Cognitive Discovery: python examples/customagent_cognitive_discovery_example.py")
317
317
  print(" 4. FastAPI (v0.3): python examples/fastapi_integration_example.py")
318
318
  print(" 5. Cloud deploy (v0.3): python examples/cloud_deployment_example.py")
319
319
  print("\nDocumentation:")
jarviscore/core/mesh.py CHANGED
@@ -256,9 +256,18 @@ class Mesh:
256
256
  await self._p2p_coordinator.start()
257
257
  self._logger.info("✓ P2P coordinator started")
258
258
 
259
+ # Wait for mesh to stabilize before announcing
260
+ # Increased delay to ensure SWIM fully connects all nodes
261
+ await asyncio.sleep(5)
262
+ self._logger.info("Waited for mesh stabilization")
263
+
259
264
  # Announce capabilities to network
260
265
  await self._p2p_coordinator.announce_capabilities()
261
266
  self._logger.info("✓ Capabilities announced to mesh")
267
+
268
+ # Request capabilities from existing peers (for late-joiners)
269
+ await self._p2p_coordinator.request_peer_capabilities()
270
+ self._logger.info("✓ Requested capabilities from existing peers")
262
271
 
263
272
  # Inject PeerClients for p2p mode
264
273
  if self.mode == MeshMode.P2P:
@@ -28,10 +28,10 @@ import sys
28
28
 
29
29
  sys.path.insert(0, '.')
30
30
 
31
- from jarviscore.profiles import ListenerAgent
31
+ from jarviscore.profiles import CustomAgent
32
32
 
33
33
 
34
- class StandaloneProcessor(ListenerAgent):
34
+ class StandaloneProcessor(CustomAgent):
35
35
  """
36
36
  Example standalone agent that joins mesh independently.
37
37
 
@@ -143,7 +143,7 @@ async def main():
143
143
  print("Listening for peer requests...")
144
144
  print("Press Ctrl+C to stop.\n")
145
145
 
146
- # Run agent (ListenerAgent's run() handles the message loop)
146
+ # Run agent (CustomAgent's run() handles the message loop)
147
147
  try:
148
148
  await agent.run()
149
149
  except asyncio.CancelledError:
@@ -0,0 +1,134 @@
1
+ """
2
+ Custom Profile Example: Using @jarvis_agent Decorator
3
+
4
+ This example shows how to use the @jarvis_agent decorator to convert
5
+ any Python class into a JarvisCore agent without modifying the class.
6
+
7
+ Use Case: You have existing Python classes/agents and want JarvisCore
8
+ to handle orchestration (data handoff, dependencies, shared memory).
9
+ """
10
+ import asyncio
11
+ from jarviscore import Mesh, jarvis_agent, JarvisContext
12
+
13
+
14
+ # Example 1: Simple decorator (no context needed)
15
+ @jarvis_agent(role="processor", capabilities=["data_processing"])
16
+ class DataProcessor:
17
+ """Simple data processor - doubles input values."""
18
+
19
+ def run(self, data):
20
+ """Process data by doubling values."""
21
+ if isinstance(data, list):
22
+ return {"processed": [x * 2 for x in data]}
23
+ return {"processed": data * 2}
24
+
25
+
26
+ # Example 2: Decorator with context access
27
+ @jarvis_agent(role="aggregator", capabilities=["aggregation"])
28
+ class Aggregator:
29
+ """Aggregates results from previous steps using JarvisContext."""
30
+
31
+ def run(self, task, ctx: JarvisContext):
32
+ """
33
+ Access previous step results via ctx.previous().
34
+
35
+ Args:
36
+ task: The task description
37
+ ctx: JarvisContext with memory and dependency access
38
+ """
39
+ # Get output from a specific previous step
40
+ processed = ctx.previous("step1")
41
+
42
+ if processed:
43
+ data = processed.get("processed", [])
44
+ return {
45
+ "sum": sum(data) if isinstance(data, list) else data,
46
+ "count": len(data) if isinstance(data, list) else 1,
47
+ "source_step": "step1"
48
+ }
49
+
50
+ return {"error": "No previous data found"}
51
+
52
+
53
+ # Example 3: Decorator with custom execute method
54
+ @jarvis_agent(role="validator", capabilities=["validation"], execute_method="validate")
55
+ class DataValidator:
56
+ """Validates data using a custom method name."""
57
+
58
+ def validate(self, data):
59
+ """Custom execute method - validates input data."""
60
+ if isinstance(data, list):
61
+ return {
62
+ "valid": all(isinstance(x, (int, float)) for x in data),
63
+ "count": len(data),
64
+ "type": "list"
65
+ }
66
+ return {
67
+ "valid": isinstance(data, (int, float)),
68
+ "type": type(data).__name__
69
+ }
70
+
71
+
72
+ async def main():
73
+ """Run a multi-step workflow with custom profile agents."""
74
+ print("=" * 60)
75
+ print(" Custom Profile Example: @jarvis_agent Decorator")
76
+ print("=" * 60)
77
+
78
+ # Create mesh in autonomous mode
79
+ mesh = Mesh(mode="autonomous")
80
+
81
+ # Add our decorated agents
82
+ mesh.add(DataProcessor)
83
+ mesh.add(Aggregator)
84
+ mesh.add(DataValidator)
85
+
86
+ # Start the mesh
87
+ await mesh.start()
88
+
89
+ try:
90
+ # Execute a multi-step workflow
91
+ print("\nExecuting workflow with 3 steps...\n")
92
+
93
+ results = await mesh.workflow("custom-profile-demo", [
94
+ {
95
+ "id": "step1",
96
+ "agent": "processor",
97
+ "task": "Process input data",
98
+ "params": {"data": [1, 2, 3, 4, 5]}
99
+ },
100
+ {
101
+ "id": "step2",
102
+ "agent": "aggregator",
103
+ "task": "Aggregate processed results",
104
+ "depends_on": ["step1"] # Wait for step1
105
+ },
106
+ {
107
+ "id": "step3",
108
+ "agent": "validator",
109
+ "task": "Validate original data",
110
+ "params": {"data": [1, 2, 3, 4, 5]}
111
+ }
112
+ ])
113
+
114
+ # Print results
115
+ print("Results:")
116
+ print("-" * 40)
117
+
118
+ for i, result in enumerate(results):
119
+ step_name = ["Processor", "Aggregator", "Validator"][i]
120
+ print(f"\n{step_name} (step{i+1}):")
121
+ print(f" Status: {result.get('status')}")
122
+ print(f" Output: {result.get('output')}")
123
+
124
+ print("\n" + "=" * 60)
125
+ print(" Workflow completed successfully!")
126
+ print("=" * 60)
127
+
128
+ finally:
129
+ # Stop the mesh
130
+ await mesh.stop()
131
+
132
+
133
+ if __name__ == "__main__":
134
+ asyncio.run(main())
@@ -0,0 +1,168 @@
1
+ """
2
+ Custom Profile Example: Using wrap() Function
3
+
4
+ This example shows how to use the wrap() function to convert
5
+ an existing instance into a JarvisCore agent.
6
+
7
+ Use Case: You have an already-instantiated object (like a LangChain
8
+ agent, CrewAI agent, or any configured instance) and want to use it
9
+ with JarvisCore orchestration.
10
+ """
11
+ import asyncio
12
+ from jarviscore import Mesh, wrap, JarvisContext
13
+
14
+
15
+ # Simulate an existing "LangChain-like" agent
16
+ class ExternalLLMAgent:
17
+ """
18
+ Simulates an external LLM agent (like LangChain).
19
+ In real usage, this would be your actual LangChain/CrewAI agent.
20
+ """
21
+
22
+ def __init__(self, model_name: str, temperature: float = 0.7):
23
+ self.model_name = model_name
24
+ self.temperature = temperature
25
+ print(f" Initialized ExternalLLMAgent with {model_name}")
26
+
27
+ def invoke(self, query: str) -> dict:
28
+ """LangChain-style invoke method."""
29
+ # Simulate LLM response
30
+ return {
31
+ "answer": f"Response to '{query}' from {self.model_name}",
32
+ "model": self.model_name,
33
+ "tokens_used": len(query.split()) * 10
34
+ }
35
+
36
+
37
+ # Simulate a data processing service
38
+ class DataService:
39
+ """Simulates an external data processing service."""
40
+
41
+ def __init__(self, api_url: str):
42
+ self.api_url = api_url
43
+ print(f" Initialized DataService with {api_url}")
44
+
45
+ def run(self, data):
46
+ """Process data through the service."""
47
+ if isinstance(data, list):
48
+ return {
49
+ "transformed": [x ** 2 for x in data],
50
+ "source": self.api_url
51
+ }
52
+ return {"transformed": data ** 2, "source": self.api_url}
53
+
54
+
55
+ # Simulate an agent that needs context
56
+ class ContextAwareProcessor:
57
+ """Agent that uses JarvisContext to access previous results."""
58
+
59
+ def run(self, task, ctx: JarvisContext):
60
+ """Process with context access."""
61
+ # Get all previous results
62
+ all_previous = ctx.all_previous()
63
+
64
+ summary = {
65
+ "task": task,
66
+ "previous_steps": list(all_previous.keys()),
67
+ "combined_data": {}
68
+ }
69
+
70
+ for step_id, output in all_previous.items():
71
+ if isinstance(output, dict):
72
+ summary["combined_data"][step_id] = output
73
+
74
+ return summary
75
+
76
+
77
+ async def main():
78
+ """Demonstrate wrapping existing instances."""
79
+ print("=" * 60)
80
+ print(" Custom Profile Example: wrap() Function")
81
+ print("=" * 60)
82
+
83
+ # Create instances of "external" agents
84
+ print("\nCreating external agent instances...")
85
+ llm_agent = ExternalLLMAgent(model_name="gpt-4-turbo", temperature=0.3)
86
+ data_service = DataService(api_url="https://api.example.com/process")
87
+ context_processor = ContextAwareProcessor()
88
+
89
+ # Wrap them for JarvisCore
90
+ print("\nWrapping instances for JarvisCore...")
91
+
92
+ wrapped_llm = wrap(
93
+ llm_agent,
94
+ role="llm_assistant",
95
+ capabilities=["chat", "qa"],
96
+ execute_method="invoke" # LangChain uses "invoke"
97
+ )
98
+
99
+ wrapped_data = wrap(
100
+ data_service,
101
+ role="data_processor",
102
+ capabilities=["data_processing", "transformation"]
103
+ # execute_method auto-detected as "run"
104
+ )
105
+
106
+ wrapped_context = wrap(
107
+ context_processor,
108
+ role="context_aggregator",
109
+ capabilities=["aggregation", "summary"]
110
+ )
111
+
112
+ # Create mesh and add wrapped agents
113
+ mesh = Mesh(mode="autonomous")
114
+ mesh.add(wrapped_llm)
115
+ mesh.add(wrapped_data)
116
+ mesh.add(wrapped_context)
117
+
118
+ await mesh.start()
119
+
120
+ try:
121
+ print("\nExecuting workflow with wrapped agents...\n")
122
+
123
+ results = await mesh.workflow("wrap-demo", [
124
+ {
125
+ "id": "llm_step",
126
+ "agent": "llm_assistant",
127
+ "task": "What is the capital of France?",
128
+ "params": {"query": "What is the capital of France?"}
129
+ },
130
+ {
131
+ "id": "data_step",
132
+ "agent": "data_processor",
133
+ "task": "Transform numbers",
134
+ "params": {"data": [1, 2, 3, 4, 5]}
135
+ },
136
+ {
137
+ "id": "summary_step",
138
+ "agent": "context_aggregator",
139
+ "task": "Summarize all results",
140
+ "depends_on": ["llm_step", "data_step"]
141
+ }
142
+ ])
143
+
144
+ # Print results
145
+ print("Results:")
146
+ print("-" * 40)
147
+
148
+ step_names = ["LLM Assistant", "Data Processor", "Context Aggregator"]
149
+ for i, result in enumerate(results):
150
+ print(f"\n{step_names[i]}:")
151
+ print(f" Status: {result.get('status')}")
152
+ output = result.get('output', {})
153
+ if isinstance(output, dict):
154
+ for key, value in output.items():
155
+ print(f" {key}: {value}")
156
+ else:
157
+ print(f" Output: {output}")
158
+
159
+ print("\n" + "=" * 60)
160
+ print(" Workflow with wrapped instances completed!")
161
+ print("=" * 60)
162
+
163
+ finally:
164
+ await mesh.stop()
165
+
166
+
167
+ if __name__ == "__main__":
168
+ asyncio.run(main())
@@ -1,9 +1,9 @@
1
1
  """
2
- ListenerAgent + Cognitive Discovery Example
2
+ CustomAgent + Cognitive Discovery Example
3
3
 
4
4
  Demonstrates two v0.3.0 features:
5
5
 
6
- 1. ListenerAgent - Handler-based P2P agents (no run() loop needed)
6
+ 1. CustomAgent - Handler-based P2P agents (no run() loop needed)
7
7
  - on_peer_request() handles incoming requests
8
8
  - on_peer_notify() handles broadcast notifications
9
9
 
@@ -25,18 +25,18 @@ from pathlib import Path
25
25
  sys.path.insert(0, str(Path(__file__).parent.parent))
26
26
 
27
27
  from jarviscore import Mesh
28
- from jarviscore.profiles import ListenerAgent
28
+ from jarviscore.profiles import CustomAgent
29
29
 
30
30
 
31
31
  # ═══════════════════════════════════════════════════════════════════════════════
32
32
  # SPECIALIST AGENT - Responds to requests from other agents
33
33
  # ═══════════════════════════════════════════════════════════════════════════════
34
34
 
35
- class AnalystAgent(ListenerAgent):
35
+ class AnalystAgent(CustomAgent):
36
36
  """
37
37
  Specialist agent that handles analysis requests.
38
38
 
39
- Uses ListenerAgent profile - just implement handlers, no run() loop needed.
39
+ Uses CustomAgent profile - just implement handlers, no run() loop needed.
40
40
  """
41
41
  role = "analyst"
42
42
  capabilities = ["data_analysis", "statistics", "insights"]
@@ -62,7 +62,7 @@ class AnalystAgent(ListenerAgent):
62
62
  # COORDINATOR AGENT - Uses LLM with cognitive discovery
63
63
  # ═══════════════════════════════════════════════════════════════════════════════
64
64
 
65
- class CoordinatorAgent(ListenerAgent):
65
+ class CoordinatorAgent(CustomAgent):
66
66
  """
67
67
  Coordinator agent that uses LLM with dynamic peer discovery.
68
68
 
@@ -5,7 +5,7 @@ Demonstrates JarvisLifespan for 3-line FastAPI integration with autonomous agent
5
5
 
6
6
  Features shown:
7
7
  1. JarvisLifespan - Automatic agent lifecycle management
8
- 2. ListenerAgent - API-first agents with on_peer_request handlers
8
+ 2. CustomAgent - API-first agents with on_peer_request handlers
9
9
  3. Cognitive Discovery - get_cognitive_context() for LLM awareness
10
10
  4. Autonomous Agents - Each agent has MESH as a TOOL, LLM decides when to delegate
11
11
 
@@ -45,14 +45,14 @@ except ImportError:
45
45
  FASTAPI_AVAILABLE = False
46
46
  print("FastAPI not installed. Run: pip install fastapi uvicorn")
47
47
 
48
- from jarviscore.profiles import ListenerAgent
48
+ from jarviscore.profiles import CustomAgent
49
49
 
50
50
 
51
51
  # ═══════════════════════════════════════════════════════════════════════════════
52
52
  # LLM-POWERED AGENT BASE - Each agent can discover and delegate
53
53
  # ═══════════════════════════════════════════════════════════════════════════════
54
54
 
55
- class LLMAgent(ListenerAgent):
55
+ class LLMAgent(CustomAgent):
56
56
  """
57
57
  Base for LLM-powered agents that can discover and delegate to peers.
58
58
 
@@ -544,7 +544,7 @@ def main():
544
544
  print("=" * 60)
545
545
  print("\n - FastAPI Integration:")
546
546
  print(" - JarvisLifespan for one-line integration")
547
- print(" - ListenerAgent with on_peer_request handlers")
547
+ print(" - CustomAgent with on_peer_request handlers")
548
548
  print(" - Cognitive discovery via get_cognitive_context()")
549
549
  print("\n - Cloud Deployment:")
550
550
  print(" - Each agent has MESH as a TOOL")