jarvis-ai-assistant 0.2.5__py3-none-any.whl → 0.2.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
jarvis/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
1
  # -*- coding: utf-8 -*-
2
2
  """Jarvis AI Assistant"""
3
3
 
4
- __version__ = "0.2.5"
4
+ __version__ = "0.2.6"
@@ -396,7 +396,7 @@ class Agent:
396
396
  """
397
397
  return execute_tool_call(response, self)
398
398
 
399
- def _complete_task(self) -> str:
399
+ def _complete_task(self, auto_completed: bool = False) -> str:
400
400
  """完成任务并生成总结(如果需要)
401
401
 
402
402
  返回:
@@ -407,8 +407,26 @@ class Agent:
407
407
  2. 对于子Agent: 可能会生成总结(如果启用)
408
408
  3. 使用spinner显示生成状态
409
409
  """
410
+ satisfaction_feedback = ""
411
+
412
+ if not auto_completed and self.use_analysis:
413
+ if user_confirm("您对本次任务的完成是否满意?", True):
414
+ satisfaction_feedback = "\n\n用户对本次任务的完成表示满意。"
415
+ else:
416
+ feedback = self.multiline_inputer(
417
+ "请提供您的反馈意见(可留空直接回车):"
418
+ )
419
+ if feedback:
420
+ satisfaction_feedback = (
421
+ f"\n\n用户对本次任务的完成不满意,反馈意见如下:\n{feedback}"
422
+ )
423
+ else:
424
+ satisfaction_feedback = (
425
+ "\n\n用户对本次任务的完成不满意,未提供具体反馈意见。"
426
+ )
427
+
410
428
  if self.use_analysis:
411
- self._analysis_task()
429
+ self._analysis_task(satisfaction_feedback)
412
430
  if self.need_summary:
413
431
  print("📄 正在生成总结...")
414
432
  self.session.prompt = self.summary_prompt
@@ -420,11 +438,13 @@ class Agent:
420
438
 
421
439
  return "任务完成"
422
440
 
423
- def _analysis_task(self):
441
+ def _analysis_task(self, satisfaction_feedback: str = ""):
424
442
  print("🔍 正在分析任务...")
425
443
  try:
426
444
  # 让模型判断是否需要生成方法论
427
445
  analysis_prompt = TASK_ANALYSIS_PROMPT
446
+ if satisfaction_feedback:
447
+ analysis_prompt += satisfaction_feedback
428
448
 
429
449
  self.session.prompt = analysis_prompt
430
450
  if not self.model:
@@ -452,6 +472,23 @@ class Agent:
452
472
  else ""
453
473
  )
454
474
 
475
+ # 检查工具列表并添加记忆工具相关提示
476
+ memory_prompts = ""
477
+ tool_registry = self.get_tool_registry()
478
+ if tool_registry:
479
+ tool_names = [tool.name for tool in tool_registry.tools.values()]
480
+
481
+ # 如果有save_memory工具,添加相关提示
482
+ if "save_memory" in tool_names:
483
+ memory_prompts += "\n - 如果有关键信息需要记忆,请调用save_memory工具进行记忆:"
484
+ memory_prompts += "\n * project_long_term: 保存与当前项目相关的长期信息"
485
+ memory_prompts += "\n * global_long_term: 保存通用的信息、用户喜好、知识、方法等"
486
+ memory_prompts += "\n * short_term: 保存当前任务相关的临时信息"
487
+
488
+ # 如果有retrieve_memory工具,添加相关提示
489
+ if "retrieve_memory" in tool_names:
490
+ memory_prompts += "\n - 如果需要检索相关记忆信息,请调用retrieve_memory工具"
491
+
455
492
  addon_prompt = f"""
456
493
  <system_prompt>
457
494
  请判断是否已经完成任务,如果已经完成:
@@ -461,7 +498,7 @@ class Agent:
461
498
  - 仅包含一个操作
462
499
  - 如果信息不明确,请请求用户补充
463
500
  - 如果执行过程中连续失败5次,请使用ask_user询问用户操作
464
- - 操作列表:{action_handlers}
501
+ - 操作列表:{action_handlers}{memory_prompts}
465
502
  </system_prompt>
466
503
 
467
504
  请继续。
@@ -547,7 +584,7 @@ class Agent:
547
584
  continue
548
585
 
549
586
  if self.auto_complete and ot("!!!COMPLETE!!!") in current_response:
550
- return self._complete_task()
587
+ return self._complete_task(auto_completed=True)
551
588
 
552
589
  # 获取用户输入
553
590
  user_input = self.multiline_inputer(
@@ -560,7 +597,7 @@ class Agent:
560
597
  continue
561
598
 
562
599
  if not user_input:
563
- return self._complete_task()
600
+ return self._complete_task(auto_completed=False)
564
601
 
565
602
  except Exception as e:
566
603
  PrettyOutput.print(f"任务失败: {str(e)}", OutputType.ERROR)
@@ -571,6 +608,23 @@ class Agent:
571
608
  return f"Task failed: {str(e)}"
572
609
 
573
610
  def _first_run(self):
611
+ # 获取所有记忆标签并添加到提示中
612
+ from jarvis.jarvis_utils.globals import get_all_memory_tags
613
+
614
+ memory_tags = get_all_memory_tags()
615
+ memory_tags_prompt = ""
616
+
617
+ if any(tags for tags in memory_tags.values()):
618
+ memory_tags_prompt = "\n\n系统中存在以下记忆标签,你可以使用 retrieve_memory 工具检索相关记忆:"
619
+ for memory_type, tags in memory_tags.items():
620
+ if tags:
621
+ type_name = {
622
+ "short_term": "短期记忆",
623
+ "project_long_term": "项目长期记忆",
624
+ "global_long_term": "全局长期记忆"
625
+ }.get(memory_type, memory_type)
626
+ memory_tags_prompt += f"\n- {type_name}: {', '.join(tags)}"
627
+
574
628
  # 如果有上传文件,先上传文件
575
629
  if self.model and self.model.support_upload_files():
576
630
  if self.use_methodology:
@@ -583,12 +637,12 @@ class Agent:
583
637
  msg = self.session.prompt
584
638
  for handler in self.input_handler:
585
639
  msg, _ = handler(msg, self)
586
- self.session.prompt = f"{self.session.prompt}\n\n以下是历史类似问题的执行经验,可参考:\n{load_methodology(msg, self.get_tool_registry())}"
640
+ self.session.prompt = f"{self.session.prompt}\n\n以下是历史类似问题的执行经验,可参考:\n{load_methodology(msg, self.get_tool_registry())}{memory_tags_prompt}"
587
641
  else:
588
642
  if self.files:
589
- self.session.prompt = f"{self.session.prompt}\n\n上传的文件包含历史对话信息和方法论文件,可以从中获取一些经验信息。"
643
+ self.session.prompt = f"{self.session.prompt}\n\n上传的文件包含历史对话信息和方法论文件,可以从中获取一些经验信息。{memory_tags_prompt}"
590
644
  else:
591
- self.session.prompt = f"{self.session.prompt}\n\n上传的文件包含历史对话信息,可以从中获取一些经验信息。"
645
+ self.session.prompt = f"{self.session.prompt}\n\n上传的文件包含历史对话信息,可以从中获取一些经验信息。{memory_tags_prompt}"
592
646
  elif self.files:
593
647
  if not self.model.upload_files(self.files):
594
648
  PrettyOutput.print(
@@ -604,6 +658,10 @@ class Agent:
604
658
  for handler in self.input_handler:
605
659
  msg, _ = handler(msg, self)
606
660
  self.session.prompt = f"{self.session.prompt}\n\n以下是历史类似问题的执行经验,可参考:\n{load_methodology(msg, self.get_tool_registry())}"
661
+
662
+ # 添加记忆标签提示
663
+ if memory_tags_prompt:
664
+ self.session.prompt = f"{self.session.prompt}{memory_tags_prompt}"
607
665
 
608
666
  self.first = False
609
667
 
@@ -204,9 +204,9 @@ class EditFileHandler(OutputHandler):
204
204
  found = False
205
205
 
206
206
  if exact_search in modified_content:
207
- # 直接执行替换(保留所有原始格式)
207
+ # 直接执行替换(保留所有原始格式),只替换第一个匹配
208
208
  modified_content = modified_content.replace(
209
- exact_search, replace_text
209
+ exact_search, replace_text, 1
210
210
  )
211
211
  print(f"✅ 补丁 #{patch_count} 应用成功")
212
212
  found = True
@@ -222,7 +222,7 @@ class EditFileHandler(OutputHandler):
222
222
  stripped_replace = replace_text[1:-1]
223
223
  if stripped_search in modified_content:
224
224
  modified_content = modified_content.replace(
225
- stripped_search, stripped_replace
225
+ stripped_search, stripped_replace, 1
226
226
  )
227
227
  print(f"✅ 补丁 #{patch_count} 应用成功 (自动去除首尾换行)")
228
228
  found = True
@@ -251,7 +251,7 @@ class EditFileHandler(OutputHandler):
251
251
  )
252
252
  if indented_search in modified_content:
253
253
  modified_content = modified_content.replace(
254
- indented_search, indented_replace
254
+ indented_search, indented_replace, 1
255
255
  )
256
256
  print(
257
257
  f"✅ 补丁 #{patch_count} 应用成功 (自动增加 {space_count} 个空格缩进)"
@@ -65,6 +65,8 @@ class CodeAgent:
65
65
  "ask_user",
66
66
  "read_code",
67
67
  "rewrite_file",
68
+ "save_memory",
69
+ "retrieve_memory",
68
70
  ]
69
71
  )
70
72
  code_system_prompt = """
@@ -269,7 +271,7 @@ class CodeAgent:
269
271
  return
270
272
 
271
273
  PrettyOutput.print(
272
- "⚠️ 即将修改git换行符敏感设置,这会影响所有文件的换行符处理方式",
274
+ "⚠️ 正在修改git换行符敏感设置,这会影响所有文件的换行符处理方式",
273
275
  OutputType.WARNING,
274
276
  )
275
277
  print("将进行以下设置:")
@@ -277,18 +279,15 @@ class CodeAgent:
277
279
  current = current_settings.get(key, "未设置")
278
280
  print(f" {key}: {current} -> {value}")
279
281
 
280
- if user_confirm("是否继续修改git换行符敏感设置?", True):
281
- for key, value in target_settings.items():
282
- subprocess.run(["git", "config", key, value], check=True)
282
+ # 直接执行设置,不需要用户确认
283
+ for key, value in target_settings.items():
284
+ subprocess.run(["git", "config", key, value], check=True)
283
285
 
284
- # 对于Windows系统,提示用户可以创建.gitattributes文件
285
- if sys.platform.startswith("win"):
286
- self._handle_windows_line_endings()
286
+ # 对于Windows系统,提示用户可以创建.gitattributes文件
287
+ if sys.platform.startswith("win"):
288
+ self._handle_windows_line_endings()
287
289
 
288
- print("✅ git换行符敏感设置已更新")
289
- else:
290
- print("❌ 用户取消修改git换行符敏感设置")
291
- sys.exit(0)
290
+ print("✅ git换行符敏感设置已更新")
292
291
 
293
292
  def _handle_windows_line_endings(self) -> None:
294
293
  """在Windows系统上处理换行符问题,提供建议而非强制修改"""
@@ -7,6 +7,7 @@ import yaml
7
7
  from jarvis.jarvis_multi_agent import MultiAgent
8
8
  from jarvis.jarvis_utils.input import get_multiline_input
9
9
  from jarvis.jarvis_utils.utils import init_env
10
+ from jarvis.jarvis_utils.output import OutputType, PrettyOutput
10
11
 
11
12
  app = typer.Typer(help="多智能体系统启动器")
12
13
 
@@ -0,0 +1,206 @@
1
+ # -*- coding: utf-8 -*-
2
+ import json
3
+ import random
4
+ from pathlib import Path
5
+ from typing import Any, Dict, List, Optional
6
+
7
+ from jarvis.jarvis_utils.config import get_data_dir
8
+ from jarvis.jarvis_utils.output import OutputType, PrettyOutput
9
+ from jarvis.jarvis_utils.globals import get_short_term_memories
10
+
11
+
12
+ class RetrieveMemoryTool:
13
+ """检索记忆工具,用于从长短期记忆系统中检索信息"""
14
+
15
+ name = "retrieve_memory"
16
+ description = """从长短期记忆系统中检索信息。
17
+
18
+ 支持的记忆类型:
19
+ - project_long_term: 项目长期记忆(与当前项目相关的信息)
20
+ - global_long_term: 全局长期记忆(通用的信息、用户喜好、知识、方法等)
21
+ - short_term: 短期记忆(当前任务相关的信息)
22
+ - all: 从所有类型中检索
23
+
24
+ 可以通过标签过滤检索结果,支持多个标签(满足任一标签即可)
25
+ """
26
+
27
+ parameters = {
28
+ "type": "object",
29
+ "properties": {
30
+ "memory_types": {
31
+ "type": "array",
32
+ "items": {
33
+ "type": "string",
34
+ "enum": [
35
+ "project_long_term",
36
+ "global_long_term",
37
+ "short_term",
38
+ "all",
39
+ ],
40
+ },
41
+ "description": "要检索的记忆类型列表,如果包含'all'则检索所有类型",
42
+ },
43
+ "tags": {
44
+ "type": "array",
45
+ "items": {"type": "string"},
46
+ "description": "用于过滤的标签列表(可选)",
47
+ },
48
+ "limit": {
49
+ "type": "integer",
50
+ "description": "返回结果的最大数量(可选,默认返回所有)",
51
+ "minimum": 1,
52
+ },
53
+ },
54
+ "required": ["memory_types"],
55
+ }
56
+
57
+ def __init__(self):
58
+ """初始化检索记忆工具"""
59
+ self.project_memory_dir = Path(".jarvis/memory")
60
+ self.global_memory_dir = Path(get_data_dir()) / "memory"
61
+
62
+ def _get_memory_dir(self, memory_type: str) -> Path:
63
+ """根据记忆类型获取存储目录"""
64
+ if memory_type == "project_long_term":
65
+ return self.project_memory_dir
66
+ elif memory_type in ["global_long_term", "short_term"]:
67
+ return self.global_memory_dir / memory_type
68
+ else:
69
+ raise ValueError(f"未知的记忆类型: {memory_type}")
70
+
71
+ def _retrieve_from_type(
72
+ self, memory_type: str, tags: Optional[List[str]] = None
73
+ ) -> List[Dict[str, Any]]:
74
+ """从指定类型中检索记忆"""
75
+ memories: List[Dict[str, Any]] = []
76
+
77
+ if memory_type == "short_term":
78
+ # 从全局变量获取短期记忆
79
+ memories = get_short_term_memories(tags)
80
+ else:
81
+ # 从文件系统获取长期记忆
82
+ memory_dir = self._get_memory_dir(memory_type)
83
+
84
+ if not memory_dir.exists():
85
+ return memories
86
+
87
+ # 遍历记忆文件
88
+ for memory_file in memory_dir.glob("*.json"):
89
+ try:
90
+ with open(memory_file, "r", encoding="utf-8") as f:
91
+ memory_data = json.load(f)
92
+
93
+ # 如果指定了标签,检查是否匹配
94
+ if tags:
95
+ memory_tags = memory_data.get("tags", [])
96
+ if not any(tag in memory_tags for tag in tags):
97
+ continue
98
+
99
+ memories.append(memory_data)
100
+ except Exception as e:
101
+ PrettyOutput.print(
102
+ f"读取记忆文件 {memory_file} 失败: {str(e)}", OutputType.WARNING
103
+ )
104
+
105
+ return memories
106
+
107
+ def execute(self, args: Dict[str, Any]) -> Dict[str, Any]:
108
+ """执行检索记忆操作"""
109
+ try:
110
+ memory_types = args.get("memory_types", [])
111
+ tags = args.get("tags", [])
112
+ limit = args.get("limit", None)
113
+
114
+ # 确定要检索的记忆类型
115
+ if "all" in memory_types:
116
+ types_to_search = [
117
+ "project_long_term",
118
+ "global_long_term",
119
+ "short_term",
120
+ ]
121
+ else:
122
+ types_to_search = memory_types
123
+
124
+ # 从各个类型中检索记忆
125
+ all_memories = []
126
+ for memory_type in types_to_search:
127
+ memories = self._retrieve_from_type(memory_type, tags)
128
+ all_memories.extend(memories)
129
+
130
+ # 按创建时间排序(最新的在前)
131
+ all_memories.sort(key=lambda x: x.get("created_at", ""), reverse=True)
132
+
133
+ # 限制最多返回50条记忆,随机选取
134
+ if len(all_memories) > 50:
135
+ all_memories = random.sample(all_memories, 50)
136
+ # 重新排序,保持时间顺序
137
+ all_memories.sort(key=lambda x: x.get("created_at", ""), reverse=True)
138
+
139
+ # 如果指定了限制,只返回前N个
140
+ if limit:
141
+ all_memories = all_memories[:limit]
142
+
143
+ # 打印结果摘要
144
+ PrettyOutput.print(f"检索到 {len(all_memories)} 条记忆", OutputType.INFO)
145
+
146
+ if tags:
147
+ PrettyOutput.print(f"使用标签过滤: {', '.join(tags)}", OutputType.INFO)
148
+
149
+ # 格式化为Markdown输出
150
+ markdown_output = f"# 记忆检索结果\n\n"
151
+ markdown_output += f"**检索到 {len(all_memories)} 条记忆**\n\n"
152
+
153
+ if tags:
154
+ markdown_output += f"**使用标签过滤**: {', '.join(tags)}\n\n"
155
+
156
+ markdown_output += f"**记忆类型**: {', '.join(types_to_search)}\n\n"
157
+
158
+ markdown_output += "---\n\n"
159
+
160
+ # 输出所有记忆
161
+ for i, memory in enumerate(all_memories):
162
+ markdown_output += f"## {i+1}. {memory.get('id', '未知ID')}\n\n"
163
+ markdown_output += f"**类型**: {memory.get('type', '未知类型')}\n\n"
164
+ markdown_output += f"**标签**: {', '.join(memory.get('tags', []))}\n\n"
165
+ markdown_output += f"**创建时间**: {memory.get('created_at', '未知时间')}\n\n"
166
+
167
+ # 内容部分
168
+ content = memory.get('content', '')
169
+ if content:
170
+ markdown_output += f"**内容**:\n\n{content}\n\n"
171
+
172
+ # 如果有额外的元数据
173
+ metadata = {k: v for k, v in memory.items()
174
+ if k not in ['id', 'type', 'tags', 'created_at', 'content']}
175
+ if metadata:
176
+ markdown_output += f"**其他信息**:\n"
177
+ for key, value in metadata.items():
178
+ markdown_output += f"- {key}: {value}\n"
179
+ markdown_output += "\n"
180
+
181
+ markdown_output += "---\n\n"
182
+
183
+ # 如果记忆较多,在终端显示摘要
184
+ if len(all_memories) > 5:
185
+ PrettyOutput.print(f"记忆较多,仅显示前5条摘要:", OutputType.INFO)
186
+ for i, memory in enumerate(all_memories[:5]):
187
+ content_preview = memory.get("content", "")[:100]
188
+ if len(memory.get("content", "")) > 100:
189
+ content_preview += "..."
190
+ PrettyOutput.print(
191
+ f"{i+1}. [{memory.get('type')}] {memory.get('id')}\n"
192
+ f" 标签: {', '.join(memory.get('tags', []))}\n"
193
+ f" 内容: {content_preview}",
194
+ OutputType.INFO,
195
+ )
196
+
197
+ return {
198
+ "success": True,
199
+ "stdout": markdown_output,
200
+ "stderr": "",
201
+ }
202
+
203
+ except Exception as e:
204
+ error_msg = f"检索记忆失败: {str(e)}"
205
+ PrettyOutput.print(error_msg, OutputType.ERROR)
206
+ return {"success": False, "stdout": "", "stderr": error_msg}
@@ -0,0 +1,142 @@
1
+ # -*- coding: utf-8 -*-
2
+ import json
3
+ from datetime import datetime
4
+ from pathlib import Path
5
+ from typing import Any, Dict, List
6
+
7
+ from jarvis.jarvis_utils.config import get_data_dir
8
+ from jarvis.jarvis_utils.output import OutputType, PrettyOutput
9
+ from jarvis.jarvis_utils.globals import add_short_term_memory
10
+
11
+
12
+ class SaveMemoryTool:
13
+ """保存记忆工具,用于将信息保存到长短期记忆系统"""
14
+
15
+ name = "save_memory"
16
+ description = """保存信息到长短期记忆系统。
17
+
18
+ 支持的记忆类型:
19
+ - project_long_term: 项目长期记忆(与当前项目相关的信息)
20
+ - global_long_term: 全局长期记忆(通用的信息、用户喜好、知识、方法等)
21
+ - short_term: 短期记忆(当前任务相关的信息)
22
+
23
+ 项目长期记忆存储在当前目录的 .jarvis/memory 下
24
+ 全局长期记忆和短期记忆存储在数据目录的 memory 子目录下
25
+ """
26
+
27
+ parameters = {
28
+ "type": "object",
29
+ "properties": {
30
+ "memory_type": {
31
+ "type": "string",
32
+ "enum": ["project_long_term", "global_long_term", "short_term"],
33
+ "description": "记忆类型",
34
+ },
35
+ "tags": {
36
+ "type": "array",
37
+ "items": {"type": "string"},
38
+ "description": "用于索引记忆的标签列表",
39
+ },
40
+ "content": {"type": "string", "description": "要保存的记忆内容"},
41
+ },
42
+ "required": ["memory_type", "tags", "content"],
43
+ }
44
+
45
+ def __init__(self):
46
+ """初始化保存记忆工具"""
47
+ self.project_memory_dir = Path(".jarvis/memory")
48
+ self.global_memory_dir = Path(get_data_dir()) / "memory"
49
+
50
+ def _get_memory_dir(self, memory_type: str) -> Path:
51
+ """根据记忆类型获取存储目录"""
52
+ if memory_type == "project_long_term":
53
+ return self.project_memory_dir
54
+ elif memory_type in ["global_long_term", "short_term"]:
55
+ return self.global_memory_dir / memory_type
56
+ else:
57
+ raise ValueError(f"未知的记忆类型: {memory_type}")
58
+
59
+ def _generate_memory_id(self) -> str:
60
+ """生成唯一的记忆ID"""
61
+ return datetime.now().strftime("%Y%m%d_%H%M%S_%f")
62
+
63
+ def execute(self, args: Dict[str, Any]) -> Dict[str, Any]:
64
+ """执行保存记忆操作"""
65
+ try:
66
+ memory_type = args["memory_type"]
67
+ tags = args.get("tags", [])
68
+ content = args.get("content", "")
69
+
70
+ # 生成记忆ID
71
+ memory_id = self._generate_memory_id()
72
+
73
+ # 创建记忆对象
74
+ memory_data = {
75
+ "id": memory_id,
76
+ "type": memory_type,
77
+ "tags": tags,
78
+ "content": content,
79
+ "created_at": datetime.now().isoformat(),
80
+ "updated_at": datetime.now().isoformat(),
81
+ }
82
+
83
+ if memory_type == "short_term":
84
+ # 短期记忆保存到全局变量
85
+ add_short_term_memory(memory_data)
86
+
87
+ # 打印成功信息
88
+ PrettyOutput.print(
89
+ f"短期记忆已保存\n"
90
+ f"ID: {memory_id}\n"
91
+ f"类型: {memory_type}\n"
92
+ f"标签: {', '.join(tags)}\n"
93
+ f"存储位置: 内存(非持久化)",
94
+ OutputType.SUCCESS,
95
+ )
96
+
97
+ result = {
98
+ "memory_id": memory_id,
99
+ "memory_type": memory_type,
100
+ "tags": tags,
101
+ "storage": "memory",
102
+ "message": f"短期记忆已成功保存到内存,ID: {memory_id}",
103
+ }
104
+ else:
105
+ # 长期记忆保存到文件
106
+ # 获取存储目录并确保存在
107
+ memory_dir = self._get_memory_dir(memory_type)
108
+ memory_dir.mkdir(parents=True, exist_ok=True)
109
+
110
+ # 保存记忆文件
111
+ memory_file = memory_dir / f"{memory_id}.json"
112
+ with open(memory_file, "w", encoding="utf-8") as f:
113
+ json.dump(memory_data, f, ensure_ascii=False, indent=2)
114
+
115
+ # 打印成功信息
116
+ PrettyOutput.print(
117
+ f"记忆已保存\n"
118
+ f"ID: {memory_id}\n"
119
+ f"类型: {memory_type}\n"
120
+ f"标签: {', '.join(tags)}\n"
121
+ f"位置: {memory_file}",
122
+ OutputType.SUCCESS,
123
+ )
124
+
125
+ result = {
126
+ "memory_id": memory_id,
127
+ "memory_type": memory_type,
128
+ "tags": tags,
129
+ "file_path": str(memory_file),
130
+ "message": f"记忆已成功保存,ID: {memory_id}",
131
+ }
132
+
133
+ return {
134
+ "success": True,
135
+ "stdout": json.dumps(result, ensure_ascii=False, indent=2),
136
+ "stderr": "",
137
+ }
138
+
139
+ except Exception as e:
140
+ error_msg = f"保存记忆失败: {str(e)}"
141
+ PrettyOutput.print(error_msg, OutputType.ERROR)
142
+ return {"success": False, "stdout": "", "stderr": error_msg}
@@ -10,11 +10,16 @@
10
10
  import os
11
11
 
12
12
  # 全局变量:保存消息历史
13
- from typing import Any, Dict, Set, List
13
+ from typing import Any, Dict, Set, List, Optional
14
+ from datetime import datetime
14
15
 
15
16
  message_history: List[str] = []
16
17
  MAX_HISTORY_SIZE = 50
17
18
 
19
+ # 短期记忆存储
20
+ short_term_memories: List[Dict[str, Any]] = []
21
+ MAX_SHORT_TERM_MEMORIES = 100
22
+
18
23
  import colorama
19
24
  from rich.console import Console
20
25
  from rich.theme import Theme
@@ -207,3 +212,117 @@ def get_message_history() -> List[str]:
207
212
  """
208
213
  global message_history
209
214
  return message_history
215
+
216
+
217
+ def add_short_term_memory(memory_data: Dict[str, Any]) -> None:
218
+ """
219
+ 添加短期记忆到全局存储。
220
+
221
+ 参数:
222
+ memory_data: 包含记忆信息的字典
223
+ """
224
+ global short_term_memories
225
+ short_term_memories.append(memory_data)
226
+ # 如果超过最大数量,删除最旧的记忆
227
+ if len(short_term_memories) > MAX_SHORT_TERM_MEMORIES:
228
+ short_term_memories.pop(0)
229
+
230
+
231
+ def get_short_term_memories(tags: Optional[List[str]] = None) -> List[Dict[str, Any]]:
232
+ """
233
+ 获取短期记忆,可选择按标签过滤。
234
+
235
+ 参数:
236
+ tags: 用于过滤的标签列表(可选)
237
+
238
+ 返回:
239
+ List[Dict[str, Any]]: 符合条件的短期记忆列表
240
+ """
241
+ global short_term_memories
242
+ if not tags:
243
+ return short_term_memories.copy()
244
+
245
+ # 按标签过滤
246
+ filtered_memories = []
247
+ for memory in short_term_memories:
248
+ memory_tags = memory.get("tags", [])
249
+ if any(tag in memory_tags for tag in tags):
250
+ filtered_memories.append(memory)
251
+
252
+ return filtered_memories
253
+
254
+
255
+ def clear_short_term_memories() -> None:
256
+ """
257
+ 清空所有短期记忆。
258
+ """
259
+ global short_term_memories
260
+ short_term_memories.clear()
261
+
262
+
263
+ def get_all_memory_tags() -> Dict[str, List[str]]:
264
+ """
265
+ 获取所有记忆类型中的标签集合。
266
+ 每个类型最多返回200个标签,超过时随机提取。
267
+
268
+ 返回:
269
+ Dict[str, List[str]]: 按记忆类型分组的标签列表
270
+ """
271
+ from pathlib import Path
272
+ import json
273
+ import random
274
+ from jarvis.jarvis_utils.config import get_data_dir
275
+
276
+ tags_by_type = {
277
+ "short_term": [],
278
+ "project_long_term": [],
279
+ "global_long_term": []
280
+ }
281
+
282
+ MAX_TAGS_PER_TYPE = 200
283
+
284
+ # 获取短期记忆标签
285
+ short_term_tags = set()
286
+ for memory in short_term_memories:
287
+ short_term_tags.update(memory.get("tags", []))
288
+ short_term_tags_list = sorted(list(short_term_tags))
289
+ if len(short_term_tags_list) > MAX_TAGS_PER_TYPE:
290
+ tags_by_type["short_term"] = sorted(random.sample(short_term_tags_list, MAX_TAGS_PER_TYPE))
291
+ else:
292
+ tags_by_type["short_term"] = short_term_tags_list
293
+
294
+ # 获取项目长期记忆标签
295
+ project_memory_dir = Path(".jarvis/memory")
296
+ if project_memory_dir.exists():
297
+ project_tags = set()
298
+ for memory_file in project_memory_dir.glob("*.json"):
299
+ try:
300
+ with open(memory_file, "r", encoding="utf-8") as f:
301
+ memory_data = json.load(f)
302
+ project_tags.update(memory_data.get("tags", []))
303
+ except Exception:
304
+ pass
305
+ project_tags_list = sorted(list(project_tags))
306
+ if len(project_tags_list) > MAX_TAGS_PER_TYPE:
307
+ tags_by_type["project_long_term"] = sorted(random.sample(project_tags_list, MAX_TAGS_PER_TYPE))
308
+ else:
309
+ tags_by_type["project_long_term"] = project_tags_list
310
+
311
+ # 获取全局长期记忆标签
312
+ global_memory_dir = Path(get_data_dir()) / "memory" / "global_long_term"
313
+ if global_memory_dir.exists():
314
+ global_tags = set()
315
+ for memory_file in global_memory_dir.glob("*.json"):
316
+ try:
317
+ with open(memory_file, "r", encoding="utf-8") as f:
318
+ memory_data = json.load(f)
319
+ global_tags.update(memory_data.get("tags", []))
320
+ except Exception:
321
+ pass
322
+ global_tags_list = sorted(list(global_tags))
323
+ if len(global_tags_list) > MAX_TAGS_PER_TYPE:
324
+ tags_by_type["global_long_term"] = sorted(random.sample(global_tags_list, MAX_TAGS_PER_TYPE))
325
+ else:
326
+ tags_by_type["global_long_term"] = global_tags_list
327
+
328
+ return tags_by_type
@@ -30,6 +30,35 @@ from jarvis.jarvis_utils.output import OutputType, PrettyOutput
30
30
 
31
31
  g_config_file = None
32
32
 
33
+ COMMAND_MAPPING = {
34
+ # jarvis主命令
35
+ "jvs": "jarvis",
36
+ # 代码代理
37
+ "jca": "jarvis-code-agent",
38
+ # 智能shell
39
+ "jss": "jarvis-smart-shell",
40
+ # 平台管理
41
+ "jpm": "jarvis-platform-manager",
42
+ # Git提交
43
+ "jgc": "jarvis-git-commit",
44
+ # 代码审查
45
+ "jcr": "jarvis-code-review",
46
+ # Git压缩
47
+ "jgs": "jarvis-git-squash",
48
+ # 多代理
49
+ "jma": "jarvis-multi-agent",
50
+ # 代理
51
+ "ja": "jarvis-agent",
52
+ # 工具
53
+ "jt": "jarvis-tool",
54
+ # 方法论
55
+ "jm": "jarvis-methodology",
56
+ # RAG
57
+ "jrg": "jarvis-rag",
58
+ # 统计
59
+ "jst": "jarvis-stats",
60
+ }
61
+
33
62
 
34
63
  def _setup_signal_handler() -> None:
35
64
  """设置SIGINT信号处理函数"""
@@ -149,6 +178,15 @@ def _show_usage_stats() -> None:
149
178
  elif group == "command":
150
179
  categorized_stats["command"]["metrics"][metric] = int(total)
151
180
 
181
+ # 合并长短命令的历史统计数据
182
+ command_stats = categorized_stats["command"]["metrics"]
183
+ if command_stats:
184
+ merged_stats: Dict[str, int] = {}
185
+ for metric, count in command_stats.items():
186
+ long_command = COMMAND_MAPPING.get(metric, metric)
187
+ merged_stats[long_command] = merged_stats.get(long_command, 0) + count
188
+ categorized_stats["command"]["metrics"] = merged_stats
189
+
152
190
  # 计算采纳率并添加到统计中
153
191
  commit_stats = categorized_stats["commit"]["metrics"]
154
192
  # 尝试多种可能的指标名称
@@ -348,7 +386,7 @@ def _show_usage_stats() -> None:
348
386
  remaining_days_after_months = remaining_days_after_years % 20
349
387
  work_days = remaining_days_after_months
350
388
  remaining_hours = int(hours % 8) # 剩余不足一个工作日的小时数
351
-
389
+
352
390
  # 构建时间描述
353
391
  time_parts = []
354
392
  if work_years > 0:
@@ -359,17 +397,25 @@ def _show_usage_stats() -> None:
359
397
  time_parts.append(f"{work_days} 个工作日")
360
398
  if remaining_hours > 0:
361
399
  time_parts.append(f"{remaining_hours} 小时")
362
-
400
+
363
401
  if time_parts:
364
402
  time_description = "、".join(time_parts)
365
403
  if work_years >= 1:
366
- encouragement = f"🎉 相当于节省了 {time_description} 的工作时间!"
404
+ encouragement = (
405
+ f"🎉 相当于节省了 {time_description} 的工作时间!"
406
+ )
367
407
  elif work_months >= 1:
368
- encouragement = f"🚀 相当于节省了 {time_description} 的工作时间!"
408
+ encouragement = (
409
+ f"🚀 相当于节省了 {time_description} 的工作时间!"
410
+ )
369
411
  elif work_days >= 1:
370
- encouragement = f"💪 相当于节省了 {time_description} 的工作时间!"
412
+ encouragement = (
413
+ f"💪 相当于节省了 {time_description} 的工作时间!"
414
+ )
371
415
  else:
372
- encouragement = f"✨ 相当于节省了 {time_description} 的工作时间!"
416
+ encouragement = (
417
+ f"✨ 相当于节省了 {time_description} 的工作时间!"
418
+ )
373
419
  elif hours >= 1:
374
420
  encouragement = f"⭐ 相当于节省了 {int(hours)} 小时的工作时间,积少成多,继续保持!"
375
421
  if encouragement:
@@ -459,7 +505,9 @@ def load_config():
459
505
  if schema_path.exists():
460
506
  try:
461
507
  config_file_path.parent.mkdir(parents=True, exist_ok=True)
462
- generate_default_config(str(schema_path), str(config_file_path))
508
+ generate_default_config(
509
+ str(schema_path.absolute()), str(config_file_path)
510
+ )
463
511
  PrettyOutput.print(
464
512
  f"已生成默认配置文件: {config_file_path}", OutputType.INFO
465
513
  )
@@ -576,7 +624,7 @@ def generate_default_config(schema_path: str, output_path: str) -> None:
576
624
 
577
625
  default_config = _generate_from_schema(schema)
578
626
 
579
- content = f"# yaml-language-server: $schema={schema}\n"
627
+ content = f"# yaml-language-server: $schema={schema_path}\n"
580
628
  content += yaml.dump(default_config, allow_unicode=True, sort_keys=False)
581
629
 
582
630
  with open(output_path, "w", encoding="utf-8") as f:
@@ -718,43 +766,13 @@ def count_cmd_usage() -> None:
718
766
  import os
719
767
  from jarvis.jarvis_stats.stats import StatsManager
720
768
 
721
- # 命令映射关系:将短命令映射到长命令
722
- command_mapping = {
723
- # jarvis主命令
724
- "jvs": "jarvis",
725
- # 代码代理
726
- "jca": "jarvis-code-agent",
727
- # 智能shell
728
- "jss": "jarvis-smart-shell",
729
- # 平台管理
730
- "jpm": "jarvis-platform-manager",
731
- # Git提交
732
- "jgc": "jarvis-git-commit",
733
- # 代码审查
734
- "jcr": "jarvis-code-review",
735
- # Git压缩
736
- "jgs": "jarvis-git-squash",
737
- # 多代理
738
- "jma": "jarvis-multi-agent",
739
- # 代理
740
- "ja": "jarvis-agent",
741
- # 工具
742
- "jt": "jarvis-tool",
743
- # 方法论
744
- "jm": "jarvis-methodology",
745
- # RAG
746
- "jrg": "jarvis-rag",
747
- # 统计
748
- "jst": "jarvis-stats",
749
- }
750
-
751
769
  # 从完整路径中提取命令名称
752
770
  cmd_path = sys.argv[0]
753
771
  cmd_name = os.path.basename(cmd_path)
754
-
772
+
755
773
  # 如果是短命令,映射到长命令
756
- if cmd_name in command_mapping:
757
- metric_name = command_mapping[cmd_name]
774
+ if cmd_name in COMMAND_MAPPING:
775
+ metric_name = COMMAND_MAPPING[cmd_name]
758
776
  else:
759
777
  metric_name = cmd_name
760
778
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: jarvis-ai-assistant
3
- Version: 0.2.5
3
+ Version: 0.2.6
4
4
  Summary: Jarvis: An AI assistant that uses tools to interact with the system
5
5
  Home-page: https://github.com/skyfireitdiy/Jarvis
6
6
  Author: skyfire
@@ -1,7 +1,7 @@
1
- jarvis/__init__.py,sha256=aS_w22vow2WExj_McIPVjDx3AihnwV9M6DLoPEXvmzk,73
2
- jarvis/jarvis_agent/__init__.py,sha256=tClK_8jgNti_A-o4SecZAeMYRz_JWjf01sdWt1ho420,23190
1
+ jarvis/__init__.py,sha256=LeVLn20oHpcp1TpDsXJ8P6m_z_MKXTzTQvPUv3CRNK4,73
2
+ jarvis/jarvis_agent/__init__.py,sha256=nhJ9QOdFQJHpdLsFO0_JNH0XJHvXxMDHDTP4b7-OSnA,26370
3
3
  jarvis/jarvis_agent/builtin_input_handler.py,sha256=Qs4LAr4xdKLBJpQE81YP4CkucAop86ms0iVoKa1nnso,2468
4
- jarvis/jarvis_agent/edit_file_handler.py,sha256=zZAhv5zYQQNNhpu6bOjL3exC9le4DSQnefzotBB-jPY,11818
4
+ jarvis/jarvis_agent/edit_file_handler.py,sha256=w-byNJ4TN_SlV3djjfFC7OksySOFGrM8ku49w662dzc,11854
5
5
  jarvis/jarvis_agent/jarvis.py,sha256=L2sI-Y7gxqH6M4E4F2GlNoZcxxvz_f72rxvjh7bxuZE,8443
6
6
  jarvis/jarvis_agent/main.py,sha256=56pLVy6v-3ZdyPCcWXdRkgbjmYsoIfC7zrA6B7sYivU,3334
7
7
  jarvis/jarvis_agent/output_handler.py,sha256=P7oWpXBGFfOsWq7cIhS_z9crkQ19ES7qU5pM92KKjAs,1172
@@ -12,7 +12,7 @@ jarvis/jarvis_agent/session_manager.py,sha256=DnvI9rWkVmkyO1XfKZyo9lTn4ajg4ccwzE
12
12
  jarvis/jarvis_agent/shell_input_handler.py,sha256=1IboqdxcJuoIqRpmDU10GugR9fWXUHyCEbVF4nIWbyo,1328
13
13
  jarvis/jarvis_agent/tool_executor.py,sha256=nIq-sPNgrtimtM-IHpN09cWmId8jDzWRdCFoRzXnnoo,1721
14
14
  jarvis/jarvis_code_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
- jarvis/jarvis_code_agent/code_agent.py,sha256=M3eEMMnIb7ndIIe4Hg8XZ1rnEbtYIUdDi9IS9pzWC2U,29191
15
+ jarvis/jarvis_code_agent/code_agent.py,sha256=C761NUsz3W_SLJLEj6Y_HB9ox-joOlnJQ9CsfE88IFk,29100
16
16
  jarvis/jarvis_code_agent/lint.py,sha256=LZPsfyZPMo7Wm7LN4osZocuNJwZx1ojacO3MlF870x8,4009
17
17
  jarvis/jarvis_code_analysis/code_review.py,sha256=TMov1pqDe1bg0vM1ndnYeW9ejHrRN_jMroo3T4L9yag,32368
18
18
  jarvis/jarvis_code_analysis/checklists/__init__.py,sha256=LIXAYa1sW3l7foP6kohLWnE98I_EQ0T7z5bYKHq6rJA,78
@@ -46,7 +46,7 @@ jarvis/jarvis_mcp/stdio_mcp_client.py,sha256=APYUksYKlMx7AVNODKOLrTkKZPnp4kqTQIY
46
46
  jarvis/jarvis_mcp/streamable_mcp_client.py,sha256=sP0KEsxVcXGht0eA7a_m-ECtZAk39s4PL9OUdm35x2Y,14467
47
47
  jarvis/jarvis_methodology/main.py,sha256=6QF8hH3vB6rfxim0fPR34uVPf41zVpb4ZLqrFN2qONg,10983
48
48
  jarvis/jarvis_multi_agent/__init__.py,sha256=kCgtAX7VvliyEOQxIj2DvNjRAuh6bpNaOtDn60nzph4,6089
49
- jarvis/jarvis_multi_agent/main.py,sha256=EUJCLjiN6ZZkOTmRS13oeTquo3tXD-cdO_QvaEPCK_c,1715
49
+ jarvis/jarvis_multi_agent/main.py,sha256=Wbarez48QxXexlKEOcRsoMbcQEOP5rv_DzGkNk0SfpY,1779
50
50
  jarvis/jarvis_platform/__init__.py,sha256=WLQHSiE87PPket2M50_hHzjdMIgPIBx2VF8JfB_NNRk,105
51
51
  jarvis/jarvis_platform/ai8.py,sha256=uiL1BkONteUB2aXg6kMGSXLLOhzGDl5_SNQYyQzmFNk,11412
52
52
  jarvis/jarvis_platform/base.py,sha256=cfeYB6ldfQH1tz1rroQpmJTLAw8KByKS74qun0pqE1c,9498
@@ -86,7 +86,9 @@ jarvis/jarvis_tools/methodology.py,sha256=_K4GIDUodGEma3SvNRo7Qs5rliijgNespVLyAP
86
86
  jarvis/jarvis_tools/read_code.py,sha256=EnI-R-5HyIQYhMD391nZWXHIuHHBF-OJIRE0QpLcPX4,6417
87
87
  jarvis/jarvis_tools/read_webpage.py,sha256=NmDUboVZd4CGHBPRFK6dp3uqVhuGopW1bOi3TcaLDF4,2092
88
88
  jarvis/jarvis_tools/registry.py,sha256=8qhZgmmGIXJsYwtpsp_Ls8woT0qmBrthF8lIuQqOu7c,28614
89
+ jarvis/jarvis_tools/retrieve_memory.py,sha256=CKmNym5FxHjgdc0my4IlsJ3TB3E2m0aCNFSRWjH6fKs,8221
89
90
  jarvis/jarvis_tools/rewrite_file.py,sha256=eG_WKg6cVAXmuGwUqlWkcuyay5S8DOzEi8vZCmX3O8w,7255
91
+ jarvis/jarvis_tools/save_memory.py,sha256=4KRJWiyeyaIfdjeCAflPrxJ5ZXA4gUL3tv9h6d6sFKc,5309
90
92
  jarvis/jarvis_tools/search_web.py,sha256=zh6EYLQPIQneoz27Hheh-fifMeMNhrTVldXKMSsMz2Y,5801
91
93
  jarvis/jarvis_tools/virtual_tty.py,sha256=LTsg1PlsPvgaLShUaxpAKwTpyjXRr0l0qSREI7Q-fBc,26349
92
94
  jarvis/jarvis_tools/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -97,16 +99,16 @@ jarvis/jarvis_utils/config.py,sha256=-ZgqIkzsp8VP5qsXke9XAGuwtAB9XlOAo_k4L6jhcrE
97
99
  jarvis/jarvis_utils/embedding.py,sha256=oEOEM2qf16DMYwPsQe6srET9BknyjOdY2ef0jsp3Or8,2714
98
100
  jarvis/jarvis_utils/file_processors.py,sha256=XiM248SHS7lLgQDCbORVFWqinbVDUawYxWDOsLXDxP8,3043
99
101
  jarvis/jarvis_utils/git_utils.py,sha256=dkC0HcUdm_rF5vXNoLByne3mGykZEviD3Lo_SYbwROU,21667
100
- jarvis/jarvis_utils/globals.py,sha256=INBGXbDkXOQa0AE7L6JhR5gr-TAZMsE5y4yK1sbB98U,4643
102
+ jarvis/jarvis_utils/globals.py,sha256=lpS1lmWRnLgqOeoyhZlktdZK9SK8YMekc6XWamho0Jw,8561
101
103
  jarvis/jarvis_utils/http.py,sha256=eRhV3-GYuWmQ0ogq9di9WMlQkFcVb1zGCrySnOgT1x0,4392
102
104
  jarvis/jarvis_utils/input.py,sha256=g0Xa1TNZHxLaYduREV_Wc55iqHD6djN73YFJbR83gUg,9488
103
105
  jarvis/jarvis_utils/methodology.py,sha256=EqS9feS3HHgNcKYoGs-Dkhp4pGwylwXt96r2J61cxUo,9223
104
106
  jarvis/jarvis_utils/output.py,sha256=E_J_RYXtkOgRiDSHCRE9QPHY8WQmmhIotQtIQru8GZA,10888
105
107
  jarvis/jarvis_utils/tag.py,sha256=f211opbbbTcSyzCDwuIK_oCnKhXPNK-RknYyGzY1yD0,431
106
- jarvis/jarvis_utils/utils.py,sha256=6_KsDN2_L9CB0jJvfbGTpBPWaQf-qMIPwq3_s3qUYww,36512
107
- jarvis_ai_assistant-0.2.5.dist-info/licenses/LICENSE,sha256=AGgVgQmTqFvaztRtCAXsAMryUymB18gZif7_l2e1XOg,1063
108
- jarvis_ai_assistant-0.2.5.dist-info/METADATA,sha256=jaM72Jlpyd-UmR-6riUlssskcGTy9C69j7FGUKwZP4Q,16807
109
- jarvis_ai_assistant-0.2.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
110
- jarvis_ai_assistant-0.2.5.dist-info/entry_points.txt,sha256=8cwi1VxZGU5UeSZMFiH-jG6NK95Asjukj5SBLBrGiGo,1257
111
- jarvis_ai_assistant-0.2.5.dist-info/top_level.txt,sha256=1BOxyWfzOP_ZXj8rVTDnNCJ92bBGB0rwq8N1PCpoMIs,7
112
- jarvis_ai_assistant-0.2.5.dist-info/RECORD,,
108
+ jarvis/jarvis_utils/utils.py,sha256=b7t2BsoPEU_3ZhippcQW9qwQD0PO-sGkjjtZ4DvwI2s,37056
109
+ jarvis_ai_assistant-0.2.6.dist-info/licenses/LICENSE,sha256=AGgVgQmTqFvaztRtCAXsAMryUymB18gZif7_l2e1XOg,1063
110
+ jarvis_ai_assistant-0.2.6.dist-info/METADATA,sha256=4XIqrWX0_tWmBC88XLFVlZGa2nzIbijiUxVW4g0y20I,16807
111
+ jarvis_ai_assistant-0.2.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
112
+ jarvis_ai_assistant-0.2.6.dist-info/entry_points.txt,sha256=8cwi1VxZGU5UeSZMFiH-jG6NK95Asjukj5SBLBrGiGo,1257
113
+ jarvis_ai_assistant-0.2.6.dist-info/top_level.txt,sha256=1BOxyWfzOP_ZXj8rVTDnNCJ92bBGB0rwq8N1PCpoMIs,7
114
+ jarvis_ai_assistant-0.2.6.dist-info/RECORD,,