janus-llm 2.1.0__py3-none-any.whl → 3.0.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- janus/__init__.py +2 -2
- janus/__main__.py +1 -1
- janus/_tests/test_cli.py +1 -2
- janus/cli.py +43 -50
- janus/converter/__init__.py +6 -0
- janus/converter/_tests/__init__.py +0 -0
- janus/{_tests → converter/_tests}/test_translate.py +11 -22
- janus/converter/converter.py +614 -0
- janus/converter/diagram.py +124 -0
- janus/converter/document.py +131 -0
- janus/converter/evaluate.py +15 -0
- janus/converter/requirements.py +50 -0
- janus/converter/translate.py +108 -0
- janus/language/block.py +1 -1
- janus/language/combine.py +0 -1
- janus/language/treesitter/treesitter.py +20 -1
- janus/llm/model_callbacks.py +33 -36
- janus/llm/models_info.py +14 -0
- janus/metrics/reading.py +27 -5
- janus/prompts/prompt.py +37 -11
- {janus_llm-2.1.0.dist-info → janus_llm-3.0.0.dist-info}/METADATA +1 -1
- {janus_llm-2.1.0.dist-info → janus_llm-3.0.0.dist-info}/RECORD +25 -19
- janus/converter.py +0 -161
- janus/translate.py +0 -987
- {janus_llm-2.1.0.dist-info → janus_llm-3.0.0.dist-info}/LICENSE +0 -0
- {janus_llm-2.1.0.dist-info → janus_llm-3.0.0.dist-info}/WHEEL +0 -0
- {janus_llm-2.1.0.dist-info → janus_llm-3.0.0.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,614 @@
|
|
1
|
+
import functools
|
2
|
+
import json
|
3
|
+
import math
|
4
|
+
import time
|
5
|
+
from pathlib import Path
|
6
|
+
from typing import Any
|
7
|
+
|
8
|
+
from langchain.output_parsers import RetryWithErrorOutputParser
|
9
|
+
from langchain.output_parsers.fix import OutputFixingParser
|
10
|
+
from langchain_core.exceptions import OutputParserException
|
11
|
+
from langchain_core.language_models import BaseLanguageModel
|
12
|
+
from langchain_core.output_parsers import BaseOutputParser
|
13
|
+
from langchain_core.prompts import ChatPromptTemplate
|
14
|
+
from langchain_core.runnables import RunnableLambda, RunnableParallel
|
15
|
+
from openai import BadRequestError, RateLimitError
|
16
|
+
from pydantic import ValidationError
|
17
|
+
|
18
|
+
from janus.embedding.vectorize import ChromaDBVectorizer
|
19
|
+
from janus.language.block import CodeBlock, TranslatedCodeBlock
|
20
|
+
from janus.language.combine import Combiner
|
21
|
+
from janus.language.naive.registry import CUSTOM_SPLITTERS
|
22
|
+
from janus.language.splitter import (
|
23
|
+
EmptyTreeError,
|
24
|
+
FileSizeError,
|
25
|
+
Splitter,
|
26
|
+
TokenLimitError,
|
27
|
+
)
|
28
|
+
from janus.llm import load_model
|
29
|
+
from janus.llm.model_callbacks import get_model_callback
|
30
|
+
from janus.llm.models_info import MODEL_PROMPT_ENGINES
|
31
|
+
from janus.parsers.code_parser import GenericParser
|
32
|
+
from janus.utils.enums import LANGUAGES
|
33
|
+
from janus.utils.logger import create_logger
|
34
|
+
|
35
|
+
log = create_logger(__name__)
|
36
|
+
|
37
|
+
|
38
|
+
def run_if_changed(*tracked_vars):
|
39
|
+
"""Wrapper to skip function calls if the given instance attributes haven't
|
40
|
+
been updated. Requires the _changed_attrs set to exist, and the __setattr__
|
41
|
+
method to be overridden to track parameter updates in _changed_attrs.
|
42
|
+
"""
|
43
|
+
|
44
|
+
def wrapper(func):
|
45
|
+
@functools.wraps(func)
|
46
|
+
def wrapped(self, *args, **kwargs):
|
47
|
+
# If there is overlap between the tracked variables and the changed
|
48
|
+
# ones, then call the function as normal
|
49
|
+
if not tracked_vars or self._changed_attrs.intersection(tracked_vars):
|
50
|
+
func(self, *args, **kwargs)
|
51
|
+
|
52
|
+
return wrapped
|
53
|
+
|
54
|
+
return wrapper
|
55
|
+
|
56
|
+
|
57
|
+
class Converter:
|
58
|
+
"""Parent class that converts code into something else.
|
59
|
+
|
60
|
+
Children will determine what the code gets converted into. Whether that's translated
|
61
|
+
into another language, into pseudocode, requirements, documentation, etc., or
|
62
|
+
converted into embeddings
|
63
|
+
"""
|
64
|
+
|
65
|
+
def __init__(
|
66
|
+
self,
|
67
|
+
model: str = "gpt-3.5-turbo-0125",
|
68
|
+
model_arguments: dict[str, Any] = {},
|
69
|
+
source_language: str = "fortran",
|
70
|
+
max_prompts: int = 10,
|
71
|
+
max_tokens: int | None = None,
|
72
|
+
prompt_template: str = "simple",
|
73
|
+
db_path: str | None = None,
|
74
|
+
db_config: dict[str, Any] | None = None,
|
75
|
+
protected_node_types: tuple[str, ...] = (),
|
76
|
+
prune_node_types: tuple[str, ...] = (),
|
77
|
+
splitter_type: str = "file",
|
78
|
+
) -> None:
|
79
|
+
"""Initialize a Converter instance.
|
80
|
+
|
81
|
+
Arguments:
|
82
|
+
source_language: The source programming language.
|
83
|
+
parser_type: The type of parser to use for parsing the LLM output. Valid
|
84
|
+
values are `"code"`, `"text"`, `"eval"`, and `None` (default). If `None`,
|
85
|
+
the `Converter` assumes you won't be parsing an output (i.e., adding to an
|
86
|
+
embedding DB).
|
87
|
+
"""
|
88
|
+
self._changed_attrs: set = set()
|
89
|
+
|
90
|
+
self.max_prompts: int = max_prompts
|
91
|
+
self._max_tokens: int | None = max_tokens
|
92
|
+
self.override_token_limit: bool = max_tokens is not None
|
93
|
+
|
94
|
+
self._model_name: str
|
95
|
+
self._custom_model_arguments: dict[str, Any]
|
96
|
+
|
97
|
+
self._source_language: str
|
98
|
+
self._source_suffix: str
|
99
|
+
|
100
|
+
self._target_language = "json"
|
101
|
+
self._target_suffix = ".json"
|
102
|
+
|
103
|
+
self._protected_node_types: tuple[str, ...] = ()
|
104
|
+
self._prune_node_types: tuple[str, ...] = ()
|
105
|
+
self._max_tokens: int | None = max_tokens
|
106
|
+
self._prompt_template_name: str
|
107
|
+
self._splitter_type: str
|
108
|
+
self._db_path: str | None
|
109
|
+
self._db_config: dict[str, Any] | None
|
110
|
+
|
111
|
+
self._splitter: Splitter
|
112
|
+
self._llm: BaseLanguageModel
|
113
|
+
self._prompt: ChatPromptTemplate
|
114
|
+
|
115
|
+
self._parser: BaseOutputParser = GenericParser()
|
116
|
+
self._combiner: Combiner = Combiner()
|
117
|
+
|
118
|
+
self.set_splitter(splitter_type=splitter_type)
|
119
|
+
self.set_model(model_name=model, **model_arguments)
|
120
|
+
self.set_prompt(prompt_template=prompt_template)
|
121
|
+
self.set_source_language(source_language)
|
122
|
+
self.set_protected_node_types(protected_node_types)
|
123
|
+
self.set_prune_node_types(prune_node_types)
|
124
|
+
self.set_db_path(db_path=db_path)
|
125
|
+
self.set_db_config(db_config=db_config)
|
126
|
+
|
127
|
+
# Child class must call this. Should we enforce somehow?
|
128
|
+
# self._load_parameters()
|
129
|
+
|
130
|
+
def __setattr__(self, key: Any, value: Any) -> None:
|
131
|
+
if hasattr(self, "_changed_attrs"):
|
132
|
+
if not hasattr(self, key) or getattr(self, key) != value:
|
133
|
+
self._changed_attrs.add(key)
|
134
|
+
# Avoid infinite recursion
|
135
|
+
elif key != "_changed_attrs":
|
136
|
+
self._changed_attrs = set()
|
137
|
+
super().__setattr__(key, value)
|
138
|
+
|
139
|
+
def _load_parameters(self) -> None:
|
140
|
+
self._load_model()
|
141
|
+
self._load_prompt()
|
142
|
+
self._load_splitter()
|
143
|
+
self._load_vectorizer()
|
144
|
+
self._changed_attrs.clear()
|
145
|
+
|
146
|
+
def set_model(self, model_name: str, **custom_arguments: dict[str, Any]):
|
147
|
+
"""Validate and set the model name.
|
148
|
+
|
149
|
+
The affected objects will not be updated until translate() is called.
|
150
|
+
|
151
|
+
Arguments:
|
152
|
+
model_name: The name of the model to use. Valid models are found in
|
153
|
+
`janus.llm.models_info.MODEL_CONSTRUCTORS`.
|
154
|
+
custom_arguments: Additional arguments to pass to the model constructor.
|
155
|
+
"""
|
156
|
+
self._model_name = model_name
|
157
|
+
self._custom_model_arguments = custom_arguments
|
158
|
+
|
159
|
+
def set_prompt(self, prompt_template: str) -> None:
|
160
|
+
"""Validate and set the prompt template name.
|
161
|
+
|
162
|
+
The affected objects will not be updated until translate() is called.
|
163
|
+
|
164
|
+
Arguments:
|
165
|
+
prompt_template: name of prompt template directory
|
166
|
+
(see janus/prompts/templates) or path to a directory.
|
167
|
+
"""
|
168
|
+
self._prompt_template_name = prompt_template
|
169
|
+
|
170
|
+
def set_splitter(self, splitter_type: str) -> None:
|
171
|
+
"""Validate and set the prompt template name.
|
172
|
+
|
173
|
+
The affected objects will not be updated until translate() is called.
|
174
|
+
|
175
|
+
Arguments:
|
176
|
+
prompt_template: name of prompt template directory
|
177
|
+
(see janus/prompts/templates) or path to a directory.
|
178
|
+
"""
|
179
|
+
self._splitter_type = splitter_type
|
180
|
+
|
181
|
+
def set_source_language(self, source_language: str) -> None:
|
182
|
+
"""Validate and set the source language.
|
183
|
+
|
184
|
+
The affected objects will not be updated until _load_parameters() is called.
|
185
|
+
|
186
|
+
Arguments:
|
187
|
+
source_language: The source programming language.
|
188
|
+
"""
|
189
|
+
source_language = source_language.lower()
|
190
|
+
if source_language not in LANGUAGES:
|
191
|
+
raise ValueError(
|
192
|
+
f"Invalid source language: {source_language}. "
|
193
|
+
"Valid source languages are found in `janus.utils.enums.LANGUAGES`."
|
194
|
+
)
|
195
|
+
|
196
|
+
ext = LANGUAGES[source_language]["suffix"]
|
197
|
+
self._source_suffix = f".{ext}"
|
198
|
+
self._source_language = source_language
|
199
|
+
|
200
|
+
def set_protected_node_types(self, protected_node_types: tuple[str, ...]) -> None:
|
201
|
+
"""Set the protected (non-mergeable) node types. This will often be structures
|
202
|
+
like functions, classes, or modules which you might want to keep separate
|
203
|
+
|
204
|
+
The affected objects will not be updated until _load_parameters() is called.
|
205
|
+
|
206
|
+
Arguments:
|
207
|
+
protected_node_types: A set of node types that aren't to be merged
|
208
|
+
"""
|
209
|
+
self._protected_node_types = tuple(set(protected_node_types or []))
|
210
|
+
|
211
|
+
def set_prune_node_types(self, prune_node_types: tuple[str, ...]) -> None:
|
212
|
+
"""Set the node types to prune. This will often be structures
|
213
|
+
like comments or whitespace which you might want to keep out of the LLM
|
214
|
+
|
215
|
+
The affected objects will not be updated until _load_parameters() is called.
|
216
|
+
|
217
|
+
Arguments:
|
218
|
+
prune_node_types: A set of node types which should be pruned
|
219
|
+
"""
|
220
|
+
self._prune_node_types = tuple(set(prune_node_types or []))
|
221
|
+
|
222
|
+
def set_db_path(self, db_path: str | None) -> None:
|
223
|
+
self._db_path = db_path
|
224
|
+
|
225
|
+
def set_db_config(self, db_config: dict[str, Any] | None) -> None:
|
226
|
+
self._db_config = db_config
|
227
|
+
|
228
|
+
@run_if_changed(
|
229
|
+
"_source_language",
|
230
|
+
"_max_tokens",
|
231
|
+
"_llm",
|
232
|
+
"_protected_node_types",
|
233
|
+
"_prune_node_types",
|
234
|
+
"_custom_splitter",
|
235
|
+
)
|
236
|
+
def _load_splitter(self) -> None:
|
237
|
+
"""Load the splitter according to this instance's attributes.
|
238
|
+
|
239
|
+
If the relevant fields have not been changed since the last time this method was
|
240
|
+
called, nothing happens.
|
241
|
+
"""
|
242
|
+
kwargs: dict[str, Any] = dict(
|
243
|
+
language=self._source_language,
|
244
|
+
max_tokens=self._max_tokens,
|
245
|
+
model=self._llm,
|
246
|
+
protected_node_types=self._protected_node_types,
|
247
|
+
prune_node_types=self._prune_node_types,
|
248
|
+
)
|
249
|
+
|
250
|
+
if self._splitter_type == "tag":
|
251
|
+
kwargs["tag"] = "<ITMOD_ALC_SPLIT>"
|
252
|
+
|
253
|
+
self._splitter = CUSTOM_SPLITTERS[self._splitter_type](**kwargs)
|
254
|
+
|
255
|
+
@run_if_changed("_model_name", "_custom_model_arguments")
|
256
|
+
def _load_model(self) -> None:
|
257
|
+
"""Load the model according to this instance's attributes.
|
258
|
+
|
259
|
+
If the relevant fields have not been changed since the last time this method was
|
260
|
+
called, nothing happens.
|
261
|
+
"""
|
262
|
+
|
263
|
+
# Get default arguments, set custom ones
|
264
|
+
# model_arguments = deepcopy(MODEL_DEFAULT_ARGUMENTS[self._model_name])
|
265
|
+
# model_arguments.update(self._custom_model_arguments)
|
266
|
+
|
267
|
+
# Load the model
|
268
|
+
self._llm, token_limit, self.model_cost = load_model(self._model_name)
|
269
|
+
# Set the max_tokens to less than half the model's limit to allow for enough
|
270
|
+
# tokens at output
|
271
|
+
# Only modify max_tokens if it is not specified by user
|
272
|
+
if not self.override_token_limit:
|
273
|
+
self._max_tokens = int(token_limit // 2.5)
|
274
|
+
|
275
|
+
@run_if_changed(
|
276
|
+
"_prompt_template_name",
|
277
|
+
"_source_language",
|
278
|
+
"_model_name",
|
279
|
+
)
|
280
|
+
def _load_prompt(self) -> None:
|
281
|
+
"""Load the prompt according to this instance's attributes.
|
282
|
+
|
283
|
+
If the relevant fields have not been changed since the last time this
|
284
|
+
method was called, nothing happens.
|
285
|
+
"""
|
286
|
+
prompt_engine = MODEL_PROMPT_ENGINES[self._model_name](
|
287
|
+
source_language=self._source_language,
|
288
|
+
prompt_template=self._prompt_template_name,
|
289
|
+
)
|
290
|
+
self._prompt = prompt_engine.prompt
|
291
|
+
|
292
|
+
@run_if_changed("_db_path", "_db_config")
|
293
|
+
def _load_vectorizer(self) -> None:
|
294
|
+
if self._db_path is None or self._db_config is None:
|
295
|
+
self._vectorizer = None
|
296
|
+
return
|
297
|
+
vectorizer_factory = ChromaDBVectorizer()
|
298
|
+
self._vectorizer = vectorizer_factory.create_vectorizer(
|
299
|
+
self._db_path, self._db_config
|
300
|
+
)
|
301
|
+
|
302
|
+
def translate(
|
303
|
+
self,
|
304
|
+
input_directory: str | Path,
|
305
|
+
output_directory: str | Path | None = None,
|
306
|
+
overwrite: bool = False,
|
307
|
+
collection_name: str | None = None,
|
308
|
+
) -> None:
|
309
|
+
"""Convert code in the input directory from the source language to the target
|
310
|
+
language, and write the resulting files to the output directory.
|
311
|
+
|
312
|
+
Arguments:
|
313
|
+
input_directory: The directory containing the code to translate.
|
314
|
+
output_directory: The directory to write the translated code to.
|
315
|
+
overwrite: Whether to overwrite existing files (vs skip them)
|
316
|
+
collection_name: Collection to add to
|
317
|
+
"""
|
318
|
+
# Convert paths to pathlib Paths if needed
|
319
|
+
if isinstance(input_directory, str):
|
320
|
+
input_directory = Path(input_directory)
|
321
|
+
if isinstance(output_directory, str):
|
322
|
+
output_directory = Path(output_directory)
|
323
|
+
|
324
|
+
# Make sure the output directory exists
|
325
|
+
if output_directory is not None and not output_directory.exists():
|
326
|
+
output_directory.mkdir(parents=True)
|
327
|
+
|
328
|
+
input_paths = [p for p in input_directory.rglob(f"**/*{self._source_suffix}")]
|
329
|
+
|
330
|
+
log.info(f"Input directory: {input_directory.absolute()}")
|
331
|
+
log.info(
|
332
|
+
f"{self._source_language} '*{self._source_suffix}' files: "
|
333
|
+
f"{len(input_paths)}"
|
334
|
+
)
|
335
|
+
log.info(
|
336
|
+
"Other files (skipped): "
|
337
|
+
f"{len(list(input_directory.iterdir())) - len(input_paths)}\n"
|
338
|
+
)
|
339
|
+
if output_directory is not None:
|
340
|
+
output_paths = [
|
341
|
+
output_directory
|
342
|
+
/ p.relative_to(input_directory).with_suffix(self._target_suffix)
|
343
|
+
for p in input_paths
|
344
|
+
]
|
345
|
+
in_out_pairs = list(zip(input_paths, output_paths))
|
346
|
+
if not overwrite:
|
347
|
+
n_files = len(in_out_pairs)
|
348
|
+
in_out_pairs = [
|
349
|
+
(inp, outp) for inp, outp in in_out_pairs if not outp.exists()
|
350
|
+
]
|
351
|
+
log.info(
|
352
|
+
f"Skipping {n_files - len(in_out_pairs)} existing "
|
353
|
+
f"'*{self._source_suffix}' files"
|
354
|
+
)
|
355
|
+
else:
|
356
|
+
in_out_pairs = [(f, None) for f in input_paths]
|
357
|
+
log.info(f"Translating {len(in_out_pairs)} '*{self._source_suffix}' files")
|
358
|
+
|
359
|
+
# Loop through each input file, convert and save it
|
360
|
+
total_cost = 0.0
|
361
|
+
for in_path, out_path in in_out_pairs:
|
362
|
+
# Translate the file, skip it if there's a rate limit error
|
363
|
+
try:
|
364
|
+
out_block = self.translate_file(in_path)
|
365
|
+
total_cost += out_block.total_cost
|
366
|
+
except RateLimitError:
|
367
|
+
continue
|
368
|
+
except OutputParserException as e:
|
369
|
+
log.error(f"Skipping {in_path.name}, failed to parse output: {e}.")
|
370
|
+
continue
|
371
|
+
except BadRequestError as e:
|
372
|
+
if str(e).startswith("Detected an error in the prompt"):
|
373
|
+
log.warning("Malformed input, skipping")
|
374
|
+
continue
|
375
|
+
raise e
|
376
|
+
except ValidationError as e:
|
377
|
+
# Only allow ValidationError to pass if token limit is manually set
|
378
|
+
if self.override_token_limit:
|
379
|
+
log.warning(
|
380
|
+
"Current file and manually set token "
|
381
|
+
"limit is too large for this model, skipping"
|
382
|
+
)
|
383
|
+
continue
|
384
|
+
raise e
|
385
|
+
except TokenLimitError:
|
386
|
+
log.warning("Ran into irreducible node too large for context, skipping")
|
387
|
+
continue
|
388
|
+
except EmptyTreeError:
|
389
|
+
log.warning(
|
390
|
+
f'Input file "{in_path.name}" has no nodes of interest, skipping'
|
391
|
+
)
|
392
|
+
continue
|
393
|
+
except FileSizeError:
|
394
|
+
log.warning("Current tile is too large for basic splitter, skipping")
|
395
|
+
continue
|
396
|
+
|
397
|
+
# Don't attempt to write files for which translation failed
|
398
|
+
if not out_block.translated:
|
399
|
+
continue
|
400
|
+
|
401
|
+
if collection_name is not None:
|
402
|
+
self._vectorizer.add_nodes_recursively(
|
403
|
+
out_block,
|
404
|
+
collection_name,
|
405
|
+
in_path.name,
|
406
|
+
)
|
407
|
+
|
408
|
+
# Make sure the tree's code has been consolidated at the top level
|
409
|
+
# before writing to file
|
410
|
+
self._combiner.combine(out_block)
|
411
|
+
if out_path is not None and (overwrite or not out_path.exists()):
|
412
|
+
self._save_to_file(out_block, out_path)
|
413
|
+
|
414
|
+
log.info(f"Total cost: ${total_cost:,.2f}")
|
415
|
+
|
416
|
+
def translate_file(self, file: Path) -> TranslatedCodeBlock:
|
417
|
+
"""Translate a single file.
|
418
|
+
|
419
|
+
Arguments:
|
420
|
+
file: Input path to file
|
421
|
+
|
422
|
+
Returns:
|
423
|
+
A `TranslatedCodeBlock` object. This block does not have a path set, and its
|
424
|
+
code is not guaranteed to be consolidated. To amend this, run
|
425
|
+
`Combiner.combine_children` on the block.
|
426
|
+
"""
|
427
|
+
self._load_parameters()
|
428
|
+
filename = file.name
|
429
|
+
|
430
|
+
input_block = self._split_file(file)
|
431
|
+
t0 = time.time()
|
432
|
+
output_block = self._iterative_translate(input_block)
|
433
|
+
output_block.processing_time = time.time() - t0
|
434
|
+
if output_block.translated:
|
435
|
+
completeness = output_block.translation_completeness
|
436
|
+
log.info(
|
437
|
+
f"[{filename}] Translation complete\n"
|
438
|
+
f" {completeness:.2%} of input successfully translated\n"
|
439
|
+
f" Total cost: ${output_block.total_cost:,.2f}\n"
|
440
|
+
f" Total retries: {output_block.total_retries:,d}\n"
|
441
|
+
f" Output CodeBlock Structure:\n{input_block.tree_str()}\n"
|
442
|
+
)
|
443
|
+
|
444
|
+
else:
|
445
|
+
log.error(
|
446
|
+
f"[{filename}] Translation failed\n"
|
447
|
+
f" Total cost: ${output_block.total_cost:,.2f}\n"
|
448
|
+
f" Total retries: {output_block.total_retries:,d}\n"
|
449
|
+
)
|
450
|
+
return output_block
|
451
|
+
|
452
|
+
def _iterative_translate(self, root: CodeBlock) -> TranslatedCodeBlock:
|
453
|
+
"""Translate the passed CodeBlock representing a full file.
|
454
|
+
|
455
|
+
Arguments:
|
456
|
+
root: A root block representing the top-level block of a file
|
457
|
+
|
458
|
+
Returns:
|
459
|
+
A `TranslatedCodeBlock`
|
460
|
+
"""
|
461
|
+
translated_root = TranslatedCodeBlock(root, self._target_language)
|
462
|
+
last_prog, prog_delta = 0, 0.1
|
463
|
+
stack = [translated_root]
|
464
|
+
while stack:
|
465
|
+
translated_block = stack.pop()
|
466
|
+
|
467
|
+
self._add_translation(translated_block)
|
468
|
+
|
469
|
+
# If translating this block was unsuccessful, don't bother with its
|
470
|
+
# children (they wouldn't show up in the final text anyway)
|
471
|
+
if not translated_block.translated:
|
472
|
+
continue
|
473
|
+
|
474
|
+
stack.extend(translated_block.children)
|
475
|
+
|
476
|
+
progress = translated_root.translation_completeness
|
477
|
+
if progress - last_prog > prog_delta:
|
478
|
+
last_prog = int(progress / prog_delta) * prog_delta
|
479
|
+
log.info(f"[{root.name}] progress: {progress:.2%}")
|
480
|
+
|
481
|
+
return translated_root
|
482
|
+
|
483
|
+
def _add_translation(self, block: TranslatedCodeBlock) -> None:
|
484
|
+
"""Given an "empty" `TranslatedCodeBlock`, translate the code represented in
|
485
|
+
`block.original`, setting the relevant fields in the translated block. The
|
486
|
+
`TranslatedCodeBlock` is updated in-pace, nothing is returned. Note that this
|
487
|
+
translates *only* the code for this block, not its children.
|
488
|
+
|
489
|
+
Arguments:
|
490
|
+
block: An empty `TranslatedCodeBlock`
|
491
|
+
"""
|
492
|
+
if block.translated:
|
493
|
+
return
|
494
|
+
|
495
|
+
if block.original.text is None:
|
496
|
+
block.translated = True
|
497
|
+
return
|
498
|
+
|
499
|
+
if self._llm is None:
|
500
|
+
message = (
|
501
|
+
"Model not configured correctly, cannot translate. Try setting "
|
502
|
+
"the model"
|
503
|
+
)
|
504
|
+
log.error(message)
|
505
|
+
raise ValueError(message)
|
506
|
+
|
507
|
+
log.debug(f"[{block.name}] Translating...")
|
508
|
+
log.debug(f"[{block.name}] Input text:\n{block.original.text}")
|
509
|
+
|
510
|
+
# Track the cost of translating this block
|
511
|
+
# TODO: If non-OpenAI models with prices are added, this will need
|
512
|
+
# to be updated.
|
513
|
+
with get_model_callback() as cb:
|
514
|
+
t0 = time.time()
|
515
|
+
block.text = self._run_chain(block)
|
516
|
+
block.processing_time = time.time() - t0
|
517
|
+
block.cost = cb.total_cost
|
518
|
+
block.retries = max(0, cb.successful_requests - 1)
|
519
|
+
|
520
|
+
block.tokens = self._llm.get_num_tokens(block.text)
|
521
|
+
block.translated = True
|
522
|
+
|
523
|
+
log.debug(f"[{block.name}] Output code:\n{block.text}")
|
524
|
+
|
525
|
+
def _split_file(self, file: Path) -> CodeBlock:
|
526
|
+
filename = file.name
|
527
|
+
log.info(f"[{filename}] Splitting file")
|
528
|
+
root = self._splitter.split(file)
|
529
|
+
log.info(
|
530
|
+
f"[{filename}] File split into {root.n_descendents:,} blocks, "
|
531
|
+
f"tree of height {root.height}"
|
532
|
+
)
|
533
|
+
log.info(f"[{filename}] Input CodeBlock Structure:\n{root.tree_str()}")
|
534
|
+
return root
|
535
|
+
|
536
|
+
def _run_chain(self, block: TranslatedCodeBlock) -> str:
|
537
|
+
"""Run the model with three nested error fixing schemes.
|
538
|
+
First, try to fix simple formatting errors by giving the model just
|
539
|
+
the output and the parsing error. After a number of attempts, try
|
540
|
+
giving the model the output, the parsing error, and the original
|
541
|
+
input. Again check/retry this output to solve for formatting errors.
|
542
|
+
If we still haven't succeeded after several attempts, the model may
|
543
|
+
be getting thrown off by a bad initial output; start from scratch
|
544
|
+
and try again.
|
545
|
+
|
546
|
+
The number of tries for each layer of this scheme is roughly equal
|
547
|
+
to the cube root of self.max_retries, so the total calls to the
|
548
|
+
LLM will be roughly as expected (up to sqrt(self.max_retries) over)
|
549
|
+
"""
|
550
|
+
self._parser.set_reference(block.original)
|
551
|
+
|
552
|
+
# Retries with just the output and the error
|
553
|
+
n1 = round(self.max_prompts ** (1 / 3))
|
554
|
+
|
555
|
+
# Retries with the input, output, and error
|
556
|
+
n2 = round((self.max_prompts // n1) ** (1 / 2))
|
557
|
+
|
558
|
+
# Retries with just the input
|
559
|
+
n3 = math.ceil(self.max_prompts / (n1 * n2))
|
560
|
+
|
561
|
+
fix_format = OutputFixingParser.from_llm(
|
562
|
+
llm=self._llm,
|
563
|
+
parser=self._parser,
|
564
|
+
max_retries=n1,
|
565
|
+
)
|
566
|
+
retry = RetryWithErrorOutputParser.from_llm(
|
567
|
+
llm=self._llm,
|
568
|
+
parser=fix_format,
|
569
|
+
max_retries=n2,
|
570
|
+
)
|
571
|
+
|
572
|
+
completion_chain = self._prompt | self._llm
|
573
|
+
chain = RunnableParallel(
|
574
|
+
completion=completion_chain, prompt_value=self._prompt
|
575
|
+
) | RunnableLambda(lambda x: retry.parse_with_prompt(**x))
|
576
|
+
|
577
|
+
for _ in range(n3):
|
578
|
+
try:
|
579
|
+
return chain.invoke({"SOURCE_CODE": block.original.text})
|
580
|
+
except OutputParserException:
|
581
|
+
pass
|
582
|
+
|
583
|
+
raise OutputParserException(f"Failed to parse after {n1*n2*n3} retries")
|
584
|
+
|
585
|
+
def _get_output_obj(
|
586
|
+
self, block: TranslatedCodeBlock
|
587
|
+
) -> dict[str, int | float | str | dict[str, str]]:
|
588
|
+
output_str = self._parser.parse_combined_output(block.complete_text)
|
589
|
+
|
590
|
+
output: str | dict[str, str]
|
591
|
+
try:
|
592
|
+
output = json.loads(output_str)
|
593
|
+
except json.JSONDecodeError:
|
594
|
+
output = output_str
|
595
|
+
|
596
|
+
return dict(
|
597
|
+
input=block.original.text,
|
598
|
+
metadata=dict(
|
599
|
+
retries=block.total_retries,
|
600
|
+
cost=block.total_cost,
|
601
|
+
processing_time=block.processing_time,
|
602
|
+
),
|
603
|
+
output=output,
|
604
|
+
)
|
605
|
+
|
606
|
+
def _save_to_file(self, block: TranslatedCodeBlock, out_path: Path) -> None:
|
607
|
+
"""Save a file to disk.
|
608
|
+
|
609
|
+
Arguments:
|
610
|
+
block: The `TranslatedCodeBlock` to save to a file.
|
611
|
+
"""
|
612
|
+
obj = self._get_output_obj(block)
|
613
|
+
out_path.parent.mkdir(parents=True, exist_ok=True)
|
614
|
+
out_path.write_text(json.dumps(obj, indent=2), encoding="utf-8")
|