janus-llm 1.0.0__py3-none-any.whl → 2.0.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- janus/__init__.py +9 -1
- janus/__main__.py +4 -0
- janus/_tests/test_cli.py +128 -0
- janus/_tests/test_translate.py +49 -7
- janus/cli.py +530 -46
- janus/converter.py +50 -19
- janus/embedding/_tests/test_collections.py +2 -8
- janus/embedding/_tests/test_database.py +32 -0
- janus/embedding/_tests/test_vectorize.py +9 -4
- janus/embedding/collections.py +49 -6
- janus/embedding/embedding_models_info.py +120 -0
- janus/embedding/vectorize.py +53 -62
- janus/language/_tests/__init__.py +0 -0
- janus/language/_tests/test_combine.py +62 -0
- janus/language/_tests/test_splitter.py +16 -0
- janus/language/binary/_tests/test_binary.py +16 -1
- janus/language/binary/binary.py +10 -3
- janus/language/block.py +31 -30
- janus/language/combine.py +26 -34
- janus/language/mumps/_tests/test_mumps.py +2 -2
- janus/language/mumps/mumps.py +93 -9
- janus/language/naive/__init__.py +4 -0
- janus/language/naive/basic_splitter.py +14 -0
- janus/language/naive/chunk_splitter.py +26 -0
- janus/language/naive/registry.py +13 -0
- janus/language/naive/simple_ast.py +18 -0
- janus/language/naive/tag_splitter.py +61 -0
- janus/language/splitter.py +168 -74
- janus/language/treesitter/_tests/test_treesitter.py +9 -6
- janus/language/treesitter/treesitter.py +37 -13
- janus/llm/model_callbacks.py +177 -0
- janus/llm/models_info.py +134 -70
- janus/metrics/__init__.py +8 -0
- janus/metrics/_tests/__init__.py +0 -0
- janus/metrics/_tests/reference.py +2 -0
- janus/metrics/_tests/target.py +2 -0
- janus/metrics/_tests/test_bleu.py +56 -0
- janus/metrics/_tests/test_chrf.py +67 -0
- janus/metrics/_tests/test_file_pairing.py +59 -0
- janus/metrics/_tests/test_llm.py +91 -0
- janus/metrics/_tests/test_reading.py +28 -0
- janus/metrics/_tests/test_rouge_score.py +65 -0
- janus/metrics/_tests/test_similarity_score.py +23 -0
- janus/metrics/_tests/test_treesitter_metrics.py +110 -0
- janus/metrics/bleu.py +66 -0
- janus/metrics/chrf.py +55 -0
- janus/metrics/cli.py +7 -0
- janus/metrics/complexity_metrics.py +208 -0
- janus/metrics/file_pairing.py +113 -0
- janus/metrics/llm_metrics.py +202 -0
- janus/metrics/metric.py +466 -0
- janus/metrics/reading.py +70 -0
- janus/metrics/rouge_score.py +96 -0
- janus/metrics/similarity.py +53 -0
- janus/metrics/splitting.py +38 -0
- janus/parsers/_tests/__init__.py +0 -0
- janus/parsers/_tests/test_code_parser.py +32 -0
- janus/parsers/code_parser.py +24 -253
- janus/parsers/doc_parser.py +169 -0
- janus/parsers/eval_parser.py +80 -0
- janus/parsers/reqs_parser.py +72 -0
- janus/prompts/prompt.py +103 -30
- janus/translate.py +636 -111
- janus/utils/_tests/__init__.py +0 -0
- janus/utils/_tests/test_logger.py +67 -0
- janus/utils/_tests/test_progress.py +20 -0
- janus/utils/enums.py +56 -3
- janus/utils/progress.py +56 -0
- {janus_llm-1.0.0.dist-info → janus_llm-2.0.0.dist-info}/METADATA +23 -10
- janus_llm-2.0.0.dist-info/RECORD +94 -0
- {janus_llm-1.0.0.dist-info → janus_llm-2.0.0.dist-info}/WHEEL +1 -1
- janus_llm-1.0.0.dist-info/RECORD +0 -48
- {janus_llm-1.0.0.dist-info → janus_llm-2.0.0.dist-info}/LICENSE +0 -0
- {janus_llm-1.0.0.dist-info → janus_llm-2.0.0.dist-info}/entry_points.txt +0 -0
janus/metrics/metric.py
ADDED
@@ -0,0 +1,466 @@
|
|
1
|
+
import inspect
|
2
|
+
import json
|
3
|
+
from pathlib import Path
|
4
|
+
from typing import Callable, Optional
|
5
|
+
|
6
|
+
import click
|
7
|
+
import typer
|
8
|
+
from typing_extensions import Annotated
|
9
|
+
|
10
|
+
from janus.llm import load_model
|
11
|
+
from janus.utils.enums import LANGUAGES
|
12
|
+
from janus.utils.logger import create_logger
|
13
|
+
|
14
|
+
from ..utils.progress import track
|
15
|
+
from .cli import evaluate
|
16
|
+
from .file_pairing import FILE_PAIRING_METHODS
|
17
|
+
from .splitting import SPLITTING_METHODS
|
18
|
+
|
19
|
+
log = create_logger(__name__)
|
20
|
+
|
21
|
+
|
22
|
+
def metric(
|
23
|
+
name: None | str = None,
|
24
|
+
help: None | str = None,
|
25
|
+
use_reference: bool = True,
|
26
|
+
) -> Callable:
|
27
|
+
"""Returns a decorator to add a given metric to the cli
|
28
|
+
|
29
|
+
Metrics must follow the format (src_str, cmp_str, **other_params)
|
30
|
+
|
31
|
+
Arguments:
|
32
|
+
name: The name of the metric. If None, the function name is used.
|
33
|
+
help: The help text for the metric.
|
34
|
+
use_reference: Whether the metric requires a reference string.
|
35
|
+
|
36
|
+
Returns:
|
37
|
+
The decorator function.
|
38
|
+
"""
|
39
|
+
|
40
|
+
def decorator(function):
|
41
|
+
if use_reference:
|
42
|
+
|
43
|
+
def func(
|
44
|
+
out_file: Annotated[
|
45
|
+
str,
|
46
|
+
typer.Option("--out-file", "-o", help="Output JSON file to write."),
|
47
|
+
],
|
48
|
+
language: Annotated[
|
49
|
+
Optional[str],
|
50
|
+
typer.Option(
|
51
|
+
"--language",
|
52
|
+
"-l",
|
53
|
+
help="The language of the source code.",
|
54
|
+
click_type=click.Choice(sorted(LANGUAGES)),
|
55
|
+
),
|
56
|
+
] = None,
|
57
|
+
target: Annotated[
|
58
|
+
Optional[str],
|
59
|
+
typer.Option(
|
60
|
+
"--target",
|
61
|
+
"-t",
|
62
|
+
help="Target file or string to evaluate.",
|
63
|
+
),
|
64
|
+
] = None,
|
65
|
+
reference: Annotated[
|
66
|
+
Optional[str],
|
67
|
+
typer.Option(
|
68
|
+
"--reference",
|
69
|
+
"-r",
|
70
|
+
help="Reference file or string to use as reference/baseline.",
|
71
|
+
),
|
72
|
+
] = None,
|
73
|
+
json_file_name: Annotated[
|
74
|
+
Optional[str],
|
75
|
+
typer.Option(
|
76
|
+
"--json",
|
77
|
+
"-j",
|
78
|
+
help="Json file to extract pairs from \
|
79
|
+
(if set ignores --target and --reference)",
|
80
|
+
),
|
81
|
+
] = None,
|
82
|
+
target_key: Annotated[
|
83
|
+
str,
|
84
|
+
typer.Option(
|
85
|
+
"--target-key",
|
86
|
+
"-tk",
|
87
|
+
help="json key to extract list of target strings",
|
88
|
+
),
|
89
|
+
] = "target",
|
90
|
+
reference_key: Annotated[
|
91
|
+
str,
|
92
|
+
typer.Option(
|
93
|
+
"--reference-key",
|
94
|
+
"-rk",
|
95
|
+
help="json key to extract list of reference strings",
|
96
|
+
),
|
97
|
+
] = "reference",
|
98
|
+
file_pairing_method: Annotated[
|
99
|
+
str,
|
100
|
+
typer.Option(
|
101
|
+
"--method",
|
102
|
+
"-m",
|
103
|
+
click_type=click.Choice(FILE_PAIRING_METHODS.keys()),
|
104
|
+
help="Method to use for pairing\
|
105
|
+
segments of target and reference files \
|
106
|
+
(ignored for json).",
|
107
|
+
),
|
108
|
+
] = "file",
|
109
|
+
llm_name: Annotated[
|
110
|
+
str,
|
111
|
+
typer.Option(
|
112
|
+
"--llm",
|
113
|
+
"-L",
|
114
|
+
help="The custom name of the model set with 'janus llm add'.",
|
115
|
+
),
|
116
|
+
] = "gpt-3.5-turbo-0125",
|
117
|
+
progress: Annotated[
|
118
|
+
bool,
|
119
|
+
typer.Option(
|
120
|
+
"--progress",
|
121
|
+
"-p",
|
122
|
+
help="Whether to display a progress bar.",
|
123
|
+
is_flag=True,
|
124
|
+
),
|
125
|
+
] = False,
|
126
|
+
use_strings: Annotated[
|
127
|
+
bool,
|
128
|
+
typer.Option(
|
129
|
+
"--string",
|
130
|
+
"-S",
|
131
|
+
help="Indicate that the target and reference are strings",
|
132
|
+
is_flag=True,
|
133
|
+
),
|
134
|
+
] = False,
|
135
|
+
*args,
|
136
|
+
**kwargs,
|
137
|
+
):
|
138
|
+
out = []
|
139
|
+
llm, token_limit, model_cost = load_model(llm_name)
|
140
|
+
if json_file_name is not None:
|
141
|
+
with open(json_file_name, "r") as f:
|
142
|
+
json_obj = json.load(f)
|
143
|
+
pairs = {}
|
144
|
+
for key in json_obj:
|
145
|
+
doc = json_obj[key]
|
146
|
+
ref = doc[reference_key]
|
147
|
+
experiments = doc["experiments"]
|
148
|
+
for model_key in experiments:
|
149
|
+
model_dict = experiments[model_key]
|
150
|
+
if not isinstance(model_dict, dict):
|
151
|
+
continue
|
152
|
+
if target_key not in model_dict:
|
153
|
+
continue
|
154
|
+
if model_key not in pairs:
|
155
|
+
pairs[model_key] = {}
|
156
|
+
for k in model_dict[target_key]:
|
157
|
+
pairs[model_key][k] = (model_dict[target_key][k], ref[k])
|
158
|
+
elif target is not None and reference is not None:
|
159
|
+
if use_strings:
|
160
|
+
target_contents = target
|
161
|
+
reference_contents = reference
|
162
|
+
else:
|
163
|
+
with open(target, "r") as f:
|
164
|
+
target_contents = f.read()
|
165
|
+
with open(reference, "r") as f:
|
166
|
+
reference_contents = f.read()
|
167
|
+
pairs = FILE_PAIRING_METHODS[file_pairing_method](
|
168
|
+
target_contents,
|
169
|
+
reference_contents,
|
170
|
+
target_file=None if use_strings else target,
|
171
|
+
reference_file=None if use_strings else reference,
|
172
|
+
out_file=out_file,
|
173
|
+
lang=language,
|
174
|
+
llm=llm,
|
175
|
+
token_limit=token_limit,
|
176
|
+
model_cost=model_cost,
|
177
|
+
)
|
178
|
+
else:
|
179
|
+
raise ValueError(
|
180
|
+
"Error, specify json or target and reference files/strings"
|
181
|
+
)
|
182
|
+
if isinstance(pairs, dict):
|
183
|
+
out = {}
|
184
|
+
for k in pairs:
|
185
|
+
out[k] = apply_function_pairs(
|
186
|
+
pairs[k],
|
187
|
+
function,
|
188
|
+
progress,
|
189
|
+
language,
|
190
|
+
llm,
|
191
|
+
token_limit,
|
192
|
+
model_cost,
|
193
|
+
*args,
|
194
|
+
**kwargs,
|
195
|
+
)
|
196
|
+
else:
|
197
|
+
out = apply_function_pairs(
|
198
|
+
pairs,
|
199
|
+
function,
|
200
|
+
progress,
|
201
|
+
language,
|
202
|
+
llm,
|
203
|
+
token_limit,
|
204
|
+
model_cost,
|
205
|
+
*args,
|
206
|
+
**kwargs,
|
207
|
+
)
|
208
|
+
out_file = Path(out_file)
|
209
|
+
out_file.parent.mkdir(parents=True, exist_ok=True)
|
210
|
+
with open(out_file, "w") as f:
|
211
|
+
json.dump(out, f)
|
212
|
+
log.info(f"Saved results to file: {out_file}")
|
213
|
+
|
214
|
+
sig1 = inspect.signature(function)
|
215
|
+
sig2 = inspect.signature(func)
|
216
|
+
func.__signature__ = sig2.replace(
|
217
|
+
parameters=tuple(
|
218
|
+
list(sig2.parameters.values())[:11]
|
219
|
+
+ list(sig1.parameters.values())[2:-1]
|
220
|
+
)
|
221
|
+
)
|
222
|
+
else:
|
223
|
+
|
224
|
+
def func(
|
225
|
+
out_file: Annotated[
|
226
|
+
str,
|
227
|
+
typer.Option("--out-file", "-o", help="Output JSON file to write."),
|
228
|
+
],
|
229
|
+
language: Annotated[
|
230
|
+
Optional[str],
|
231
|
+
typer.Option(
|
232
|
+
"--language",
|
233
|
+
"-l",
|
234
|
+
help="The language of the source code.",
|
235
|
+
click_type=click.Choice(sorted(LANGUAGES)),
|
236
|
+
),
|
237
|
+
] = None,
|
238
|
+
target: Annotated[
|
239
|
+
Optional[str],
|
240
|
+
typer.Option(
|
241
|
+
"--target", "-t", help="Target file or string to evaluate."
|
242
|
+
),
|
243
|
+
] = None,
|
244
|
+
json_file_name: Annotated[
|
245
|
+
Optional[str],
|
246
|
+
typer.Option(
|
247
|
+
"--json",
|
248
|
+
"-j",
|
249
|
+
help="Json file to extract pairs from \
|
250
|
+
(if set ignores --target)",
|
251
|
+
),
|
252
|
+
] = None,
|
253
|
+
target_key: Annotated[
|
254
|
+
str,
|
255
|
+
typer.Option(
|
256
|
+
"--target-key",
|
257
|
+
"-tk",
|
258
|
+
help="json key to extract list of target strings",
|
259
|
+
),
|
260
|
+
] = "target",
|
261
|
+
splitting_method: Annotated[
|
262
|
+
str,
|
263
|
+
typer.Option(
|
264
|
+
"--method",
|
265
|
+
"-m",
|
266
|
+
click_type=click.Choice(SPLITTING_METHODS.keys()),
|
267
|
+
help="Method to use for pairing\
|
268
|
+
segments of target and reference files.",
|
269
|
+
),
|
270
|
+
] = "file",
|
271
|
+
llm_name: Annotated[
|
272
|
+
str,
|
273
|
+
typer.Option(
|
274
|
+
"--llm",
|
275
|
+
"-L",
|
276
|
+
help="The custom name of the model set with 'janus llm add'.",
|
277
|
+
),
|
278
|
+
] = "gpt-3.5-turbo-0125",
|
279
|
+
progress: Annotated[
|
280
|
+
bool,
|
281
|
+
typer.Option(
|
282
|
+
"--progress",
|
283
|
+
"-p",
|
284
|
+
help="Whether to display a progress bar.",
|
285
|
+
is_flag=True,
|
286
|
+
),
|
287
|
+
] = False,
|
288
|
+
use_strings: Annotated[
|
289
|
+
bool,
|
290
|
+
typer.Option(
|
291
|
+
"--string",
|
292
|
+
"-S",
|
293
|
+
help="Indicate that the target and reference are strings",
|
294
|
+
is_flag=True,
|
295
|
+
),
|
296
|
+
] = False,
|
297
|
+
*args,
|
298
|
+
**kwargs,
|
299
|
+
):
|
300
|
+
llm, token_limit, model_cost = load_model(llm_name)
|
301
|
+
if json_file_name is not None:
|
302
|
+
with open(json_file_name, "r") as f:
|
303
|
+
json_obj = json.load(f)
|
304
|
+
strings = {}
|
305
|
+
for key in json_obj:
|
306
|
+
doc = json_obj[key]
|
307
|
+
experiments = doc["experiments"]
|
308
|
+
for model_key in experiments:
|
309
|
+
model_dict = experiments[model_key]
|
310
|
+
if not isinstance(model_dict, dict):
|
311
|
+
continue
|
312
|
+
if target_key not in model_dict:
|
313
|
+
continue
|
314
|
+
if model_key not in strings:
|
315
|
+
strings[model_key] = {}
|
316
|
+
for k in model_dict[target_key]:
|
317
|
+
strings[model_key][k] = model_dict[target_key][k]
|
318
|
+
# strings += list(json_obj[key][target_key].values())
|
319
|
+
elif target is not None:
|
320
|
+
if use_strings:
|
321
|
+
target_contents = target
|
322
|
+
else:
|
323
|
+
with open(target, "r") as f:
|
324
|
+
target_contents = f.read()
|
325
|
+
|
326
|
+
strings = SPLITTING_METHODS[splitting_method](
|
327
|
+
target_contents,
|
328
|
+
target_file=target if not use_strings else None,
|
329
|
+
out_file=out_file,
|
330
|
+
lang=language,
|
331
|
+
llm=llm,
|
332
|
+
token_limit=token_limit,
|
333
|
+
model_cost=model_cost,
|
334
|
+
)
|
335
|
+
else:
|
336
|
+
raise ValueError(
|
337
|
+
"Error: must specify either json file or target file/string"
|
338
|
+
)
|
339
|
+
if isinstance(strings, dict):
|
340
|
+
out = {}
|
341
|
+
for k in strings:
|
342
|
+
out[k] = apply_function_strings(
|
343
|
+
strings[k],
|
344
|
+
function,
|
345
|
+
progress,
|
346
|
+
language,
|
347
|
+
llm,
|
348
|
+
token_limit,
|
349
|
+
model_cost,
|
350
|
+
*args,
|
351
|
+
**kwargs,
|
352
|
+
)
|
353
|
+
else:
|
354
|
+
out = apply_function_strings(
|
355
|
+
strings,
|
356
|
+
function,
|
357
|
+
progress,
|
358
|
+
language,
|
359
|
+
llm,
|
360
|
+
token_limit,
|
361
|
+
model_cost,
|
362
|
+
*args,
|
363
|
+
**kwargs,
|
364
|
+
)
|
365
|
+
out_file = Path(out_file)
|
366
|
+
out_file.parent.mkdir(parents=True, exist_ok=True)
|
367
|
+
with open(out_file, "w") as f:
|
368
|
+
json.dump(out, f)
|
369
|
+
log.info(f"Saved results to file: {out_file}")
|
370
|
+
|
371
|
+
sig1 = inspect.signature(function)
|
372
|
+
sig2 = inspect.signature(func)
|
373
|
+
func.__signature__ = sig2.replace(
|
374
|
+
parameters=tuple(
|
375
|
+
list(sig2.parameters.values())[:9]
|
376
|
+
+ list(sig1.parameters.values())[1:-1]
|
377
|
+
)
|
378
|
+
)
|
379
|
+
if name is None:
|
380
|
+
func.__name__ = function.__name__
|
381
|
+
else:
|
382
|
+
func.__name__ = name
|
383
|
+
if help is None:
|
384
|
+
func = evaluate.command()(func)
|
385
|
+
else:
|
386
|
+
func = evaluate.command(help=help)(func)
|
387
|
+
return function
|
388
|
+
|
389
|
+
return decorator
|
390
|
+
|
391
|
+
|
392
|
+
def apply_function_pairs(
|
393
|
+
pairs,
|
394
|
+
function,
|
395
|
+
progress,
|
396
|
+
language,
|
397
|
+
llm,
|
398
|
+
token_limit,
|
399
|
+
model_cost,
|
400
|
+
*args,
|
401
|
+
**kwargs,
|
402
|
+
):
|
403
|
+
out = []
|
404
|
+
pair_keys = None
|
405
|
+
if isinstance(pairs, dict):
|
406
|
+
pair_keys = list(pairs.keys())
|
407
|
+
pair_values = list(pairs.values())
|
408
|
+
else:
|
409
|
+
pair_values = pairs
|
410
|
+
if progress:
|
411
|
+
loop = track(pair_values, description="Evaluating pairs")
|
412
|
+
else:
|
413
|
+
loop = pair_values
|
414
|
+
for src, cmp in loop:
|
415
|
+
if not (isinstance(src, str) and isinstance(cmp, str)):
|
416
|
+
out.append(False)
|
417
|
+
else:
|
418
|
+
out.append(
|
419
|
+
function(
|
420
|
+
src,
|
421
|
+
cmp,
|
422
|
+
*args,
|
423
|
+
**kwargs,
|
424
|
+
language=language,
|
425
|
+
llm=llm,
|
426
|
+
token_limit=token_limit,
|
427
|
+
model_cost=model_cost,
|
428
|
+
)
|
429
|
+
)
|
430
|
+
if pair_keys is not None:
|
431
|
+
return {k: v for k, v in zip(pair_keys, out)}
|
432
|
+
return out
|
433
|
+
|
434
|
+
|
435
|
+
def apply_function_strings(
|
436
|
+
strings, function, progress, language, llm, token_limit, model_cost, *args, **kwargs
|
437
|
+
):
|
438
|
+
out = []
|
439
|
+
string_keys = None
|
440
|
+
if isinstance(strings, dict):
|
441
|
+
string_keys = list(strings.keys())
|
442
|
+
string_values = list(strings.values())
|
443
|
+
else:
|
444
|
+
string_values = strings
|
445
|
+
if progress:
|
446
|
+
loop = track(string_values, description="Evaluating strings")
|
447
|
+
else:
|
448
|
+
loop = string_values
|
449
|
+
for string in loop:
|
450
|
+
if not isinstance(string, str):
|
451
|
+
out.append(False)
|
452
|
+
else:
|
453
|
+
out.append(
|
454
|
+
function(
|
455
|
+
string,
|
456
|
+
*args,
|
457
|
+
**kwargs,
|
458
|
+
language=language,
|
459
|
+
llm=llm,
|
460
|
+
token_limit=token_limit,
|
461
|
+
model_cost=model_cost,
|
462
|
+
)
|
463
|
+
)
|
464
|
+
if string_keys is not None:
|
465
|
+
return {k: v for k, v in zip(string_keys, out)}
|
466
|
+
return out
|
janus/metrics/reading.py
ADDED
@@ -0,0 +1,70 @@
|
|
1
|
+
import nltk
|
2
|
+
import readability
|
3
|
+
|
4
|
+
from .metric import metric
|
5
|
+
|
6
|
+
|
7
|
+
def _repeat_text(text):
|
8
|
+
"""Repeats a string until its length is over 100 words.
|
9
|
+
|
10
|
+
Arguments:
|
11
|
+
text: The input string.
|
12
|
+
|
13
|
+
Returns:
|
14
|
+
A string repeated to have more than 100 words.
|
15
|
+
"""
|
16
|
+
# Strip to remove a newline
|
17
|
+
text = text.strip()
|
18
|
+
|
19
|
+
# Check if the text ends with a period
|
20
|
+
if not text.endswith("."):
|
21
|
+
text += "." # Add a period if missing
|
22
|
+
|
23
|
+
# Check if repeated text is long enough, repeat more if needed
|
24
|
+
repeated_text = text
|
25
|
+
while len(repeated_text.split()) < 100:
|
26
|
+
repeated_text += " " + text
|
27
|
+
|
28
|
+
return repeated_text
|
29
|
+
|
30
|
+
|
31
|
+
def get_readability(target: str) -> readability.Readability:
|
32
|
+
"""Create a Readability object from an input string
|
33
|
+
|
34
|
+
Arguments:
|
35
|
+
target: The target text.
|
36
|
+
|
37
|
+
Returns:
|
38
|
+
py-readability-metrics Readability object for that text
|
39
|
+
"""
|
40
|
+
nltk.download("punkt", quiet=True)
|
41
|
+
target = _repeat_text(target)
|
42
|
+
return readability.Readability(target)
|
43
|
+
|
44
|
+
|
45
|
+
@metric(use_reference=False, help="The Flesch Readability score")
|
46
|
+
def flesch(target: str, **kwargs) -> float:
|
47
|
+
"""Calculate the Flesch Score using py-readability-metrics.
|
48
|
+
|
49
|
+
Arguments:
|
50
|
+
target: The target text.
|
51
|
+
|
52
|
+
Returns:
|
53
|
+
The Flesch score.
|
54
|
+
"""
|
55
|
+
|
56
|
+
return get_readability(target).flesch().score
|
57
|
+
|
58
|
+
|
59
|
+
@metric(use_reference=False, help="The Gunning-Fog Readability score")
|
60
|
+
def gunning_fog(target: str, **kwargs) -> float:
|
61
|
+
"""Calculate the Gunning-Fog Score using py-readability-metrics.
|
62
|
+
|
63
|
+
Arguments:
|
64
|
+
target: The target text.
|
65
|
+
|
66
|
+
Returns:
|
67
|
+
The Gunning-Fog score.
|
68
|
+
"""
|
69
|
+
|
70
|
+
return get_readability(target).gunning_fog().score
|
@@ -0,0 +1,96 @@
|
|
1
|
+
import click
|
2
|
+
import nltk
|
3
|
+
import typer
|
4
|
+
from rouge import Rouge
|
5
|
+
from typing_extensions import Annotated
|
6
|
+
|
7
|
+
from .metric import metric
|
8
|
+
|
9
|
+
|
10
|
+
@metric(help="ROUGE score")
|
11
|
+
def rouge(
|
12
|
+
target: str,
|
13
|
+
reference: str,
|
14
|
+
granularity: Annotated[
|
15
|
+
str,
|
16
|
+
typer.Option(
|
17
|
+
"--granularity",
|
18
|
+
"-g",
|
19
|
+
help=(
|
20
|
+
"The granularity of the ROUGE score. `n` refers to "
|
21
|
+
"ROUGE-N, `l` refers to ROUGE-L, and `w` refers to ROUGE-W."
|
22
|
+
),
|
23
|
+
click_type=click.Choice(["n", "l", "w"]),
|
24
|
+
),
|
25
|
+
] = "n",
|
26
|
+
n_gram: Annotated[
|
27
|
+
int,
|
28
|
+
typer.Option(
|
29
|
+
"--n-gram",
|
30
|
+
"-n",
|
31
|
+
help=("The n-gram overlap calculated for ROUGE-N. Can be an integer."),
|
32
|
+
),
|
33
|
+
] = 2,
|
34
|
+
score_type: Annotated[
|
35
|
+
str,
|
36
|
+
typer.Option(
|
37
|
+
"--score",
|
38
|
+
"-s",
|
39
|
+
help=(
|
40
|
+
"Whether to use the F-score, precision, or recall. For example, `f` "
|
41
|
+
"refers to the F-score, `p` refers to precision, and `r` refers to "
|
42
|
+
"recall."
|
43
|
+
),
|
44
|
+
click_type=click.Choice(["f", "p", "r"]),
|
45
|
+
),
|
46
|
+
] = "f",
|
47
|
+
**kwargs,
|
48
|
+
) -> float:
|
49
|
+
"""Calculate the ROUGE Score.
|
50
|
+
|
51
|
+
Arguments:
|
52
|
+
target: The target text.
|
53
|
+
reference: The reference text.
|
54
|
+
granularity: The granularity of the ROUGE score. `n` refers to ROUGE-N, `l`
|
55
|
+
refers to ROUGE-L, and `w` refers to ROUGE-W.
|
56
|
+
n_gram: The n-gram overlap calculated for ROUGE-N. Can be an integer.
|
57
|
+
score_type: Whether to use the F-score, precision, or recall. For example, `f`
|
58
|
+
refers to the F-score, `p` refers to precision, and `r` refers to recall.
|
59
|
+
|
60
|
+
Returns:
|
61
|
+
The ROUGE score.
|
62
|
+
"""
|
63
|
+
nltk.download("punkt", quiet=True)
|
64
|
+
|
65
|
+
if granularity.lower() == "n":
|
66
|
+
metric_name = "rouge-n"
|
67
|
+
metric_name_output = f"rouge-{n_gram}"
|
68
|
+
max_n = n_gram
|
69
|
+
elif granularity.lower() == "l":
|
70
|
+
metric_name = "rouge-l"
|
71
|
+
metric_name_output = "rouge-l"
|
72
|
+
max_n = 4
|
73
|
+
elif granularity.lower() == "w":
|
74
|
+
metric_name = "rouge-w"
|
75
|
+
metric_name_output = "rouge-w"
|
76
|
+
max_n = 4
|
77
|
+
else:
|
78
|
+
raise ValueError("Invalid granularity. Must be one of `n`, `l`, or `w`.")
|
79
|
+
|
80
|
+
if score_type.lower() not in ["f", "p", "r"]:
|
81
|
+
raise ValueError("Invalid score type. Must be one of `f`, `p`, or `r`.")
|
82
|
+
|
83
|
+
evaluator = Rouge(
|
84
|
+
metrics=[metric_name],
|
85
|
+
max_n=max_n,
|
86
|
+
limit_length=False,
|
87
|
+
length_limit=1_000,
|
88
|
+
length_limit_type="words",
|
89
|
+
apply_avg=False,
|
90
|
+
apply_best=False,
|
91
|
+
alpha=0.5, # Default F1_score
|
92
|
+
weight_factor=1.2,
|
93
|
+
stemming=True,
|
94
|
+
)
|
95
|
+
scores = evaluator.get_scores(target, reference)
|
96
|
+
return scores[metric_name_output][0][score_type.lower()][0]
|
@@ -0,0 +1,53 @@
|
|
1
|
+
import click
|
2
|
+
import typer
|
3
|
+
from langchain.evaluation import EmbeddingDistance, load_evaluator
|
4
|
+
from typing_extensions import Annotated
|
5
|
+
|
6
|
+
from ..embedding.embedding_models_info import load_embedding_model
|
7
|
+
from .metric import metric
|
8
|
+
|
9
|
+
|
10
|
+
@metric(name="similarity-score", help="Distance between embeddings of strings.")
|
11
|
+
def similarity_score(
|
12
|
+
target: str,
|
13
|
+
reference: str,
|
14
|
+
model_name: Annotated[
|
15
|
+
str,
|
16
|
+
typer.Option("-e", "--embedding-model", help="Name of embedding model to use."),
|
17
|
+
] = "text-embedding-3-small",
|
18
|
+
distance_metric: Annotated[
|
19
|
+
str,
|
20
|
+
typer.Option(
|
21
|
+
"-d",
|
22
|
+
"--distance-metric",
|
23
|
+
click_type=click.Choice([e.value for e in list(EmbeddingDistance)]),
|
24
|
+
help="Distance metric to use.",
|
25
|
+
),
|
26
|
+
] = "cosine",
|
27
|
+
**kwargs,
|
28
|
+
) -> float:
|
29
|
+
"""Computes the similarity score of two strings
|
30
|
+
|
31
|
+
Arguments:
|
32
|
+
target: The target string.
|
33
|
+
reference: The reference string.
|
34
|
+
model_name: The name of the embedding model to use.
|
35
|
+
distance_metric: The distance metric to use. Can be one of:
|
36
|
+
- cosine
|
37
|
+
- euclidean
|
38
|
+
- manhattan
|
39
|
+
- chebyshev
|
40
|
+
- hamming
|
41
|
+
|
42
|
+
Returns:
|
43
|
+
The similarity score of the two strings.
|
44
|
+
"""
|
45
|
+
embedding_model, _, _ = load_embedding_model(model_name)
|
46
|
+
evaluator = load_evaluator(
|
47
|
+
"pairwise_embedding_distance",
|
48
|
+
embeddings=embedding_model,
|
49
|
+
distance_metric=distance_metric,
|
50
|
+
)
|
51
|
+
return evaluator.evaluate_string_pairs(prediction=target, prediction_b=reference)[
|
52
|
+
"score"
|
53
|
+
]
|