janito 2.10.0__py3-none-any.whl → 2.14.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- janito/agent/setup_agent.py +1 -1
- janito/cli/chat_mode/session.py +9 -0
- janito/cli/cli_commands/list_drivers.py +137 -0
- janito/cli/core/getters.py +6 -1
- janito/cli/core/model_guesser.py +51 -0
- janito/cli/core/runner.py +13 -1
- janito/cli/main_cli.py +15 -10
- janito/drivers/openai/driver.py +3 -2
- janito/drivers/zai/__init__.py +1 -0
- janito/drivers/zai/driver.py +476 -0
- janito/mkdocs.yml +1 -1
- janito/providers/__init__.py +1 -0
- janito/providers/alibaba/model_info.py +7 -0
- janito/providers/alibaba/provider.py +1 -1
- janito/providers/zai/__init__.py +1 -0
- janito/providers/zai/model_info.py +38 -0
- janito/providers/zai/provider.py +131 -0
- janito/providers/zai/schema_generator.py +135 -0
- {janito-2.10.0.dist-info → janito-2.14.0.dist-info}/METADATA +1 -1
- {janito-2.10.0.dist-info → janito-2.14.0.dist-info}/RECORD +24 -18
- janito/docs/PROVIDERS.md +0 -224
- janito/drivers/driver_registry.py +0 -27
- {janito-2.10.0.dist-info → janito-2.14.0.dist-info}/WHEEL +0 -0
- {janito-2.10.0.dist-info → janito-2.14.0.dist-info}/entry_points.txt +0 -0
- {janito-2.10.0.dist-info → janito-2.14.0.dist-info}/licenses/LICENSE +0 -0
- {janito-2.10.0.dist-info → janito-2.14.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,476 @@
|
|
1
|
+
import uuid
|
2
|
+
import traceback
|
3
|
+
import re
|
4
|
+
import json
|
5
|
+
import math
|
6
|
+
import time
|
7
|
+
import os
|
8
|
+
import logging
|
9
|
+
from rich import pretty
|
10
|
+
from janito.llm.driver import LLMDriver
|
11
|
+
from janito.llm.driver_input import DriverInput
|
12
|
+
from janito.driver_events import RequestFinished, RequestStatus, RateLimitRetry
|
13
|
+
from janito.llm.message_parts import TextMessagePart, FunctionCallMessagePart
|
14
|
+
|
15
|
+
try:
|
16
|
+
import openai
|
17
|
+
available = True
|
18
|
+
unavailable_reason = None
|
19
|
+
except ImportError:
|
20
|
+
available = False
|
21
|
+
unavailable_reason = "openai module not installed"
|
22
|
+
|
23
|
+
|
24
|
+
class ZAIModelDriver(LLMDriver):
|
25
|
+
available = available
|
26
|
+
unavailable_reason = unavailable_reason
|
27
|
+
def _get_message_from_result(self, result):
|
28
|
+
"""Extract the message object from the provider result (Z.AI-specific)."""
|
29
|
+
if hasattr(result, "choices") and result.choices:
|
30
|
+
return result.choices[0].message
|
31
|
+
return None
|
32
|
+
|
33
|
+
"""
|
34
|
+
Z.AI LLM driver (threaded, queue-based, stateless). Uses input/output queues accessible via instance attributes.
|
35
|
+
"""
|
36
|
+
|
37
|
+
def __init__(self, tools_adapter=None, provider_name=None):
|
38
|
+
super().__init__(tools_adapter=tools_adapter, provider_name=provider_name)
|
39
|
+
|
40
|
+
def _prepare_api_kwargs(self, config, conversation):
|
41
|
+
"""
|
42
|
+
Prepares API kwargs for Z.AI, including tool schemas if tools_adapter is present,
|
43
|
+
and Z.AI-specific arguments (model, max_tokens, temperature, etc.).
|
44
|
+
"""
|
45
|
+
api_kwargs = {}
|
46
|
+
# Tool schemas (moved from base)
|
47
|
+
if self.tools_adapter:
|
48
|
+
try:
|
49
|
+
from janito.providers.zai.schema_generator import (
|
50
|
+
generate_tool_schemas,
|
51
|
+
)
|
52
|
+
|
53
|
+
tool_classes = self.tools_adapter.get_tool_classes()
|
54
|
+
tool_schemas = generate_tool_schemas(tool_classes)
|
55
|
+
api_kwargs["tools"] = tool_schemas
|
56
|
+
except Exception as e:
|
57
|
+
api_kwargs["tools"] = []
|
58
|
+
if hasattr(config, "verbose_api") and config.verbose_api:
|
59
|
+
print(f"[ZAIModelDriver] Tool schema generation failed: {e}")
|
60
|
+
# Z.AI-specific parameters
|
61
|
+
if config.model:
|
62
|
+
api_kwargs["model"] = config.model
|
63
|
+
# Use max_tokens for Z.ai SDK compatibility
|
64
|
+
if hasattr(config, "max_tokens") and config.max_tokens is not None:
|
65
|
+
api_kwargs["max_tokens"] = int(config.max_tokens)
|
66
|
+
elif (
|
67
|
+
hasattr(config, "max_completion_tokens")
|
68
|
+
and config.max_completion_tokens is not None
|
69
|
+
):
|
70
|
+
# Fallback to max_completion_tokens if max_tokens not set
|
71
|
+
api_kwargs["max_tokens"] = int(config.max_completion_tokens)
|
72
|
+
for p in (
|
73
|
+
"temperature",
|
74
|
+
"top_p",
|
75
|
+
"presence_penalty",
|
76
|
+
"frequency_penalty",
|
77
|
+
"stop",
|
78
|
+
"reasoning_effort",
|
79
|
+
):
|
80
|
+
v = getattr(config, p, None)
|
81
|
+
if v is not None:
|
82
|
+
api_kwargs[p] = v
|
83
|
+
api_kwargs["messages"] = conversation
|
84
|
+
api_kwargs["stream"] = False
|
85
|
+
# Always return the prepared kwargs, even if no tools are registered. The
|
86
|
+
# OpenAI Python SDK expects a **mapping** – passing *None* will raise
|
87
|
+
# ``TypeError: argument after ** must be a mapping, not NoneType``.
|
88
|
+
return api_kwargs
|
89
|
+
|
90
|
+
def _call_api(self, driver_input: DriverInput):
|
91
|
+
"""Call the Z.AI-compatible chat completion endpoint with retry and error handling."""
|
92
|
+
cancel_event = getattr(driver_input, "cancel_event", None)
|
93
|
+
config = driver_input.config
|
94
|
+
conversation = self.convert_history_to_api_messages(
|
95
|
+
driver_input.conversation_history
|
96
|
+
)
|
97
|
+
request_id = getattr(config, "request_id", None)
|
98
|
+
self._print_api_call_start(config)
|
99
|
+
client = self._instantiate_zai_client(config)
|
100
|
+
api_kwargs = self._prepare_api_kwargs(config, conversation)
|
101
|
+
max_retries = getattr(config, "max_retries", 3)
|
102
|
+
attempt = 1
|
103
|
+
while True:
|
104
|
+
try:
|
105
|
+
self._print_api_attempt(config, attempt, max_retries, api_kwargs)
|
106
|
+
if self._check_cancel(cancel_event, request_id, before_call=True):
|
107
|
+
return None
|
108
|
+
result = client.chat.completions.create(**api_kwargs)
|
109
|
+
if self._check_cancel(cancel_event, request_id, before_call=False):
|
110
|
+
return None
|
111
|
+
self._handle_api_success(config, result, request_id)
|
112
|
+
return result
|
113
|
+
except Exception as e:
|
114
|
+
if self._handle_api_exception(
|
115
|
+
e, config, api_kwargs, attempt, max_retries, request_id
|
116
|
+
):
|
117
|
+
attempt += 1
|
118
|
+
continue
|
119
|
+
raise
|
120
|
+
|
121
|
+
def _print_api_call_start(self, config):
|
122
|
+
if getattr(config, "verbose_api", False):
|
123
|
+
tool_adapter_name = (
|
124
|
+
type(self.tools_adapter).__name__ if self.tools_adapter else None
|
125
|
+
)
|
126
|
+
tool_names = []
|
127
|
+
if self.tools_adapter and hasattr(self.tools_adapter, "list_tools"):
|
128
|
+
try:
|
129
|
+
tool_names = self.tools_adapter.list_tools()
|
130
|
+
except Exception:
|
131
|
+
tool_names = ["<error retrieving tools>"]
|
132
|
+
print(
|
133
|
+
f"[verbose-api] Z.AI API call about to be sent. Model: {config.model}, max_tokens: {config.max_tokens}, tools_adapter: {tool_adapter_name}, tool_names: {tool_names}",
|
134
|
+
flush=True,
|
135
|
+
)
|
136
|
+
|
137
|
+
def _print_api_attempt(self, config, attempt, max_retries, api_kwargs):
|
138
|
+
if getattr(config, "verbose_api", False):
|
139
|
+
print(
|
140
|
+
f"[Z.AI] API CALL (attempt {attempt}/{max_retries}): chat.completions.create(**{api_kwargs})",
|
141
|
+
flush=True,
|
142
|
+
)
|
143
|
+
|
144
|
+
def _handle_api_success(self, config, result, request_id):
|
145
|
+
self._print_verbose_result(config, result)
|
146
|
+
usage_dict = self._extract_usage(result)
|
147
|
+
if getattr(config, "verbose_api", False):
|
148
|
+
print(
|
149
|
+
f"[Z.AI][DEBUG] Attaching usage info to RequestFinished: {usage_dict}",
|
150
|
+
flush=True,
|
151
|
+
)
|
152
|
+
self.output_queue.put(
|
153
|
+
RequestFinished(
|
154
|
+
driver_name=self.__class__.__name__,
|
155
|
+
request_id=request_id,
|
156
|
+
response=result,
|
157
|
+
status=RequestStatus.SUCCESS,
|
158
|
+
usage=usage_dict,
|
159
|
+
)
|
160
|
+
)
|
161
|
+
if getattr(config, "verbose_api", False):
|
162
|
+
pretty.install()
|
163
|
+
print("[Z.AI] API RESPONSE:", flush=True)
|
164
|
+
pretty.pprint(result)
|
165
|
+
|
166
|
+
def _handle_api_exception(
|
167
|
+
self, e, config, api_kwargs, attempt, max_retries, request_id
|
168
|
+
):
|
169
|
+
status_code = getattr(e, "status_code", None)
|
170
|
+
err_str = str(e)
|
171
|
+
lower_err = err_str.lower()
|
172
|
+
is_insufficient_quota = (
|
173
|
+
"insufficient_quota" in lower_err
|
174
|
+
or "exceeded your current quota" in lower_err
|
175
|
+
)
|
176
|
+
is_rate_limit = (
|
177
|
+
status_code == 429
|
178
|
+
or "error code: 429" in lower_err
|
179
|
+
or "resource_exhausted" in lower_err
|
180
|
+
) and not is_insufficient_quota
|
181
|
+
if not is_rate_limit or attempt > max_retries:
|
182
|
+
self._handle_fatal_exception(e, config, api_kwargs)
|
183
|
+
retry_delay = self._extract_retry_delay_seconds(e)
|
184
|
+
if retry_delay is None:
|
185
|
+
retry_delay = min(2 ** (attempt - 1), 30)
|
186
|
+
self.output_queue.put(
|
187
|
+
RateLimitRetry(
|
188
|
+
driver_name=self.__class__.__name__,
|
189
|
+
request_id=request_id,
|
190
|
+
attempt=attempt,
|
191
|
+
retry_delay=retry_delay,
|
192
|
+
error=err_str,
|
193
|
+
details={},
|
194
|
+
)
|
195
|
+
)
|
196
|
+
if getattr(config, "verbose_api", False):
|
197
|
+
print(
|
198
|
+
f"[Z.AI][RateLimit] Attempt {attempt}/{max_retries} failed with rate-limit. Waiting {retry_delay}s before retry.",
|
199
|
+
flush=True,
|
200
|
+
)
|
201
|
+
start_wait = time.time()
|
202
|
+
while time.time() - start_wait < retry_delay:
|
203
|
+
if self._check_cancel(
|
204
|
+
getattr(config, "cancel_event", None), request_id, before_call=False
|
205
|
+
):
|
206
|
+
return False
|
207
|
+
time.sleep(0.1)
|
208
|
+
return True
|
209
|
+
|
210
|
+
def _extract_retry_delay_seconds(self, exception) -> float | None:
|
211
|
+
"""Extract the retry delay in seconds from the provider error response.
|
212
|
+
|
213
|
+
Handles both the Google Gemini style ``RetryInfo`` protobuf (where it's a
|
214
|
+
``retryDelay: '41s'`` string in JSON) and any number found after the word
|
215
|
+
``retryDelay``. Returns ``None`` if no delay could be parsed.
|
216
|
+
"""
|
217
|
+
try:
|
218
|
+
# Some SDKs expose the raw response JSON on e.args[0]
|
219
|
+
if hasattr(exception, "response") and hasattr(exception.response, "text"):
|
220
|
+
payload = exception.response.text
|
221
|
+
else:
|
222
|
+
payload = str(exception)
|
223
|
+
# Look for 'retryDelay': '41s' or similar
|
224
|
+
m = re.search(
|
225
|
+
r"retryDelay['\"]?\s*[:=]\s*['\"]?(\d+(?:\.\d+)?)(s)?", payload
|
226
|
+
)
|
227
|
+
if m:
|
228
|
+
return float(m.group(1))
|
229
|
+
# Fallback: generic number of seconds in the message
|
230
|
+
m2 = re.search(r"(\d+(?:\.\d+)?)\s*s(?:econds)?", payload)
|
231
|
+
if m2:
|
232
|
+
return float(m2.group(1))
|
233
|
+
except Exception:
|
234
|
+
pass
|
235
|
+
return None
|
236
|
+
|
237
|
+
def _handle_fatal_exception(self, e, config, api_kwargs):
|
238
|
+
"""Common path for unrecoverable exceptions.
|
239
|
+
|
240
|
+
Prints diagnostics (respecting ``verbose_api``) then re-raises the
|
241
|
+
exception so standard error handling in ``LLMDriver`` continues.
|
242
|
+
"""
|
243
|
+
is_verbose = getattr(config, "verbose_api", False)
|
244
|
+
if is_verbose:
|
245
|
+
print(f"[ERROR] Exception during Z.AI API call: {e}", flush=True)
|
246
|
+
print(f"[ERROR] config: {config}", flush=True)
|
247
|
+
print(
|
248
|
+
f"[ERROR] api_kwargs: {api_kwargs if 'api_kwargs' in locals() else 'N/A'}",
|
249
|
+
flush=True,
|
250
|
+
)
|
251
|
+
print("[ERROR] Full stack trace:", flush=True)
|
252
|
+
print(traceback.format_exc(), flush=True)
|
253
|
+
raise
|
254
|
+
|
255
|
+
def _instantiate_zai_client(self, config):
|
256
|
+
try:
|
257
|
+
if not config.api_key:
|
258
|
+
provider_name = getattr(self, "provider_name", "ZAI")
|
259
|
+
print(
|
260
|
+
f"[ERROR] No API key found for provider '{provider_name}'. Please set the API key using:"
|
261
|
+
)
|
262
|
+
print(f" janito --set-api-key YOUR_API_KEY -p {provider_name.lower()}")
|
263
|
+
print(
|
264
|
+
f"Or set the {provider_name.upper()}_API_KEY environment variable."
|
265
|
+
)
|
266
|
+
raise ValueError(f"API key is required for provider '{provider_name}'")
|
267
|
+
|
268
|
+
api_key_display = str(config.api_key)
|
269
|
+
if api_key_display and len(api_key_display) > 8:
|
270
|
+
api_key_display = api_key_display[:4] + "..." + api_key_display[-4:]
|
271
|
+
|
272
|
+
# HTTP debug wrapper
|
273
|
+
if os.environ.get("ZAI_DEBUG_HTTP", "0") == "1":
|
274
|
+
from http.client import HTTPConnection
|
275
|
+
|
276
|
+
HTTPConnection.debuglevel = 1
|
277
|
+
logging.basicConfig()
|
278
|
+
logging.getLogger().setLevel(logging.DEBUG)
|
279
|
+
requests_log = logging.getLogger("http.client")
|
280
|
+
requests_log.setLevel(logging.DEBUG)
|
281
|
+
requests_log.propagate = True
|
282
|
+
print(
|
283
|
+
"[ZAIModelDriver] HTTP debug enabled via ZAI_DEBUG_HTTP=1",
|
284
|
+
flush=True,
|
285
|
+
)
|
286
|
+
|
287
|
+
# Use OpenAI SDK for Z.AI API compatibility
|
288
|
+
try:
|
289
|
+
import openai
|
290
|
+
except ImportError:
|
291
|
+
raise ImportError("openai module is not available. Please install it with: pip install openai")
|
292
|
+
client = openai.OpenAI(
|
293
|
+
api_key=config.api_key, base_url="https://api.z.ai/api/paas/v4/"
|
294
|
+
)
|
295
|
+
return client
|
296
|
+
except Exception as e:
|
297
|
+
print(
|
298
|
+
f"[ERROR] Exception during Z.AI client instantiation: {e}", flush=True
|
299
|
+
)
|
300
|
+
print(traceback.format_exc(), flush=True)
|
301
|
+
raise
|
302
|
+
|
303
|
+
def _check_cancel(self, cancel_event, request_id, before_call=True):
|
304
|
+
if cancel_event is not None and cancel_event.is_set():
|
305
|
+
status = RequestStatus.CANCELLED
|
306
|
+
reason = (
|
307
|
+
"Cancelled before API call"
|
308
|
+
if before_call
|
309
|
+
else "Cancelled during API call"
|
310
|
+
)
|
311
|
+
self.output_queue.put(
|
312
|
+
RequestFinished(
|
313
|
+
driver_name=self.__class__.__name__,
|
314
|
+
request_id=request_id,
|
315
|
+
status=status,
|
316
|
+
reason=reason,
|
317
|
+
)
|
318
|
+
)
|
319
|
+
return True
|
320
|
+
return False
|
321
|
+
|
322
|
+
def _print_verbose_result(self, config, result):
|
323
|
+
if config.verbose_api:
|
324
|
+
print("[Z.AI] API RAW RESULT:", flush=True)
|
325
|
+
pretty.pprint(result)
|
326
|
+
if hasattr(result, "__dict__"):
|
327
|
+
print("[Z.AI] API RESULT __dict__:", flush=True)
|
328
|
+
pretty.pprint(result.__dict__)
|
329
|
+
try:
|
330
|
+
print("[Z.AI] API RESULT as dict:", dict(result), flush=True)
|
331
|
+
except Exception:
|
332
|
+
pass
|
333
|
+
print(
|
334
|
+
f"[Z.AI] API RESULT .usage: {getattr(result, 'usage', None)}",
|
335
|
+
flush=True,
|
336
|
+
)
|
337
|
+
try:
|
338
|
+
print(f"[Z.AI] API RESULT ['usage']: {result['usage']}", flush=True)
|
339
|
+
except Exception:
|
340
|
+
pass
|
341
|
+
if not hasattr(result, "usage") or getattr(result, "usage", None) is None:
|
342
|
+
print(
|
343
|
+
"[Z.AI][WARNING] No usage info found in API response.", flush=True
|
344
|
+
)
|
345
|
+
|
346
|
+
def _extract_usage(self, result):
|
347
|
+
usage = getattr(result, "usage", None)
|
348
|
+
if usage is not None:
|
349
|
+
usage_dict = self._usage_to_dict(usage)
|
350
|
+
if usage_dict is None:
|
351
|
+
print(
|
352
|
+
"[Z.AI][WARNING] Could not convert usage to dict, using string fallback.",
|
353
|
+
flush=True,
|
354
|
+
)
|
355
|
+
usage_dict = str(usage)
|
356
|
+
else:
|
357
|
+
usage_dict = self._extract_usage_from_result_dict(result)
|
358
|
+
return usage_dict
|
359
|
+
|
360
|
+
def _usage_to_dict(self, usage):
|
361
|
+
if hasattr(usage, "model_dump") and callable(getattr(usage, "model_dump")):
|
362
|
+
try:
|
363
|
+
return usage.model_dump()
|
364
|
+
except Exception:
|
365
|
+
pass
|
366
|
+
if hasattr(usage, "dict") and callable(getattr(usage, "dict")):
|
367
|
+
try:
|
368
|
+
return usage.dict()
|
369
|
+
except Exception:
|
370
|
+
pass
|
371
|
+
try:
|
372
|
+
return dict(usage)
|
373
|
+
except Exception:
|
374
|
+
try:
|
375
|
+
return vars(usage)
|
376
|
+
except Exception:
|
377
|
+
pass
|
378
|
+
return None
|
379
|
+
|
380
|
+
def _extract_usage_from_result_dict(self, result):
|
381
|
+
try:
|
382
|
+
return result["usage"]
|
383
|
+
except Exception:
|
384
|
+
return None
|
385
|
+
|
386
|
+
def convert_history_to_api_messages(self, conversation_history):
|
387
|
+
"""
|
388
|
+
Convert LLMConversationHistory to the list of dicts required by Z.AI's API.
|
389
|
+
Handles 'tool_results' and 'tool_calls' roles for compliance.
|
390
|
+
"""
|
391
|
+
api_messages = []
|
392
|
+
for msg in conversation_history.get_history():
|
393
|
+
self._append_api_message(api_messages, msg)
|
394
|
+
self._replace_none_content(api_messages)
|
395
|
+
return api_messages
|
396
|
+
|
397
|
+
def _append_api_message(self, api_messages, msg):
|
398
|
+
role = msg.get("role")
|
399
|
+
content = msg.get("content")
|
400
|
+
if role == "tool_results":
|
401
|
+
self._handle_tool_results(api_messages, content)
|
402
|
+
elif role == "tool_calls":
|
403
|
+
self._handle_tool_calls(api_messages, content)
|
404
|
+
else:
|
405
|
+
self._handle_other_roles(api_messages, msg, role, content)
|
406
|
+
|
407
|
+
def _handle_tool_results(self, api_messages, content):
|
408
|
+
try:
|
409
|
+
results = json.loads(content) if isinstance(content, str) else content
|
410
|
+
except Exception:
|
411
|
+
results = [content]
|
412
|
+
for result in results:
|
413
|
+
if isinstance(result, dict):
|
414
|
+
api_messages.append(
|
415
|
+
{
|
416
|
+
"role": "tool",
|
417
|
+
"content": result.get("content", ""),
|
418
|
+
"name": result.get("name", ""),
|
419
|
+
"tool_call_id": result.get("tool_call_id", ""),
|
420
|
+
}
|
421
|
+
)
|
422
|
+
else:
|
423
|
+
api_messages.append(
|
424
|
+
{
|
425
|
+
"role": "tool",
|
426
|
+
"content": str(result),
|
427
|
+
"name": "",
|
428
|
+
"tool_call_id": "",
|
429
|
+
}
|
430
|
+
)
|
431
|
+
|
432
|
+
def _handle_tool_calls(self, api_messages, content):
|
433
|
+
try:
|
434
|
+
tool_calls = json.loads(content) if isinstance(content, str) else content
|
435
|
+
except Exception:
|
436
|
+
tool_calls = []
|
437
|
+
api_messages.append(
|
438
|
+
{"role": "assistant", "content": "", "tool_calls": tool_calls}
|
439
|
+
)
|
440
|
+
|
441
|
+
def _handle_other_roles(self, api_messages, msg, role, content):
|
442
|
+
if role == "function":
|
443
|
+
name = ""
|
444
|
+
if isinstance(msg, dict):
|
445
|
+
metadata = msg.get("metadata", {})
|
446
|
+
name = metadata.get("name", "") if isinstance(metadata, dict) else ""
|
447
|
+
api_messages.append({"role": "tool", "content": content, "name": name})
|
448
|
+
else:
|
449
|
+
api_messages.append(msg)
|
450
|
+
|
451
|
+
def _replace_none_content(self, api_messages):
|
452
|
+
for m in api_messages:
|
453
|
+
if m.get("content", None) is None:
|
454
|
+
m["content"] = ""
|
455
|
+
|
456
|
+
def _convert_completion_message_to_parts(self, message):
|
457
|
+
"""
|
458
|
+
Convert a Z.AI completion message object to a list of MessagePart objects.
|
459
|
+
Handles text, tool calls, and can be extended for other types.
|
460
|
+
"""
|
461
|
+
parts = []
|
462
|
+
# Text content
|
463
|
+
content = getattr(message, "content", None)
|
464
|
+
if content:
|
465
|
+
parts.append(TextMessagePart(content=content))
|
466
|
+
# Tool calls
|
467
|
+
tool_calls = getattr(message, "tool_calls", None) or []
|
468
|
+
for tool_call in tool_calls:
|
469
|
+
parts.append(
|
470
|
+
FunctionCallMessagePart(
|
471
|
+
tool_call_id=getattr(tool_call, "id", ""),
|
472
|
+
function=getattr(tool_call, "function", None),
|
473
|
+
)
|
474
|
+
)
|
475
|
+
# Extend here for other message part types if needed
|
476
|
+
return parts
|
janito/mkdocs.yml
CHANGED
janito/providers/__init__.py
CHANGED
@@ -30,4 +30,11 @@ MODEL_SPECS = {
|
|
30
30
|
category="Alibaba Qwen3 Coder Plus Model (OpenAI-compatible)",
|
31
31
|
driver="OpenAIModelDriver",
|
32
32
|
),
|
33
|
+
"qwen3-coder-480b-a35b-instruct": LLMModelInfo(
|
34
|
+
name="qwen3-coder-480b-a35b-instruct",
|
35
|
+
context=262144,
|
36
|
+
max_response=65536,
|
37
|
+
category="Alibaba Qwen3 Coder 480B A35B Instruct Model (OpenAI-compatible)",
|
38
|
+
driver="OpenAIModelDriver",
|
39
|
+
),
|
33
40
|
}
|
@@ -17,7 +17,7 @@ class AlibabaProvider(LLMProvider):
|
|
17
17
|
NAME = "alibaba"
|
18
18
|
MAINTAINER = "João Pinto <janito@ikignosis.org>"
|
19
19
|
MODEL_SPECS = MODEL_SPECS
|
20
|
-
DEFAULT_MODEL = "
|
20
|
+
DEFAULT_MODEL = "qwen3-coder-plus" # Options: qwen-turbo, qwen-plus, qwen-max, qwen3-coder-plus
|
21
21
|
|
22
22
|
def __init__(
|
23
23
|
self, auth_manager: LLMAuthManager = None, config: LLMDriverConfig = None
|
@@ -0,0 +1 @@
|
|
1
|
+
# Z.AI provider package
|
@@ -0,0 +1,38 @@
|
|
1
|
+
from janito.llm.model import LLMModelInfo
|
2
|
+
|
3
|
+
MODEL_SPECS = {
|
4
|
+
"glm-4.5": LLMModelInfo(
|
5
|
+
name="glm-4.5",
|
6
|
+
context=128000,
|
7
|
+
max_input=128000,
|
8
|
+
max_cot=4096,
|
9
|
+
max_response=4096,
|
10
|
+
thinking_supported=True,
|
11
|
+
other={
|
12
|
+
"description": "Z.AI's GLM-4.5 model for advanced reasoning and conversation",
|
13
|
+
"supports_tools": True,
|
14
|
+
"supports_images": True,
|
15
|
+
"supports_audio": False,
|
16
|
+
"supports_video": False,
|
17
|
+
"input_cost_per_1k": 0.0005,
|
18
|
+
"output_cost_per_1k": 0.0015,
|
19
|
+
},
|
20
|
+
),
|
21
|
+
"glm-4.5-air": LLMModelInfo(
|
22
|
+
name="glm-4.5-air",
|
23
|
+
context=128000,
|
24
|
+
max_input=128000,
|
25
|
+
max_cot=4096,
|
26
|
+
max_response=4096,
|
27
|
+
thinking_supported=True,
|
28
|
+
other={
|
29
|
+
"description": "Z.AI's GLM-4.5-Air model - compact and efficient version",
|
30
|
+
"supports_tools": True,
|
31
|
+
"supports_images": True,
|
32
|
+
"supports_audio": False,
|
33
|
+
"supports_video": False,
|
34
|
+
"input_cost_per_1k": 0.0003,
|
35
|
+
"output_cost_per_1k": 0.0009,
|
36
|
+
},
|
37
|
+
),
|
38
|
+
}
|
@@ -0,0 +1,131 @@
|
|
1
|
+
from janito.llm.provider import LLMProvider
|
2
|
+
from janito.llm.model import LLMModelInfo
|
3
|
+
from janito.llm.auth import LLMAuthManager
|
4
|
+
from janito.llm.driver_config import LLMDriverConfig
|
5
|
+
from janito.drivers.zai.driver import ZAIModelDriver
|
6
|
+
from janito.tools import get_local_tools_adapter
|
7
|
+
from janito.providers.registry import LLMProviderRegistry
|
8
|
+
from .model_info import MODEL_SPECS
|
9
|
+
from queue import Queue
|
10
|
+
|
11
|
+
available = ZAIModelDriver.available
|
12
|
+
unavailable_reason = ZAIModelDriver.unavailable_reason
|
13
|
+
|
14
|
+
|
15
|
+
class ZAIProvider(LLMProvider):
|
16
|
+
name = "zai"
|
17
|
+
NAME = "zai"
|
18
|
+
MAINTAINER = "João Pinto <janito@ikignosis.org>"
|
19
|
+
MODEL_SPECS = MODEL_SPECS
|
20
|
+
DEFAULT_MODEL = "glm-4.5-air" # Options: glm-4.5, glm-4.5-air
|
21
|
+
|
22
|
+
def __init__(
|
23
|
+
self, auth_manager: LLMAuthManager = None, config: LLMDriverConfig = None
|
24
|
+
):
|
25
|
+
if not self.available:
|
26
|
+
self._setup_unavailable()
|
27
|
+
else:
|
28
|
+
self._setup_available(auth_manager, config)
|
29
|
+
|
30
|
+
def _setup_unavailable(self):
|
31
|
+
# Even when the ZAI driver is unavailable we still need a tools adapter
|
32
|
+
# so that any generic logic that expects `execute_tool()` to work does not
|
33
|
+
# crash with an AttributeError when it tries to access `self._tools_adapter`.
|
34
|
+
self._tools_adapter = get_local_tools_adapter()
|
35
|
+
self._driver = None
|
36
|
+
# Initialize _driver_config to avoid AttributeError
|
37
|
+
self._driver_config = LLMDriverConfig(model=None)
|
38
|
+
|
39
|
+
def _setup_available(self, auth_manager, config):
|
40
|
+
self.auth_manager = auth_manager or LLMAuthManager()
|
41
|
+
self._api_key = self.auth_manager.get_credentials(type(self).NAME)
|
42
|
+
if not self._api_key:
|
43
|
+
print(
|
44
|
+
f"[ERROR] No API key found for provider '{self.name}'. Please set the API key using:"
|
45
|
+
)
|
46
|
+
print(f" janito --set-api-key YOUR_API_KEY -p {self.name}")
|
47
|
+
print(f"Or set the ZAI_API_KEY environment variable.")
|
48
|
+
self._tools_adapter = get_local_tools_adapter()
|
49
|
+
return
|
50
|
+
|
51
|
+
self._tools_adapter = get_local_tools_adapter()
|
52
|
+
self._driver_config = config or LLMDriverConfig(model=None)
|
53
|
+
if not self._driver_config.model:
|
54
|
+
self._driver_config.model = self.DEFAULT_MODEL
|
55
|
+
if not self._driver_config.api_key:
|
56
|
+
self._driver_config.api_key = self._api_key
|
57
|
+
|
58
|
+
self._configure_model_tokens()
|
59
|
+
self.fill_missing_device_info(self._driver_config)
|
60
|
+
self._driver = None # to be provided by factory/agent
|
61
|
+
|
62
|
+
def _configure_model_tokens(self):
|
63
|
+
# Set only the correct token parameter for the model
|
64
|
+
model_name = self._driver_config.model
|
65
|
+
model_spec = self.MODEL_SPECS.get(model_name)
|
66
|
+
# Remove both to avoid stale values
|
67
|
+
if hasattr(self._driver_config, "max_tokens"):
|
68
|
+
self._driver_config.max_tokens = None
|
69
|
+
if hasattr(self._driver_config, "max_completion_tokens"):
|
70
|
+
self._driver_config.max_completion_tokens = None
|
71
|
+
if model_spec:
|
72
|
+
if getattr(model_spec, "thinking_supported", False):
|
73
|
+
max_cot = getattr(model_spec, "max_cot", None)
|
74
|
+
if max_cot and max_cot != "N/A":
|
75
|
+
self._driver_config.max_completion_tokens = int(max_cot)
|
76
|
+
else:
|
77
|
+
max_response = getattr(model_spec, "max_response", None)
|
78
|
+
if max_response and max_response != "N/A":
|
79
|
+
self._driver_config.max_tokens = int(max_response)
|
80
|
+
|
81
|
+
@property
|
82
|
+
def driver(self) -> ZAIModelDriver:
|
83
|
+
if not self.available:
|
84
|
+
raise ImportError(f"ZAIProvider unavailable: {self.unavailable_reason}")
|
85
|
+
return self._driver
|
86
|
+
|
87
|
+
@property
|
88
|
+
def available(self):
|
89
|
+
return available
|
90
|
+
|
91
|
+
@property
|
92
|
+
def unavailable_reason(self):
|
93
|
+
return unavailable_reason
|
94
|
+
|
95
|
+
def create_driver(self):
|
96
|
+
"""
|
97
|
+
Creates and returns a new ZAIModelDriver instance with input/output queues.
|
98
|
+
"""
|
99
|
+
driver = ZAIModelDriver(
|
100
|
+
tools_adapter=self._tools_adapter, provider_name=self.NAME
|
101
|
+
)
|
102
|
+
driver.config = self._driver_config
|
103
|
+
# NOTE: The caller is responsible for calling driver.start() if background processing is needed.
|
104
|
+
return driver
|
105
|
+
|
106
|
+
def create_agent(self, tools_adapter=None, agent_name: str = None, **kwargs):
|
107
|
+
from janito.llm.agent import LLMAgent
|
108
|
+
|
109
|
+
# Always create a new driver with the passed-in tools_adapter
|
110
|
+
if tools_adapter is None:
|
111
|
+
tools_adapter = get_local_tools_adapter()
|
112
|
+
# Should use new-style driver construction via queues/factory (handled elsewhere)
|
113
|
+
raise NotImplementedError(
|
114
|
+
"create_agent must be constructed via new factory using input/output queues and config."
|
115
|
+
)
|
116
|
+
|
117
|
+
@property
|
118
|
+
def model_name(self):
|
119
|
+
return self._driver_config.model
|
120
|
+
|
121
|
+
@property
|
122
|
+
def driver_config(self):
|
123
|
+
"""Public, read-only access to the provider's LLMDriverConfig object."""
|
124
|
+
return self._driver_config
|
125
|
+
|
126
|
+
def execute_tool(self, tool_name: str, event_bus, *args, **kwargs):
|
127
|
+
self._tools_adapter.event_bus = event_bus
|
128
|
+
return self._tools_adapter.execute_by_name(tool_name, *args, **kwargs)
|
129
|
+
|
130
|
+
|
131
|
+
LLMProviderRegistry.register(ZAIProvider.NAME, ZAIProvider)
|