jaclang 0.7.1__py3-none-any.whl → 0.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of jaclang might be problematic. Click here for more details.
- jaclang/compiler/absyntree.py +51 -14
- jaclang/compiler/passes/main/def_impl_match_pass.py +9 -3
- jaclang/compiler/passes/main/fuse_typeinfo_pass.py +20 -1
- jaclang/compiler/passes/main/import_pass.py +4 -1
- jaclang/compiler/passes/main/pyast_gen_pass.py +14 -6
- jaclang/compiler/passes/main/pyast_load_pass.py +2 -1
- jaclang/compiler/passes/main/pyjac_ast_link_pass.py +6 -1
- jaclang/compiler/passes/main/pyout_pass.py +3 -1
- jaclang/compiler/passes/main/tests/test_import_pass.py +8 -0
- jaclang/compiler/passes/main/tests/test_type_check_pass.py +1 -1
- jaclang/compiler/passes/tool/jac_formatter_pass.py +14 -2
- jaclang/compiler/passes/tool/tests/fixtures/doc_string.jac +15 -0
- jaclang/compiler/passes/tool/tests/test_jac_format_pass.py +7 -5
- jaclang/compiler/passes/tool/tests/test_unparse_validate.py +1 -2
- jaclang/compiler/symtable.py +21 -1
- jaclang/core/aott.py +107 -11
- jaclang/core/construct.py +171 -5
- jaclang/core/llms/anthropic.py +31 -2
- jaclang/core/llms/base.py +3 -3
- jaclang/core/llms/groq.py +4 -1
- jaclang/core/llms/huggingface.py +4 -1
- jaclang/core/llms/ollama.py +4 -1
- jaclang/core/llms/openai.py +6 -2
- jaclang/core/llms/togetherai.py +4 -1
- jaclang/langserve/engine.py +99 -115
- jaclang/langserve/server.py +27 -5
- jaclang/langserve/tests/fixtures/circle_pure.impl.jac +8 -4
- jaclang/langserve/tests/fixtures/circle_pure.jac +2 -2
- jaclang/langserve/tests/test_server.py +123 -0
- jaclang/langserve/utils.py +100 -10
- jaclang/plugin/default.py +25 -83
- jaclang/plugin/feature.py +10 -12
- jaclang/plugin/tests/test_features.py +0 -33
- jaclang/settings.py +1 -0
- jaclang/tests/fixtures/byllmissue.jac +3 -0
- jaclang/tests/fixtures/hash_init_check.jac +17 -0
- jaclang/tests/fixtures/math_question.jpg +0 -0
- jaclang/tests/fixtures/nosigself.jac +19 -0
- jaclang/tests/fixtures/walker_override.jac +21 -0
- jaclang/tests/fixtures/with_llm_vision.jac +25 -0
- jaclang/tests/test_language.py +61 -11
- jaclang/utils/treeprinter.py +19 -2
- {jaclang-0.7.1.dist-info → jaclang-0.7.2.dist-info}/METADATA +3 -2
- {jaclang-0.7.1.dist-info → jaclang-0.7.2.dist-info}/RECORD +46 -41
- jaclang/core/memory.py +0 -48
- jaclang/core/shelve_storage.py +0 -55
- {jaclang-0.7.1.dist-info → jaclang-0.7.2.dist-info}/WHEEL +0 -0
- {jaclang-0.7.1.dist-info → jaclang-0.7.2.dist-info}/entry_points.txt +0 -0
jaclang/core/aott.py
CHANGED
|
@@ -4,18 +4,30 @@ AOTT: Automated Operational Type Transformation.
|
|
|
4
4
|
This has all the necessary functions to perform the AOTT operations.
|
|
5
5
|
"""
|
|
6
6
|
|
|
7
|
+
import base64
|
|
8
|
+
import logging
|
|
7
9
|
import re
|
|
8
10
|
from enum import Enum
|
|
11
|
+
from io import BytesIO
|
|
9
12
|
from typing import Any
|
|
10
13
|
|
|
14
|
+
|
|
15
|
+
try:
|
|
16
|
+
from PIL import Image
|
|
17
|
+
except ImportError:
|
|
18
|
+
Image = None
|
|
19
|
+
|
|
11
20
|
from jaclang.core.llms.base import BaseLLM
|
|
12
21
|
from jaclang.core.registry import SemInfo, SemRegistry, SemScope
|
|
13
22
|
|
|
14
23
|
|
|
24
|
+
IMG_FORMATS = ["PngImageFile", "JpegImageFile"]
|
|
25
|
+
|
|
26
|
+
|
|
15
27
|
def aott_raise(
|
|
16
28
|
model: BaseLLM,
|
|
17
29
|
information: str,
|
|
18
|
-
inputs_information: str,
|
|
30
|
+
inputs_information: str | list[dict],
|
|
19
31
|
output_information: str,
|
|
20
32
|
type_explanations: str,
|
|
21
33
|
action: str,
|
|
@@ -25,18 +37,43 @@ def aott_raise(
|
|
|
25
37
|
model_params: dict,
|
|
26
38
|
) -> str:
|
|
27
39
|
"""AOTT Raise uses the information (Meanings types values) provided to generate a prompt(meaning in)."""
|
|
40
|
+
system_prompt = model.MTLLM_SYSTEM_PROMPT
|
|
41
|
+
meaning_in: str | list[dict]
|
|
28
42
|
if method != "ReAct":
|
|
29
|
-
system_prompt = model.MTLLM_SYSTEM_PROMPT
|
|
30
|
-
mtllm_prompt = model.MTLLM_PROMPT.format(
|
|
31
|
-
information=information,
|
|
32
|
-
inputs_information=inputs_information,
|
|
33
|
-
output_information=output_information,
|
|
34
|
-
type_explanations=type_explanations,
|
|
35
|
-
action=action,
|
|
36
|
-
context=context,
|
|
37
|
-
)
|
|
38
43
|
method_prompt = model.MTLLM_METHOD_PROMPTS[method]
|
|
39
|
-
|
|
44
|
+
if isinstance(inputs_information, str):
|
|
45
|
+
mtllm_prompt = model.MTLLM_PROMPT.format(
|
|
46
|
+
information=information,
|
|
47
|
+
inputs_information=inputs_information,
|
|
48
|
+
output_information=output_information,
|
|
49
|
+
type_explanations=type_explanations,
|
|
50
|
+
action=action,
|
|
51
|
+
context=context,
|
|
52
|
+
).strip()
|
|
53
|
+
meaning_in = f"{system_prompt}\n{mtllm_prompt}\n{method_prompt}".strip()
|
|
54
|
+
else:
|
|
55
|
+
upper_half = model.MTLLM_PROMPT.split("{inputs_information}")[0]
|
|
56
|
+
lower_half = model.MTLLM_PROMPT.split("{inputs_information}")[1]
|
|
57
|
+
upper_half = upper_half.format(
|
|
58
|
+
information=information,
|
|
59
|
+
context=context,
|
|
60
|
+
)
|
|
61
|
+
lower_half = lower_half.format(
|
|
62
|
+
output_information=output_information,
|
|
63
|
+
type_explanations=type_explanations,
|
|
64
|
+
action=action,
|
|
65
|
+
)
|
|
66
|
+
meaning_in = (
|
|
67
|
+
[
|
|
68
|
+
{"type": "text", "text": system_prompt},
|
|
69
|
+
{"type": "text", "text": upper_half},
|
|
70
|
+
]
|
|
71
|
+
+ inputs_information
|
|
72
|
+
+ [
|
|
73
|
+
{"type": "text", "text": lower_half},
|
|
74
|
+
{"type": "text", "text": method_prompt},
|
|
75
|
+
]
|
|
76
|
+
)
|
|
40
77
|
return model(meaning_in, **model_params)
|
|
41
78
|
else:
|
|
42
79
|
assert tools, "Tools must be provided for the ReAct method."
|
|
@@ -212,3 +249,62 @@ class Tool:
|
|
|
212
249
|
"""Initialize the Tool class."""
|
|
213
250
|
# TODO: Implement the Tool class
|
|
214
251
|
pass
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
def get_input_information(
|
|
255
|
+
inputs: list[tuple[str, str, str, Any]], type_collector: list
|
|
256
|
+
) -> str | list[dict]:
|
|
257
|
+
"""
|
|
258
|
+
Get the input information for the AOTT operation.
|
|
259
|
+
|
|
260
|
+
Returns:
|
|
261
|
+
str | list[dict]: If the input does not contain images, returns a string with the input information.
|
|
262
|
+
If the input contains images, returns a list of dictionaries representing the input information,
|
|
263
|
+
where each dictionary contains either text or image_url.
|
|
264
|
+
|
|
265
|
+
"""
|
|
266
|
+
contains_imgs = any(get_type_annotation(i[3]) in IMG_FORMATS for i in inputs)
|
|
267
|
+
if not contains_imgs:
|
|
268
|
+
inputs_information_list = []
|
|
269
|
+
for i in inputs:
|
|
270
|
+
typ_anno = get_type_annotation(i[3])
|
|
271
|
+
type_collector.extend(extract_non_primary_type(typ_anno))
|
|
272
|
+
inputs_information_list.append(
|
|
273
|
+
f"{i[0]} ({i[2]}) ({typ_anno}) = {get_object_string(i[3])}"
|
|
274
|
+
)
|
|
275
|
+
return "\n".join(inputs_information_list)
|
|
276
|
+
else:
|
|
277
|
+
inputs_information_dict_list: list[dict] = []
|
|
278
|
+
for i in inputs:
|
|
279
|
+
if get_type_annotation(i[3]) in IMG_FORMATS:
|
|
280
|
+
img_base64 = image_to_base64(i[3])
|
|
281
|
+
image_repr: list[dict] = [
|
|
282
|
+
{
|
|
283
|
+
"type": "text",
|
|
284
|
+
"text": f"{i[0]} ({i[2]}) (Image) = ",
|
|
285
|
+
},
|
|
286
|
+
{"type": "image_url", "image_url": {"url": img_base64}},
|
|
287
|
+
]
|
|
288
|
+
inputs_information_dict_list.extend(image_repr)
|
|
289
|
+
continue
|
|
290
|
+
typ_anno = get_type_annotation(i[3])
|
|
291
|
+
type_collector.extend(extract_non_primary_type(typ_anno))
|
|
292
|
+
inputs_information_dict_list.append(
|
|
293
|
+
{
|
|
294
|
+
"type": "text",
|
|
295
|
+
"text": f"{i[0]} ({i[2]}) ({typ_anno}) = {get_object_string(i[3])}",
|
|
296
|
+
}
|
|
297
|
+
)
|
|
298
|
+
return inputs_information_dict_list
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
def image_to_base64(image: Image) -> str:
|
|
302
|
+
"""Convert an image to base64 expected by OpenAI."""
|
|
303
|
+
if not Image:
|
|
304
|
+
log = logging.getLogger(__name__)
|
|
305
|
+
log.error("Pillow is not installed. Please install Pillow to use images.")
|
|
306
|
+
return ""
|
|
307
|
+
img_format = image.format
|
|
308
|
+
with BytesIO() as buffer:
|
|
309
|
+
image.save(buffer, format=img_format, quality=100)
|
|
310
|
+
return f"data:image/{img_format.lower()};base64,{base64.b64encode(buffer.getvalue()).decode()}"
|
jaclang/core/construct.py
CHANGED
|
@@ -2,14 +2,15 @@
|
|
|
2
2
|
|
|
3
3
|
from __future__ import annotations
|
|
4
4
|
|
|
5
|
+
import shelve
|
|
5
6
|
import unittest
|
|
7
|
+
from contextvars import ContextVar
|
|
6
8
|
from dataclasses import dataclass, field
|
|
7
9
|
from typing import Callable, Optional
|
|
8
10
|
from uuid import UUID, uuid4
|
|
9
11
|
|
|
10
12
|
from jaclang.compiler.constant import EdgeDir
|
|
11
13
|
from jaclang.core.utils import collect_node_connections
|
|
12
|
-
from jaclang.plugin.feature import JacFeature as Jac
|
|
13
14
|
from jaclang.plugin.spec import DSFunc
|
|
14
15
|
|
|
15
16
|
|
|
@@ -57,6 +58,8 @@ class NodeAnchor(ObjectAnchor):
|
|
|
57
58
|
|
|
58
59
|
def populate_edges(self) -> None:
|
|
59
60
|
"""Populate edges from edge ids."""
|
|
61
|
+
from jaclang.plugin.feature import JacFeature as Jac
|
|
62
|
+
|
|
60
63
|
if len(self.edges) == 0 and len(self.edge_ids) > 0:
|
|
61
64
|
for e_id in self.edge_ids:
|
|
62
65
|
edge = Jac.context().get_obj(e_id)
|
|
@@ -354,11 +357,15 @@ class NodeArchitype(Architype):
|
|
|
354
357
|
|
|
355
358
|
def __init__(self) -> None:
|
|
356
359
|
"""Create node architype."""
|
|
360
|
+
from jaclang.plugin.feature import JacFeature as Jac
|
|
361
|
+
|
|
357
362
|
self._jac_: NodeAnchor = NodeAnchor(obj=self)
|
|
358
363
|
Jac.context().save_obj(self, persistent=self._jac_.persistent)
|
|
359
364
|
|
|
360
365
|
def save(self) -> None:
|
|
361
366
|
"""Save the node to the memory/storage hierarchy."""
|
|
367
|
+
from jaclang.plugin.feature import JacFeature as Jac
|
|
368
|
+
|
|
362
369
|
self._jac_.persistent = True
|
|
363
370
|
Jac.context().save_obj(self, persistent=True)
|
|
364
371
|
|
|
@@ -383,11 +390,15 @@ class EdgeArchitype(Architype):
|
|
|
383
390
|
|
|
384
391
|
def __init__(self) -> None:
|
|
385
392
|
"""Create edge architype."""
|
|
393
|
+
from jaclang.plugin.feature import JacFeature as Jac
|
|
394
|
+
|
|
386
395
|
self._jac_: EdgeAnchor = EdgeAnchor(obj=self)
|
|
387
396
|
Jac.context().save_obj(self, persistent=self.persistent)
|
|
388
397
|
|
|
389
398
|
def save(self) -> None:
|
|
390
399
|
"""Save the edge to the memory/storage hierarchy."""
|
|
400
|
+
from jaclang.plugin.feature import JacFeature as Jac
|
|
401
|
+
|
|
391
402
|
self.persistent = True
|
|
392
403
|
Jac.context().save_obj(self, persistent=True)
|
|
393
404
|
|
|
@@ -405,6 +416,8 @@ class EdgeArchitype(Architype):
|
|
|
405
416
|
|
|
406
417
|
def populate_nodes(self) -> None:
|
|
407
418
|
"""Populate nodes for the edges from node ids."""
|
|
419
|
+
from jaclang.plugin.feature import JacFeature as Jac
|
|
420
|
+
|
|
408
421
|
if self._jac_.source_id:
|
|
409
422
|
obj = Jac.context().get_obj(self._jac_.source_id)
|
|
410
423
|
if obj is None:
|
|
@@ -439,6 +452,13 @@ class WalkerArchitype(Architype):
|
|
|
439
452
|
self._jac_: WalkerAnchor = WalkerAnchor(obj=self)
|
|
440
453
|
|
|
441
454
|
|
|
455
|
+
class GenericEdge(EdgeArchitype):
|
|
456
|
+
"""Generic Root Node."""
|
|
457
|
+
|
|
458
|
+
_jac_entry_funcs_ = []
|
|
459
|
+
_jac_exit_funcs_ = []
|
|
460
|
+
|
|
461
|
+
|
|
442
462
|
class Root(NodeArchitype):
|
|
443
463
|
"""Generic Root Node."""
|
|
444
464
|
|
|
@@ -460,11 +480,157 @@ class Root(NodeArchitype):
|
|
|
460
480
|
self._jac_.edges = []
|
|
461
481
|
|
|
462
482
|
|
|
463
|
-
class
|
|
464
|
-
"""
|
|
483
|
+
class Memory:
|
|
484
|
+
"""Memory module interface."""
|
|
465
485
|
|
|
466
|
-
|
|
467
|
-
|
|
486
|
+
mem: dict[UUID, Architype] = {}
|
|
487
|
+
save_obj_list: dict[UUID, Architype] = {}
|
|
488
|
+
|
|
489
|
+
def __init__(self) -> None:
|
|
490
|
+
"""init."""
|
|
491
|
+
pass
|
|
492
|
+
|
|
493
|
+
def get_obj(self, obj_id: UUID) -> Architype | None:
|
|
494
|
+
"""Get object from memory."""
|
|
495
|
+
return self.get_obj_from_store(obj_id)
|
|
496
|
+
|
|
497
|
+
def get_obj_from_store(self, obj_id: UUID) -> Architype | None:
|
|
498
|
+
"""Get object from the underlying store."""
|
|
499
|
+
ret = self.mem.get(obj_id)
|
|
500
|
+
return ret
|
|
501
|
+
|
|
502
|
+
def has_obj(self, obj_id: UUID) -> bool:
|
|
503
|
+
"""Check if the object exists."""
|
|
504
|
+
return self.has_obj_in_store(obj_id)
|
|
505
|
+
|
|
506
|
+
def has_obj_in_store(self, obj_id: UUID) -> bool:
|
|
507
|
+
"""Check if the object exists in the underlying store."""
|
|
508
|
+
return obj_id in self.mem
|
|
509
|
+
|
|
510
|
+
def save_obj(self, item: Architype, persistent: bool) -> None:
|
|
511
|
+
"""Save object."""
|
|
512
|
+
self.mem[item._jac_.id] = item
|
|
513
|
+
if persistent:
|
|
514
|
+
# TODO: check if it needs to be saved, i.e. dirty or not
|
|
515
|
+
self.save_obj_list[item._jac_.id] = item
|
|
516
|
+
|
|
517
|
+
def commit(self) -> None:
|
|
518
|
+
"""Commit changes to persistent storage, if applicable."""
|
|
519
|
+
pass
|
|
520
|
+
|
|
521
|
+
def close(self) -> None:
|
|
522
|
+
"""Close any connection, if applicable."""
|
|
523
|
+
self.mem.clear()
|
|
524
|
+
|
|
525
|
+
|
|
526
|
+
class ShelveStorage(Memory):
|
|
527
|
+
"""Shelve storage for jaclang runtime object."""
|
|
528
|
+
|
|
529
|
+
storage: shelve.Shelf | None = None
|
|
530
|
+
|
|
531
|
+
def __init__(self, session: str = "") -> None:
|
|
532
|
+
"""Init shelve storage."""
|
|
533
|
+
super().__init__()
|
|
534
|
+
if session:
|
|
535
|
+
self.connect(session)
|
|
536
|
+
|
|
537
|
+
def get_obj_from_store(self, obj_id: UUID) -> Architype | None:
|
|
538
|
+
"""Get object from the underlying store."""
|
|
539
|
+
obj = super().get_obj_from_store(obj_id)
|
|
540
|
+
if obj is None and self.storage:
|
|
541
|
+
obj = self.storage.get(str(obj_id))
|
|
542
|
+
if obj is not None:
|
|
543
|
+
self.mem[obj_id] = obj
|
|
544
|
+
|
|
545
|
+
return obj
|
|
546
|
+
|
|
547
|
+
def has_obj_in_store(self, obj_id: UUID | str) -> bool:
|
|
548
|
+
"""Check if the object exists in the underlying store."""
|
|
549
|
+
return obj_id in self.mem or (
|
|
550
|
+
str(obj_id) in self.storage if self.storage else False
|
|
551
|
+
)
|
|
552
|
+
|
|
553
|
+
def commit(self) -> None:
|
|
554
|
+
"""Commit changes to persistent storage."""
|
|
555
|
+
if self.storage is not None:
|
|
556
|
+
for obj_id, obj in self.save_obj_list.items():
|
|
557
|
+
self.storage[str(obj_id)] = obj
|
|
558
|
+
self.save_obj_list.clear()
|
|
559
|
+
|
|
560
|
+
def connect(self, session: str) -> None:
|
|
561
|
+
"""Connect to storage."""
|
|
562
|
+
self.session = session
|
|
563
|
+
self.storage = shelve.open(session)
|
|
564
|
+
|
|
565
|
+
def close(self) -> None:
|
|
566
|
+
"""Close the storage."""
|
|
567
|
+
super().close()
|
|
568
|
+
self.commit()
|
|
569
|
+
if self.storage:
|
|
570
|
+
self.storage.close()
|
|
571
|
+
self.storage = None
|
|
572
|
+
|
|
573
|
+
|
|
574
|
+
class ExecutionContext:
|
|
575
|
+
"""Default Execution Context implementation."""
|
|
576
|
+
|
|
577
|
+
mem: Optional[Memory]
|
|
578
|
+
root: Optional[Root]
|
|
579
|
+
|
|
580
|
+
def __init__(self) -> None:
|
|
581
|
+
"""Create execution context."""
|
|
582
|
+
super().__init__()
|
|
583
|
+
self.mem = ShelveStorage()
|
|
584
|
+
self.root = None
|
|
585
|
+
|
|
586
|
+
def init_memory(self, session: str = "") -> None:
|
|
587
|
+
"""Initialize memory."""
|
|
588
|
+
if session:
|
|
589
|
+
self.mem = ShelveStorage(session)
|
|
590
|
+
else:
|
|
591
|
+
self.mem = Memory()
|
|
592
|
+
|
|
593
|
+
def get_root(self) -> Root:
|
|
594
|
+
"""Get the root object."""
|
|
595
|
+
if self.mem is None:
|
|
596
|
+
raise ValueError("Memory not initialized")
|
|
597
|
+
|
|
598
|
+
if not self.root:
|
|
599
|
+
root = self.mem.get_obj(UUID(int=0))
|
|
600
|
+
if root is None:
|
|
601
|
+
self.root = Root()
|
|
602
|
+
self.mem.save_obj(self.root, persistent=self.root._jac_.persistent)
|
|
603
|
+
elif not isinstance(root, Root):
|
|
604
|
+
raise ValueError(f"Invalid root object: {root}")
|
|
605
|
+
else:
|
|
606
|
+
self.root = root
|
|
607
|
+
return self.root
|
|
608
|
+
|
|
609
|
+
def get_obj(self, obj_id: UUID) -> Architype | None:
|
|
610
|
+
"""Get object from memory."""
|
|
611
|
+
if self.mem is None:
|
|
612
|
+
raise ValueError("Memory not initialized")
|
|
613
|
+
|
|
614
|
+
return self.mem.get_obj(obj_id)
|
|
615
|
+
|
|
616
|
+
def save_obj(self, item: Architype, persistent: bool) -> None:
|
|
617
|
+
"""Save object to memory."""
|
|
618
|
+
if self.mem is None:
|
|
619
|
+
raise ValueError("Memory not initialized")
|
|
620
|
+
|
|
621
|
+
self.mem.save_obj(item, persistent)
|
|
622
|
+
|
|
623
|
+
def reset(self) -> None:
|
|
624
|
+
"""Reset the execution context."""
|
|
625
|
+
if self.mem:
|
|
626
|
+
self.mem.close()
|
|
627
|
+
self.mem = None
|
|
628
|
+
self.root = None
|
|
629
|
+
|
|
630
|
+
|
|
631
|
+
exec_context: ContextVar[ExecutionContext | None] = ContextVar(
|
|
632
|
+
"ExecutionContext", default=None
|
|
633
|
+
)
|
|
468
634
|
|
|
469
635
|
|
|
470
636
|
class JacTestResult(unittest.TextTestResult):
|
jaclang/core/llms/anthropic.py
CHANGED
|
@@ -45,12 +45,41 @@ class Anthropic(BaseLLM):
|
|
|
45
45
|
self.client = anthropic.Anthropic()
|
|
46
46
|
self.verbose = verbose
|
|
47
47
|
self.max_tries = max_tries
|
|
48
|
-
self.model_name = kwargs.get("model_name", "claude-3-sonnet-20240229")
|
|
48
|
+
self.model_name = str(kwargs.get("model_name", "claude-3-sonnet-20240229"))
|
|
49
49
|
self.temperature = kwargs.get("temperature", 0.7)
|
|
50
50
|
self.max_tokens = kwargs.get("max_tokens", 1024)
|
|
51
51
|
|
|
52
|
-
def __infer__(self, meaning_in: str, **kwargs: dict) -> str:
|
|
52
|
+
def __infer__(self, meaning_in: str | list[dict], **kwargs: dict) -> str:
|
|
53
53
|
"""Infer a response from the input meaning."""
|
|
54
|
+
if not isinstance(meaning_in, str):
|
|
55
|
+
assert self.model_name.startswith(
|
|
56
|
+
("claude-3-opus", "claude-3-sonnet", "claude-3-haiku")
|
|
57
|
+
), f"Model {self.model_name} is not multimodal, use a multimodal model instead."
|
|
58
|
+
|
|
59
|
+
import re
|
|
60
|
+
|
|
61
|
+
formatted_meaning_in = []
|
|
62
|
+
for item in meaning_in:
|
|
63
|
+
if item["type"] == "image_url":
|
|
64
|
+
# "_string"
|
|
65
|
+
img_match = re.match(
|
|
66
|
+
r"data:(image/[a-zA-Z]*);base64,(.*)", item["source"]
|
|
67
|
+
)
|
|
68
|
+
if img_match:
|
|
69
|
+
media_type, base64_string = img_match.groups()
|
|
70
|
+
formatted_meaning_in.append(
|
|
71
|
+
{
|
|
72
|
+
"type": "image",
|
|
73
|
+
"source": {
|
|
74
|
+
"type": "base64",
|
|
75
|
+
"media_type": media_type,
|
|
76
|
+
"data": base64_string,
|
|
77
|
+
},
|
|
78
|
+
}
|
|
79
|
+
)
|
|
80
|
+
continue
|
|
81
|
+
formatted_meaning_in.append(item)
|
|
82
|
+
meaning_in = formatted_meaning_in
|
|
54
83
|
messages = [{"role": "user", "content": meaning_in}]
|
|
55
84
|
output = self.client.messages.create(
|
|
56
85
|
model=kwargs.get("model_name", self.model_name),
|
jaclang/core/llms/base.py
CHANGED
|
@@ -112,11 +112,11 @@ class BaseLLM:
|
|
|
112
112
|
self.max_tries = max_tries
|
|
113
113
|
raise NotImplementedError
|
|
114
114
|
|
|
115
|
-
def __infer__(self, meaning_in: str, **kwargs: dict) -> str:
|
|
115
|
+
def __infer__(self, meaning_in: str | list[dict], **kwargs: dict) -> str:
|
|
116
116
|
"""Infer a response from the input meaning."""
|
|
117
117
|
raise NotImplementedError
|
|
118
118
|
|
|
119
|
-
def __call__(self, input_text: str, **kwargs: dict) -> str:
|
|
119
|
+
def __call__(self, input_text: str | list[dict], **kwargs: dict) -> str:
|
|
120
120
|
"""Infer a response from the input text."""
|
|
121
121
|
if self.verbose:
|
|
122
122
|
logger.info(f"Meaning In\n{input_text}")
|
|
@@ -131,7 +131,7 @@ class BaseLLM:
|
|
|
131
131
|
) -> str:
|
|
132
132
|
"""Resolve the output string to return the reasoning and output."""
|
|
133
133
|
if self.verbose:
|
|
134
|
-
logger.
|
|
134
|
+
logger.info(f"Meaning Out\n{meaning_out}")
|
|
135
135
|
output_match = re.search(r"\[Output\](.*)", meaning_out)
|
|
136
136
|
output = output_match.group(1).strip() if output_match else None
|
|
137
137
|
if not output_match:
|
jaclang/core/llms/groq.py
CHANGED
|
@@ -49,8 +49,11 @@ class Groq(BaseLLM):
|
|
|
49
49
|
self.temperature = kwargs.get("temperature", 0.7)
|
|
50
50
|
self.max_tokens = kwargs.get("max_tokens", 1024)
|
|
51
51
|
|
|
52
|
-
def __infer__(self, meaning_in: str, **kwargs: dict) -> str:
|
|
52
|
+
def __infer__(self, meaning_in: str | list[dict], **kwargs: dict) -> str:
|
|
53
53
|
"""Infer a response from the input meaning."""
|
|
54
|
+
assert isinstance(
|
|
55
|
+
meaning_in, str
|
|
56
|
+
), "Currently Multimodal models are not supported. Please provide a string input."
|
|
54
57
|
messages = [{"role": "user", "content": meaning_in}]
|
|
55
58
|
model_params = {
|
|
56
59
|
k: v
|
jaclang/core/llms/huggingface.py
CHANGED
|
@@ -61,8 +61,11 @@ class Huggingface(BaseLLM):
|
|
|
61
61
|
self.temperature = kwargs.get("temperature", 0.7)
|
|
62
62
|
self.max_tokens = kwargs.get("max_new_tokens", 1024)
|
|
63
63
|
|
|
64
|
-
def __infer__(self, meaning_in: str, **kwargs: dict) -> str:
|
|
64
|
+
def __infer__(self, meaning_in: str | list[dict], **kwargs: dict) -> str:
|
|
65
65
|
"""Infer a response from the input meaning."""
|
|
66
|
+
assert isinstance(
|
|
67
|
+
meaning_in, str
|
|
68
|
+
), "Currently Multimodal models are not supported. Please provide a string input."
|
|
66
69
|
messages = [{"role": "user", "content": meaning_in}]
|
|
67
70
|
output = self.pipe(
|
|
68
71
|
messages,
|
jaclang/core/llms/ollama.py
CHANGED
|
@@ -51,8 +51,11 @@ class Ollama(BaseLLM):
|
|
|
51
51
|
k: v for k, v in kwargs.items() if k not in ["model_name", "host"]
|
|
52
52
|
}
|
|
53
53
|
|
|
54
|
-
def __infer__(self, meaning_in: str, **kwargs: dict) -> str:
|
|
54
|
+
def __infer__(self, meaning_in: str | list[dict], **kwargs: dict) -> str:
|
|
55
55
|
"""Infer a response from the input meaning."""
|
|
56
|
+
assert isinstance(
|
|
57
|
+
meaning_in, str
|
|
58
|
+
), "Currently Multimodal models are not supported. Please provide a string input."
|
|
56
59
|
model = str(kwargs.get("model_name", self.model_name))
|
|
57
60
|
if not self.check_model(model):
|
|
58
61
|
self.download_model(model)
|
jaclang/core/llms/openai.py
CHANGED
|
@@ -45,12 +45,16 @@ class OpenAI(BaseLLM):
|
|
|
45
45
|
self.client = openai.OpenAI()
|
|
46
46
|
self.verbose = verbose
|
|
47
47
|
self.max_tries = max_tries
|
|
48
|
-
self.model_name = kwargs.get("model_name", "gpt-3.5-turbo")
|
|
48
|
+
self.model_name = str(kwargs.get("model_name", "gpt-3.5-turbo"))
|
|
49
49
|
self.temperature = kwargs.get("temperature", 0.7)
|
|
50
50
|
self.max_tokens = kwargs.get("max_tokens", 1024)
|
|
51
51
|
|
|
52
|
-
def __infer__(self, meaning_in: str, **kwargs: dict) -> str:
|
|
52
|
+
def __infer__(self, meaning_in: str | list[dict], **kwargs: dict) -> str:
|
|
53
53
|
"""Infer a response from the input meaning."""
|
|
54
|
+
if not isinstance(meaning_in, str):
|
|
55
|
+
assert self.model_name.startswith(
|
|
56
|
+
("gpt-4o", "gpt-4-turbo")
|
|
57
|
+
), f"Model {self.model_name} is not multimodal, use a multimodal model instead."
|
|
54
58
|
messages = [{"role": "user", "content": meaning_in}]
|
|
55
59
|
output = self.client.chat.completions.create(
|
|
56
60
|
model=kwargs.get("model_name", self.model_name),
|
jaclang/core/llms/togetherai.py
CHANGED
|
@@ -48,8 +48,11 @@ class TogetherAI(BaseLLM):
|
|
|
48
48
|
self.temperature = kwargs.get("temperature", 0.7)
|
|
49
49
|
self.max_tokens = kwargs.get("max_tokens", 1024)
|
|
50
50
|
|
|
51
|
-
def __infer__(self, meaning_in: str, **kwargs: dict) -> str:
|
|
51
|
+
def __infer__(self, meaning_in: str | list[dict], **kwargs: dict) -> str:
|
|
52
52
|
"""Infer a response from the input meaning."""
|
|
53
|
+
assert isinstance(
|
|
54
|
+
meaning_in, str
|
|
55
|
+
), "Currently Multimodal models are not supported. Please provide a string input."
|
|
53
56
|
messages = [{"role": "user", "content": meaning_in}]
|
|
54
57
|
output = self.client.chat.completions.create(
|
|
55
58
|
model=kwargs.get("model_name", self.model_name),
|