iwopy 0.1.9__py3-none-any.whl → 0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of iwopy might be problematic. Click here for more details.

Files changed (43) hide show
  1. iwopy/VERSION +1 -1
  2. iwopy/__init__.py +6 -1
  3. iwopy/benchmarks/branin/__init__.py +1 -0
  4. iwopy/benchmarks/{branin.py → branin/branin.py} +29 -19
  5. iwopy/benchmarks/rosenbrock/__init__.py +1 -0
  6. iwopy/benchmarks/{rosenbrock.py → rosenbrock/rosenbrock.py} +35 -27
  7. iwopy/core/base.py +14 -8
  8. iwopy/core/constraint.py +20 -14
  9. iwopy/core/function.py +66 -60
  10. iwopy/core/function_list.py +51 -45
  11. iwopy/core/function_subset.py +33 -28
  12. iwopy/core/memory.py +43 -35
  13. iwopy/core/objective.py +4 -1
  14. iwopy/core/opt_results.py +79 -68
  15. iwopy/core/optimizer.py +15 -9
  16. iwopy/core/problem.py +116 -104
  17. iwopy/interfaces/pygmo/__init__.py +3 -0
  18. iwopy/interfaces/pygmo/algos.py +5 -2
  19. iwopy/interfaces/pygmo/imports.py +11 -0
  20. iwopy/interfaces/pygmo/optimizer.py +24 -18
  21. iwopy/interfaces/pygmo/problem.py +24 -19
  22. iwopy/interfaces/pymoo/__init__.py +4 -1
  23. iwopy/interfaces/pymoo/factory.py +6 -0
  24. iwopy/interfaces/pymoo/imports.py +11 -0
  25. iwopy/interfaces/pymoo/optimizer.py +75 -48
  26. iwopy/interfaces/pymoo/problem.py +330 -314
  27. iwopy/interfaces/scipy/optimizer.py +26 -20
  28. iwopy/optimizers/gg.py +41 -35
  29. iwopy/utils/discretization.py +106 -100
  30. iwopy/utils/stdout.py +2 -0
  31. iwopy/wrappers/discretize_reg_grid.py +65 -59
  32. iwopy/wrappers/local_fd.py +40 -34
  33. iwopy/wrappers/problem_wrapper.py +43 -37
  34. iwopy/wrappers/simple_constraint.py +47 -41
  35. iwopy/wrappers/simple_objective.py +42 -36
  36. iwopy/wrappers/simple_problem.py +40 -34
  37. {iwopy-0.1.9.dist-info → iwopy-0.2.dist-info}/METADATA +12 -3
  38. iwopy-0.2.dist-info/RECORD +50 -0
  39. iwopy-0.1.9.dist-info/RECORD +0 -48
  40. {iwopy-0.1.9.dist-info → iwopy-0.2.dist-info}/LICENSE +0 -0
  41. {iwopy-0.1.9.dist-info → iwopy-0.2.dist-info}/WHEEL +0 -0
  42. {iwopy-0.1.9.dist-info → iwopy-0.2.dist-info}/top_level.txt +0 -0
  43. {iwopy-0.1.9.dist-info → iwopy-0.2.dist-info}/zip-safe +0 -0
@@ -9,24 +9,7 @@ class SimpleConstraint(Constraint):
9
9
  A simple constraint that assumes the
10
10
  same variables as defined by the problem.
11
11
 
12
- Parameters
13
- ----------
14
- problem: iwopy.Problem
15
- The underlying optimization problem
16
- name: str
17
- The function name
18
- n_components : int
19
- The number of components
20
- mins : float or array
21
- The minimal values of components,
22
- shape: (n_components,)
23
- maxs : float or array
24
- The maximal values of components,
25
- shape: (n_components,)
26
- cnames : list of str, optional
27
- The names of the components
28
- has_ana_derivs = bool
29
- Flag for analytical derivatives
12
+ :group: wrappers
30
13
 
31
14
  """
32
15
 
@@ -40,6 +23,29 @@ class SimpleConstraint(Constraint):
40
23
  cnames=None,
41
24
  has_ana_derivs=True,
42
25
  ):
26
+ """
27
+ Constructor
28
+
29
+ Parameters
30
+ ----------
31
+ problem: iwopy.Problem
32
+ The underlying optimization problem
33
+ name: str
34
+ The function name
35
+ n_components: int
36
+ The number of components
37
+ mins: float or array
38
+ The minimal values of components,
39
+ shape: (n_components,)
40
+ maxs: float or array
41
+ The maximal values of components,
42
+ shape: (n_components,)
43
+ cnames: list of str, optional
44
+ The names of the components
45
+ has_ana_derivs = bool
46
+ Flag for analytical derivatives
47
+
48
+ """
43
49
  if cnames is not None and len(cnames) != n_components:
44
50
  raise ValueError(
45
51
  f"Wrong number of component names, found {len(cnames)}, expected {n_components}: {cnames}"
@@ -67,13 +73,13 @@ class SimpleConstraint(Constraint):
67
73
 
68
74
  Parameters
69
75
  ----------
70
- x : tuple
76
+ x: tuple
71
77
  The int and float variables in that order. Variables are
72
78
  either scalars or numpy arrays in case of populations.
73
79
 
74
80
  Returns
75
81
  -------
76
- result : float (or numpy.ndarray) or list of float (or numpy.ndarray)
82
+ result: float (or numpy.ndarray) or list of float (or numpy.ndarray)
77
83
  For one component, a float, else a list of floats. For
78
84
  population results, a array with shape (n_pop,) in case
79
85
  of one component or a list of such arrays otherwise.
@@ -88,17 +94,17 @@ class SimpleConstraint(Constraint):
88
94
 
89
95
  Parameters
90
96
  ----------
91
- var : int
97
+ var: int
92
98
  The index of the derivation varibable within the function
93
99
  float variables
94
- x : tuple
100
+ x: tuple
95
101
  The int and float variables in that order.
96
- components : list of int, optional
102
+ components: list of int, optional
97
103
  The selected components, or None for all
98
104
 
99
105
  Returns
100
106
  -------
101
- result : float or list of float
107
+ result: float or list of float
102
108
  For one component, a float, else a list of floats.
103
109
  The length of list is 0 or 1 in case of single component,
104
110
  or n_sel_components otherwise.
@@ -114,9 +120,9 @@ class SimpleConstraint(Constraint):
114
120
 
115
121
  Returns
116
122
  -------
117
- min : np.array
123
+ min: np.array
118
124
  The lower bounds, shape: (n_components,)
119
- max : np.array
125
+ max: np.array
120
126
  The upper bounds, shape: (n_components,)
121
127
 
122
128
  """
@@ -142,19 +148,19 @@ class SimpleConstraint(Constraint):
142
148
 
143
149
  Parameters
144
150
  ----------
145
- vars_int : np.array
151
+ vars_int: np.array
146
152
  The integer variable values, shape: (n_vars_int,)
147
- vars_float : np.array
153
+ vars_float: np.array
148
154
  The float variable values, shape: (n_vars_float,)
149
- problem_results : Any
155
+ problem_results: Any
150
156
  The results of the variable application
151
157
  to the problem
152
- components : list of int, optional
158
+ components: list of int, optional
153
159
  The selected components or None for all
154
160
 
155
161
  Returns
156
162
  -------
157
- values : np.array
163
+ values: np.array
158
164
  The component values, shape: (n_sel_components,)
159
165
 
160
166
  """
@@ -167,19 +173,19 @@ class SimpleConstraint(Constraint):
167
173
 
168
174
  Parameters
169
175
  ----------
170
- vars_int : np.array
176
+ vars_int: np.array
171
177
  The integer variable values, shape: (n_pop, n_vars_int)
172
- vars_float : np.array
178
+ vars_float: np.array
173
179
  The float variable values, shape: (n_pop, n_vars_float)
174
- problem_results : Any
180
+ problem_results: Any
175
181
  The results of the variable application
176
182
  to the problem
177
- components : list of int, optional
183
+ components: list of int, optional
178
184
  The selected components or None for all
179
185
 
180
186
  Returns
181
187
  -------
182
- values : np.array
188
+ values: np.array
183
189
  The component values, shape: (n_pop, n_sel_components,)
184
190
 
185
191
  """
@@ -200,18 +206,18 @@ class SimpleConstraint(Constraint):
200
206
 
201
207
  Parameters
202
208
  ----------
203
- vars_int : np.array
209
+ vars_int: np.array
204
210
  The integer variable values, shape: (n_vars_int,)
205
- vars_float : np.array
211
+ vars_float: np.array
206
212
  The float variable values, shape: (n_vars_float,)
207
- var : int
213
+ var: int
208
214
  The index of the differentiation float variable
209
- components : list of int
215
+ components: list of int
210
216
  The selected components, or None for all
211
217
 
212
218
  Returns
213
219
  -------
214
- deriv : numpy.ndarray
220
+ deriv: numpy.ndarray
215
221
  The derivative values, shape: (n_sel_components,)
216
222
 
217
223
  """
@@ -9,20 +9,7 @@ class SimpleObjective(Objective):
9
9
  A simple objective that assumes the
10
10
  same variables as defined by the problem.
11
11
 
12
- Parameters
13
- ----------
14
- problem: iwopy.Problem
15
- The underlying optimization problem
16
- name: str
17
- The function name
18
- n_components : int
19
- The number of components
20
- maximize : bool or list of bool
21
- For each component, the maximization goal
22
- cnames : list of str, optional
23
- The names of the components
24
- has_ana_derivs = bool
25
- Flag for analytical derivatives
12
+ :group: wrappers
26
13
 
27
14
  """
28
15
 
@@ -35,6 +22,25 @@ class SimpleObjective(Objective):
35
22
  cnames=None,
36
23
  has_ana_derivs=True,
37
24
  ):
25
+ """
26
+ Constructor
27
+
28
+ Parameters
29
+ ----------
30
+ problem: iwopy.Problem
31
+ The underlying optimization problem
32
+ name: str
33
+ The function name
34
+ n_components: int
35
+ The number of components
36
+ maximize: bool or list of bool
37
+ For each component, the maximization goal
38
+ cnames: list of str, optional
39
+ The names of the components
40
+ has_ana_derivs = bool
41
+ Flag for analytical derivatives
42
+
43
+ """
38
44
  if cnames is not None and len(cnames) != n_components:
39
45
  raise ValueError(
40
46
  f"Wrong number of component names, found {len(cnames)}, expected {n_components}: {cnames}"
@@ -60,13 +66,13 @@ class SimpleObjective(Objective):
60
66
 
61
67
  Parameters
62
68
  ----------
63
- x : tuple
69
+ x: tuple
64
70
  The int and float variables in that order. Variables are
65
71
  either scalars or numpy arrays in case of populations.
66
72
 
67
73
  Returns
68
74
  -------
69
- result : float (or numpy.ndarray) or list of float (or numpy.ndarray)
75
+ result: float (or numpy.ndarray) or list of float (or numpy.ndarray)
70
76
  For one component, a float, else a list of floats. For
71
77
  population results, a array with shape (n_pop,) in case
72
78
  of one component or a list of such arrays otherwise.
@@ -81,17 +87,17 @@ class SimpleObjective(Objective):
81
87
 
82
88
  Parameters
83
89
  ----------
84
- var : int
90
+ var: int
85
91
  The index of the derivation varibable within the function
86
92
  float variables
87
- x : tuple
93
+ x: tuple
88
94
  The int and float variables in that order.
89
- components : list of int
95
+ components: list of int
90
96
  The selected components
91
97
 
92
98
  Returns
93
99
  -------
94
- result : float or list of float
100
+ result: float or list of float
95
101
  For one component, a float, else a list of floats.
96
102
  The length of list is 0 or 1 in case of single component,
97
103
  or n_sel_components otherwise.
@@ -118,7 +124,7 @@ class SimpleObjective(Objective):
118
124
 
119
125
  Returns
120
126
  -------
121
- flags : np.array
127
+ flags: np.array
122
128
  Bool array for component maximization,
123
129
  shape: (n_components,)
124
130
 
@@ -145,19 +151,19 @@ class SimpleObjective(Objective):
145
151
 
146
152
  Parameters
147
153
  ----------
148
- vars_int : np.array
154
+ vars_int: np.array
149
155
  The integer variable values, shape: (n_vars_int,)
150
- vars_float : np.array
156
+ vars_float: np.array
151
157
  The float variable values, shape: (n_vars_float,)
152
- problem_results : Any
158
+ problem_results: Any
153
159
  The results of the variable application
154
160
  to the problem
155
- components : list of int, optional
161
+ components: list of int, optional
156
162
  The selected components or None for all
157
163
 
158
164
  Returns
159
165
  -------
160
- values : np.array
166
+ values: np.array
161
167
  The component values, shape: (n_sel_components,)
162
168
 
163
169
  """
@@ -170,19 +176,19 @@ class SimpleObjective(Objective):
170
176
 
171
177
  Parameters
172
178
  ----------
173
- vars_int : np.array
179
+ vars_int: np.array
174
180
  The integer variable values, shape: (n_pop, n_vars_int)
175
- vars_float : np.array
181
+ vars_float: np.array
176
182
  The float variable values, shape: (n_pop, n_vars_float)
177
- problem_results : Any
183
+ problem_results: Any
178
184
  The results of the variable application
179
185
  to the problem
180
- components : list of int, optional
186
+ components: list of int, optional
181
187
  The selected components or None for all
182
188
 
183
189
  Returns
184
190
  -------
185
- values : np.array
191
+ values: np.array
186
192
  The component values, shape: (n_pop, n_sel_components,)
187
193
 
188
194
  """
@@ -203,18 +209,18 @@ class SimpleObjective(Objective):
203
209
 
204
210
  Parameters
205
211
  ----------
206
- vars_int : np.array
212
+ vars_int: np.array
207
213
  The integer variable values, shape: (n_vars_int,)
208
- vars_float : np.array
214
+ vars_float: np.array
209
215
  The float variable values, shape: (n_vars_float,)
210
- var : int
216
+ var: int
211
217
  The index of the differentiation float variable
212
- components : list of int
218
+ components: list of int
213
219
  The selected components, or None for all
214
220
 
215
221
  Returns
216
222
  -------
217
- deriv : numpy.ndarray
223
+ deriv: numpy.ndarray
218
224
  The derivative values, shape: (n_sel_components,)
219
225
 
220
226
  """
@@ -8,32 +8,7 @@ class SimpleProblem(Problem):
8
8
  A problem which simply pipes variables to its
9
9
  objectives and constraints.
10
10
 
11
- Parameters
12
- ----------
13
- int_vars : dict or array-like
14
- The integer variables, either dict with name str
15
- to initial value mapping, or list of variable names
16
- float_vars : dict or array-like
17
- The float variables, either dict with name str
18
- to initial value mapping, or list of variable names
19
- init_values_int : list of float, optional
20
- The initial values, in case of list type int_vars
21
- init_values_float : list of float, optional
22
- The initial values, in case of list type float_vars
23
- min_values_int : dict or list, optional
24
- The minimal values of the variables. Use `-self.INT_INF`
25
- for left-unbounded cases. None sets all values as such.
26
- max_values_int : dict or list, optional
27
- The maximal values of the variables. Use `self.INT_INF`
28
- for right-unbounded cases. None sets all values as such.
29
- min_values_float : dict or list, optional
30
- The minimal values of the variables. Use `-np.inf`
31
- for left-unbounded cases. None sets all values as such.
32
- max_values_float : dict or list, optional
33
- The maximal values of the variables. Use `np.inf`
34
- for right-unbounded cases. None sets all values as such.
35
- kwargs : dict, optional
36
- Additional parameters for the Problem class
11
+ :group: wrappers
37
12
 
38
13
  """
39
14
 
@@ -50,6 +25,37 @@ class SimpleProblem(Problem):
50
25
  max_values_float=None,
51
26
  **kwargs,
52
27
  ):
28
+ """
29
+ Constructor
30
+
31
+ Parameters
32
+ ----------
33
+ int_vars: dict or array-like
34
+ The integer variables, either dict with name str
35
+ to initial value mapping, or list of variable names
36
+ float_vars: dict or array-like
37
+ The float variables, either dict with name str
38
+ to initial value mapping, or list of variable names
39
+ init_values_int: list of float, optional
40
+ The initial values, in case of list type int_vars
41
+ init_values_float: list of float, optional
42
+ The initial values, in case of list type float_vars
43
+ min_values_int: dict or list, optional
44
+ The minimal values of the variables. Use `-self.INT_INF`
45
+ for left-unbounded cases. None sets all values as such.
46
+ max_values_int: dict or list, optional
47
+ The maximal values of the variables. Use `self.INT_INF`
48
+ for right-unbounded cases. None sets all values as such.
49
+ min_values_float: dict or list, optional
50
+ The minimal values of the variables. Use `-np.inf`
51
+ for left-unbounded cases. None sets all values as such.
52
+ max_values_float: dict or list, optional
53
+ The maximal values of the variables. Use `np.inf`
54
+ for right-unbounded cases. None sets all values as such.
55
+ kwargs: dict, optional
56
+ Additional parameters for the Problem class
57
+
58
+ """
53
59
  super().__init__(name, **kwargs)
54
60
 
55
61
  if int_vars is None and float_vars is None:
@@ -129,7 +135,7 @@ class SimpleProblem(Problem):
129
135
 
130
136
  Returns
131
137
  -------
132
- names : list of str
138
+ names: list of str
133
139
  The names of the integer variables
134
140
 
135
141
  """
@@ -141,7 +147,7 @@ class SimpleProblem(Problem):
141
147
 
142
148
  Returns
143
149
  -------
144
- values : numpy.ndarray
150
+ values: numpy.ndarray
145
151
  Initial int values, shape: (n_vars_int,)
146
152
 
147
153
  """
@@ -155,7 +161,7 @@ class SimpleProblem(Problem):
155
161
 
156
162
  Returns
157
163
  -------
158
- values : numpy.ndarray
164
+ values: numpy.ndarray
159
165
  Minimal int values, shape: (n_vars_int,)
160
166
 
161
167
  """
@@ -171,7 +177,7 @@ class SimpleProblem(Problem):
171
177
 
172
178
  Returns
173
179
  -------
174
- values : numpy.ndarray
180
+ values: numpy.ndarray
175
181
  Maximal int values, shape: (n_vars_int,)
176
182
 
177
183
  """
@@ -185,7 +191,7 @@ class SimpleProblem(Problem):
185
191
 
186
192
  Returns
187
193
  -------
188
- names : list of str
194
+ names: list of str
189
195
  The names of the float variables
190
196
 
191
197
  """
@@ -197,7 +203,7 @@ class SimpleProblem(Problem):
197
203
 
198
204
  Returns
199
205
  -------
200
- values : numpy.ndarray
206
+ values: numpy.ndarray
201
207
  Initial float values, shape: (n_vars_float,)
202
208
 
203
209
  """
@@ -211,7 +217,7 @@ class SimpleProblem(Problem):
211
217
 
212
218
  Returns
213
219
  -------
214
- values : numpy.ndarray
220
+ values: numpy.ndarray
215
221
  Minimal float values, shape: (n_vars_float,)
216
222
 
217
223
  """
@@ -227,7 +233,7 @@ class SimpleProblem(Problem):
227
233
 
228
234
  Returns
229
235
  -------
230
- values : numpy.ndarray
236
+ values: numpy.ndarray
231
237
  Maximal float values, shape: (n_vars_float,)
232
238
 
233
239
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: iwopy
3
- Version: 0.1.9
3
+ Version: 0.2
4
4
  Summary: Fraunhofer IWES optimization tools in Python
5
5
  Home-page: https://github.com/FraunhoferIWES/iwopy
6
6
  Author: Fraunhofer IWES
@@ -21,14 +21,22 @@ Requires-Dist: numpy
21
21
  Requires-Dist: scipy
22
22
  Requires-Dist: matplotlib
23
23
  Provides-Extra: all
24
+ Requires-Dist: flake8 ; extra == 'all'
25
+ Requires-Dist: pytest ; extra == 'all'
24
26
  Requires-Dist: pygmo ; extra == 'all'
25
27
  Requires-Dist: pymoo >=0.6 ; extra == 'all'
28
+ Requires-Dist: sphinx ; extra == 'all'
29
+ Requires-Dist: sphinx-immaterial ; extra == 'all'
30
+ Requires-Dist: nbsphinx ; extra == 'all'
31
+ Requires-Dist: ipykernel ; extra == 'all'
32
+ Requires-Dist: ipywidgets ; extra == 'all'
33
+ Requires-Dist: m2r2 ; extra == 'all'
26
34
  Provides-Extra: doc
27
35
  Requires-Dist: sphinx ; extra == 'doc'
28
- Requires-Dist: sphinx-rtd-theme ; extra == 'doc'
29
- Requires-Dist: sphinxcontrib-email ; extra == 'doc'
36
+ Requires-Dist: sphinx-immaterial ; extra == 'doc'
30
37
  Requires-Dist: nbsphinx ; extra == 'doc'
31
38
  Requires-Dist: ipykernel ; extra == 'doc'
39
+ Requires-Dist: ipywidgets ; extra == 'doc'
32
40
  Requires-Dist: m2r2 ; extra == 'doc'
33
41
  Provides-Extra: scripts
34
42
  Provides-Extra: test
@@ -49,6 +57,7 @@ The `iwopy` package is in fact a meta package that provides interfaces to other
49
57
 
50
58
  - [pymoo](https://pymoo.org/index.html)
51
59
  - [pygmo](https://esa.github.io/pygmo2/index.html)
60
+ - [scipy](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html)
52
61
  - (more to come with future versions)
53
62
 
54
63
  `iwopy` can thus be understood as an attempt to provide *the best of all worlds* when it comes to solving optimization problems with Python. This has not yet been achieved, since above list of accessable optimization packages is obviously incomplete, but it's a start. All the credit for implementing the invoked optimizers goes to the original package providers.
@@ -0,0 +1,50 @@
1
+ iwopy/VERSION,sha256=iJML0FHSFKlzWBuUkqXKEQrqP91dxlpovERLYXOHe70,4
2
+ iwopy/__init__.py,sha256=-A_J0FMdwFSOn9zqmwcwxX_mxG_1kGKFSFhd3lRHfuo,593
3
+ iwopy/benchmarks/__init__.py,sha256=WQii3TCGi4Q30p_X86mCOQ3RsYpPFegsMHedbQX4QC4,46
4
+ iwopy/benchmarks/branin/__init__.py,sha256=2EghFl_V3-fYuxuUeN6f6U6FGTD_e0jNMdde-Ggkg1M,51
5
+ iwopy/benchmarks/branin/branin.py,sha256=B5rJsYsBQtzruLPA3GSyoBqtPiG0A-j_Xrsy-n1Pz6o,2777
6
+ iwopy/benchmarks/rosenbrock/__init__.py,sha256=qlJnw2gcSqcFQXJEtk-bRRNb5Q3kJftm3bNyEu_2ieo,63
7
+ iwopy/benchmarks/rosenbrock/rosenbrock.py,sha256=Jm8TIiKmbQ0Jl-DNd1lPYvAcuCI40ghECGZa6vXSgho,2644
8
+ iwopy/core/__init__.py,sha256=IxD4Rzv_JukRMd8fo5e1SZ-QPHZNScOskzdLJCliMNA,389
9
+ iwopy/core/base.py,sha256=mS-eaQ19Ae-l10sAAEUq2bWQyyIAohXSBeQxZY_OMtw,1412
10
+ iwopy/core/constraint.py,sha256=QnamH_lzkW8-cvGKM7h04srQf74dfnDsUafhf7fMcWo,3077
11
+ iwopy/core/function.py,sha256=1SQUdTy3xXzyKUsovqGhEChtRp-3aSk3xCvCjYFVWCo,12385
12
+ iwopy/core/function_list.py,sha256=uojc_DN_erfkjcX6JxH_d9SRJ92gnXDsS3hROytBRT4,13338
13
+ iwopy/core/function_subset.py,sha256=mad1cfuMbl5OlfZ-LbHpZm1FjqfJ33xbsQrAPvDmeWo,5318
14
+ iwopy/core/memory.py,sha256=pOCbsMvSVYhKTqvq_esxRrNi93Il6mx0o9_eNE6uh_8,6531
15
+ iwopy/core/objective.py,sha256=OsxzGJMF5UdHdoTpaLjuqVOEZgbLZnCryDUX7IjfX_Y,465
16
+ iwopy/core/opt_results.py,sha256=ArlCj9w0N6a4VqyvVB3LVqaN8c4bTQdsAsZGI_p5mPQ,10088
17
+ iwopy/core/optimizer.py,sha256=IMmHqFClzHq92cn-mCTq6Jo8e9MfArPPyU1CjwttKw4,4154
18
+ iwopy/core/problem.py,sha256=7SuM9PUvYwFkkNEIEz29JXgZwE9bFlEknEW7-QEJ-Fw,30676
19
+ iwopy/interfaces/__init__.py,sha256=HdZPhQxuaPEpTSEwP4tFOxw55Km0NqqCvl8t1Otzu88,60
20
+ iwopy/interfaces/pygmo/__init__.py,sha256=Or3HOQEuCubPBpGAgWJSBFVYm4gR1oPkYbfnvmiY6Ts,121
21
+ iwopy/interfaces/pygmo/algos.py,sha256=30GQobLQjjUxgcxjFWzUhFqk4ygG66JgjmmvzJcKn1I,10746
22
+ iwopy/interfaces/pygmo/imports.py,sha256=7Q8hWnH43BykECWpvjmEpcndDYFnqdJVAz5nFftqERU,532
23
+ iwopy/interfaces/pygmo/optimizer.py,sha256=eJJkGRVHXEIlx62mr7-fREethUTK-ZRuhPBpeNL6jpQ,3719
24
+ iwopy/interfaces/pygmo/problem.py,sha256=RQ0EpruVb5XqzUCume7TsZ2N0yTm2CbmQpCiQXQ2t4s,6909
25
+ iwopy/interfaces/pymoo/__init__.py,sha256=Lu2bAHPo6Bo_11PnpII9E_AAEJKR8XR8Vx0-4Olt6is,192
26
+ iwopy/interfaces/pymoo/factory.py,sha256=NYhXhxAvT90hvrcI_Apq_1JIdiX9acNRE6DnsFcz3ac,7212
27
+ iwopy/interfaces/pymoo/imports.py,sha256=nSvGdGZd0U92bRW7hFWexMLdp6L2E25hvHXgn0heGo0,2983
28
+ iwopy/interfaces/pymoo/optimizer.py,sha256=j_SZcJPunct_2wobHnSHIx3PcsTGYGSKzdGbyZS5w0k,7979
29
+ iwopy/interfaces/pymoo/problem.py,sha256=wf0dUuaYuZttEHFDocgxVyCOe8FmA9v2_zFI3iIa8VY,13043
30
+ iwopy/interfaces/scipy/__init__.py,sha256=3xnztLlcSgsjT4wwYAZsNGLyoc-T5sN5mlVjtuw7dQY,39
31
+ iwopy/interfaces/scipy/optimizer.py,sha256=q_TH-yZMB5TWKMNZ1A22NRc3xMbXfuFYOL2i9roLKiY,6276
32
+ iwopy/optimizers/__init__.py,sha256=qfKVpw4PtH61umx3GulWSN21jjiJuUf5oUTfUGxU1pk,19
33
+ iwopy/optimizers/gg.py,sha256=8w8jRDd2O8WWs1XLoVBScfAAF88DlRykWw-BwWxKN2o,14627
34
+ iwopy/utils/__init__.py,sha256=qPtdU7hcWPuwEeqd9G-SXqGrakvM9_zfwOiDJdPc8pk,122
35
+ iwopy/utils/discretization.py,sha256=cddQWYUYC-uvjlkqhvC44frhLvVyufzrUuJyaCi8MpI,36671
36
+ iwopy/utils/load.py,sha256=HBX55VV4H2azK1m3sGrD-led31KErBOS8EI0VGYuBG0,766
37
+ iwopy/utils/stdout.py,sha256=j9SO1MH1HRbL-Cy9nGj-E4vMh6MzgdkTvbdIsYs6yfo,708
38
+ iwopy/wrappers/__init__.py,sha256=dBQebvXOf0g-67Lof3rmscDzF20EO688Lm2ywIT_uEE,261
39
+ iwopy/wrappers/discretize_reg_grid.py,sha256=9WYuvH6IfWn-FebBUSqUVLZy6zwCgNyObpxqgf6Tk7Q,14291
40
+ iwopy/wrappers/local_fd.py,sha256=5shKOBdPPoq67x4r_o1cguMSoupX8oEkKjQap5nYCEc,11924
41
+ iwopy/wrappers/problem_wrapper.py,sha256=S5MZzJAWDRPgXQjxZynHeOxzalzHae5qdT8LNyFRP5M,6724
42
+ iwopy/wrappers/simple_constraint.py,sha256=SG9HGsiFx-UpFJGSbx8FsVcEsBjwARZmDIWvbjO8A3E,6744
43
+ iwopy/wrappers/simple_objective.py,sha256=d1N1Gb_sVtI1V2iDXiM3ixbkkHkZPtIrW8sCYhhSWsI,6618
44
+ iwopy/wrappers/simple_problem.py,sha256=rRgZn_vgCSG7owXZD8AAiHn5URFbTg501IayQ155TUA,7519
45
+ iwopy-0.2.dist-info/LICENSE,sha256=bBCH6mYTPzSepk2s2UUZ3II_ZYXrn1bnSqB85-aZHxU,1071
46
+ iwopy-0.2.dist-info/METADATA,sha256=dohSqTrrfU6eHM7B0-yGalDC0l3hinRHP__OrfeO5vQ,6123
47
+ iwopy-0.2.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
48
+ iwopy-0.2.dist-info/top_level.txt,sha256=51KNQr27ur_u9xKpuDl7GQiBINPKGOqMaMM63kFNzQE,6
49
+ iwopy-0.2.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
50
+ iwopy-0.2.dist-info/RECORD,,
@@ -1,48 +0,0 @@
1
- iwopy/VERSION,sha256=41jYRVKAilwL1medaQwoO5OOvhXCvYQ8iYaB0JMhMQc,6
2
- iwopy/__init__.py,sha256=UtLW52FR7VH1WAhSUcr4uJu1Zd4c4ChkuXLBcCQscXs,533
3
- iwopy/benchmarks/__init__.py,sha256=WQii3TCGi4Q30p_X86mCOQ3RsYpPFegsMHedbQX4QC4,46
4
- iwopy/benchmarks/branin.py,sha256=5cDSbKf8zW-6zYtHz73JuGfeqiQ56CeI7jprcsvIyRg,2608
5
- iwopy/benchmarks/rosenbrock.py,sha256=CYuiYKN1XcolHDW012Pa2-A8wgSX3Qy6H7GXsFH35Qw,2469
6
- iwopy/core/__init__.py,sha256=IxD4Rzv_JukRMd8fo5e1SZ-QPHZNScOskzdLJCliMNA,389
7
- iwopy/core/base.py,sha256=aeXjHWSTe84MDnCMdBewFYVQ8tZgw8C-gKot4VWcc-o,1337
8
- iwopy/core/constraint.py,sha256=I_fBPcX4sLp7ZxMm4lriMgYtidTcOiVFi0sNHyWh1gk,3008
9
- iwopy/core/function.py,sha256=p7aUocU58625cAtArMi3V-pAavYtqzWbSy4G_ryZKss,12266
10
- iwopy/core/function_list.py,sha256=0494ZMlLj80fGDuLE6XMVUHOi2HFeIhLq-iExEroxTI,13289
11
- iwopy/core/function_subset.py,sha256=aJNUZnC4QJE3B7RWtwoO2WKTPc_WNW6Vc367hh4CzSI,5244
12
- iwopy/core/memory.py,sha256=YqY64a-y1wcwXJfD3NGcqH6cWUgH_MFKZMWYQInlbmo,6451
13
- iwopy/core/objective.py,sha256=knqy7AVaaa7yso1qAL5tKzQh6NOw8lQRKWq-4kn0urM,447
14
- iwopy/core/opt_results.py,sha256=2MYmtPRdbA4bsvS0ccX92NezHmdSpxpYL6Tn8AZ7vD0,9883
15
- iwopy/core/optimizer.py,sha256=bpNVryWLG_Wp88orSEbj84UPXvz5mFQxqNPFhRh_abg,4069
16
- iwopy/core/problem.py,sha256=ThYFshzwU6Ta3Pp4iBraGzBpw0eZ-Us74oDA9mZJuZA,30591
17
- iwopy/interfaces/__init__.py,sha256=HdZPhQxuaPEpTSEwP4tFOxw55Km0NqqCvl8t1Otzu88,60
18
- iwopy/interfaces/pygmo/__init__.py,sha256=qDtUhcYG6OVggiuk88uAEFtO5M0RFoMwwxoe1o3Sx9Q,39
19
- iwopy/interfaces/pygmo/algos.py,sha256=BALObK2-88v4tXkxZoILwDoGbynKvL0pvuWsv6pucik,10717
20
- iwopy/interfaces/pygmo/imports.py,sha256=iBjISncQckQSFyHak5iEdk_E5bNAfXzOH0d4_QfF2lQ,355
21
- iwopy/interfaces/pygmo/optimizer.py,sha256=iEb65tBu_s7iBhtkwBGE-HktItuw0mPg5VcsZzDO4iU,3615
22
- iwopy/interfaces/pygmo/problem.py,sha256=aWaarJhBoHSTsN8uIVrjoB48l_e1vUDoGROV5rBvaB0,6807
23
- iwopy/interfaces/pymoo/__init__.py,sha256=6U0FRJ1Lgtfu3nf-iXMLeiShoLhLAa_bkS9cebOUmqQ,39
24
- iwopy/interfaces/pymoo/factory.py,sha256=EtlwxZfYOscidqlJUF_UwfB_qw3bQVwAPhQSj7ImirA,7120
25
- iwopy/interfaces/pymoo/imports.py,sha256=9-FyOaziO-O9gFKdHZvgCiAM43wPkvx1wC2nYkUzVNw,2806
26
- iwopy/interfaces/pymoo/optimizer.py,sha256=mxqD0b_ZPEoBfocolT5vCrLUCuiw4eJXz52Bq-PzkAM,7437
27
- iwopy/interfaces/pymoo/problem.py,sha256=Isi-PDhT3zHKPVllO92-R8WLnzqqVeJjXa4HFO24Ukk,13530
28
- iwopy/interfaces/scipy/__init__.py,sha256=3xnztLlcSgsjT4wwYAZsNGLyoc-T5sN5mlVjtuw7dQY,39
29
- iwopy/interfaces/scipy/optimizer.py,sha256=OHLTUwEhU5MqHADJBaSgLs4EsNun0mpy-raYUJH-7UI,6164
30
- iwopy/optimizers/__init__.py,sha256=qfKVpw4PtH61umx3GulWSN21jjiJuUf5oUTfUGxU1pk,19
31
- iwopy/optimizers/gg.py,sha256=hg-cUHP6oasvbnLJ4AJ5a3M-ugJdmNUz5JPJbeVQrGU,14479
32
- iwopy/utils/__init__.py,sha256=qPtdU7hcWPuwEeqd9G-SXqGrakvM9_zfwOiDJdPc8pk,122
33
- iwopy/utils/discretization.py,sha256=4rjE6Ldo9I3xVXCr7m0a08XFe47CMi-BfQsrLeou3vo,36632
34
- iwopy/utils/load.py,sha256=HBX55VV4H2azK1m3sGrD-led31KErBOS8EI0VGYuBG0,766
35
- iwopy/utils/stdout.py,sha256=ZVyt8rT8GxQE6mpbFh8V5kf5i_UnP3AP8r9gCGhd1hg,689
36
- iwopy/wrappers/__init__.py,sha256=dBQebvXOf0g-67Lof3rmscDzF20EO688Lm2ywIT_uEE,261
37
- iwopy/wrappers/discretize_reg_grid.py,sha256=xVcDONdkmBlywNtxqiTATiTCQ0eFU5eMFUmUwaxl81k,14169
38
- iwopy/wrappers/local_fd.py,sha256=hYbcbpnrCu5CajF9jcL-UDgYQLVZJsy5EJNQRyFByXA,11795
39
- iwopy/wrappers/problem_wrapper.py,sha256=txebURNkFXpoAmxu14GZt5chmQTsrHNRCxOPp-3NPfc,6656
40
- iwopy/wrappers/simple_constraint.py,sha256=Fq16EhV8Dr8zDEyHUvznIWsci-0DVEX4lNJYn2GeHt4,6632
41
- iwopy/wrappers/simple_objective.py,sha256=M0QgPNy1aXeFZDXZpJ3FdJt4ifDSP3bCGaU9lbLsSew,6520
42
- iwopy/wrappers/simple_problem.py,sha256=jlFikZw_wIcWezJoIeC0lYLRRh4WcTVDXUMEEqRyWmE,7365
43
- iwopy-0.1.9.dist-info/LICENSE,sha256=bBCH6mYTPzSepk2s2UUZ3II_ZYXrn1bnSqB85-aZHxU,1071
44
- iwopy-0.1.9.dist-info/METADATA,sha256=CSq-mbl7EcI7YonM9jqFgcQO7CjOCJ9_0m80UhM-HuM,5710
45
- iwopy-0.1.9.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
46
- iwopy-0.1.9.dist-info/top_level.txt,sha256=51KNQr27ur_u9xKpuDl7GQiBINPKGOqMaMM63kFNzQE,6
47
- iwopy-0.1.9.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
48
- iwopy-0.1.9.dist-info/RECORD,,
File without changes
File without changes
File without changes