iwopy 0.1.9__py3-none-any.whl → 0.2.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. iwopy/VERSION +1 -1
  2. iwopy/__init__.py +6 -1
  3. iwopy/benchmarks/branin/__init__.py +1 -0
  4. iwopy/benchmarks/{branin.py → branin/branin.py} +29 -19
  5. iwopy/benchmarks/rosenbrock/__init__.py +1 -0
  6. iwopy/benchmarks/{rosenbrock.py → rosenbrock/rosenbrock.py} +35 -27
  7. iwopy/core/base.py +14 -8
  8. iwopy/core/constraint.py +20 -14
  9. iwopy/core/function.py +66 -60
  10. iwopy/core/function_list.py +51 -45
  11. iwopy/core/function_subset.py +33 -28
  12. iwopy/core/memory.py +43 -35
  13. iwopy/core/objective.py +4 -1
  14. iwopy/core/opt_results.py +79 -68
  15. iwopy/core/optimizer.py +15 -9
  16. iwopy/core/problem.py +116 -104
  17. iwopy/interfaces/pygmo/__init__.py +3 -0
  18. iwopy/interfaces/pygmo/algos.py +5 -2
  19. iwopy/interfaces/pygmo/imports.py +11 -0
  20. iwopy/interfaces/pygmo/optimizer.py +24 -18
  21. iwopy/interfaces/pygmo/problem.py +24 -19
  22. iwopy/interfaces/pymoo/__init__.py +4 -1
  23. iwopy/interfaces/pymoo/factory.py +6 -0
  24. iwopy/interfaces/pymoo/imports.py +11 -0
  25. iwopy/interfaces/pymoo/optimizer.py +75 -48
  26. iwopy/interfaces/pymoo/problem.py +330 -314
  27. iwopy/interfaces/scipy/optimizer.py +26 -20
  28. iwopy/optimizers/gg.py +41 -35
  29. iwopy/utils/discretization.py +106 -100
  30. iwopy/utils/stdout.py +2 -0
  31. iwopy/wrappers/discretize_reg_grid.py +65 -59
  32. iwopy/wrappers/local_fd.py +40 -34
  33. iwopy/wrappers/problem_wrapper.py +43 -37
  34. iwopy/wrappers/simple_constraint.py +47 -41
  35. iwopy/wrappers/simple_objective.py +42 -36
  36. iwopy/wrappers/simple_problem.py +40 -34
  37. {iwopy-0.1.9.dist-info → iwopy-0.2.3.dist-info}/METADATA +108 -21
  38. iwopy-0.2.3.dist-info/RECORD +50 -0
  39. {iwopy-0.1.9.dist-info → iwopy-0.2.3.dist-info}/WHEEL +1 -1
  40. iwopy-0.1.9.dist-info/RECORD +0 -48
  41. {iwopy-0.1.9.dist-info → iwopy-0.2.3.dist-info}/LICENSE +0 -0
  42. {iwopy-0.1.9.dist-info → iwopy-0.2.3.dist-info}/top_level.txt +0 -0
  43. {iwopy-0.1.9.dist-info → iwopy-0.2.3.dist-info}/zip-safe +0 -0
iwopy/core/problem.py CHANGED
@@ -12,30 +12,36 @@ class Problem(Base, metaclass=ABCMeta):
12
12
  """
13
13
  Abstract base class for optimization problems.
14
14
 
15
- Parameters
16
- ----------
17
- name: str
18
- The problem's name
19
- mem_size : int, optional
20
- The memory size, default no memory
21
- mem_keyf : Function, optional
22
- The memory key function. Parameters:
23
- (vars_int, vars_float), returns key Object
24
-
25
15
  Attributes
26
16
  ----------
27
- objs : iwopy.core.OptFunctionList
17
+ objs: iwopy.core.OptFunctionList
28
18
  The objective functions
29
- cons : iwopy.core.OptFunctionList
19
+ cons: iwopy.core.OptFunctionList
30
20
  The constraints
31
- memory : iwopy.core.Memory
21
+ memory: iwopy.core.Memory
32
22
  The memory, or None
33
23
 
24
+ :group: core
25
+
34
26
  """
35
27
 
36
28
  INT_INF = RegularDiscretizationGrid.INT_INF
37
29
 
38
30
  def __init__(self, name, mem_size=None, mem_keyf=None):
31
+ """
32
+ Constructor
33
+
34
+ Parameters
35
+ ----------
36
+ name: str
37
+ The problem's name
38
+ mem_size: int, optional
39
+ The memory size, default no memory
40
+ mem_keyf: Function, optional
41
+ The memory key function. Parameters:
42
+ (vars_int, vars_float), returns key Object
43
+
44
+ """
39
45
  super().__init__(name)
40
46
 
41
47
  self.objs = OptFunctionList(self, "objs")
@@ -55,7 +61,7 @@ class Problem(Base, metaclass=ABCMeta):
55
61
 
56
62
  Returns
57
63
  -------
58
- names : list of str
64
+ names: list of str
59
65
  The names of the integer variables
60
66
 
61
67
  """
@@ -67,7 +73,7 @@ class Problem(Base, metaclass=ABCMeta):
67
73
 
68
74
  Returns
69
75
  -------
70
- values : numpy.ndarray
76
+ values: numpy.ndarray
71
77
  Initial int values, shape: (n_vars_int,)
72
78
 
73
79
  """
@@ -81,7 +87,7 @@ class Problem(Base, metaclass=ABCMeta):
81
87
 
82
88
  Returns
83
89
  -------
84
- values : numpy.ndarray
90
+ values: numpy.ndarray
85
91
  Minimal int values, shape: (n_vars_int,)
86
92
 
87
93
  """
@@ -95,7 +101,7 @@ class Problem(Base, metaclass=ABCMeta):
95
101
 
96
102
  Returns
97
103
  -------
98
- values : numpy.ndarray
104
+ values: numpy.ndarray
99
105
  Maximal int values, shape: (n_vars_int,)
100
106
 
101
107
  """
@@ -108,7 +114,7 @@ class Problem(Base, metaclass=ABCMeta):
108
114
 
109
115
  Returns
110
116
  -------
111
- n : int
117
+ n: int
112
118
  The number of int variables
113
119
 
114
120
  """
@@ -120,7 +126,7 @@ class Problem(Base, metaclass=ABCMeta):
120
126
 
121
127
  Returns
122
128
  -------
123
- names : list of str
129
+ names: list of str
124
130
  The names of the float variables
125
131
 
126
132
  """
@@ -132,7 +138,7 @@ class Problem(Base, metaclass=ABCMeta):
132
138
 
133
139
  Returns
134
140
  -------
135
- values : numpy.ndarray
141
+ values: numpy.ndarray
136
142
  Initial float values, shape: (n_vars_float,)
137
143
 
138
144
  """
@@ -146,7 +152,7 @@ class Problem(Base, metaclass=ABCMeta):
146
152
 
147
153
  Returns
148
154
  -------
149
- values : numpy.ndarray
155
+ values: numpy.ndarray
150
156
  Minimal float values, shape: (n_vars_float,)
151
157
 
152
158
  """
@@ -160,7 +166,7 @@ class Problem(Base, metaclass=ABCMeta):
160
166
 
161
167
  Returns
162
168
  -------
163
- values : numpy.ndarray
169
+ values: numpy.ndarray
164
170
  Maximal float values, shape: (n_vars_float,)
165
171
 
166
172
  """
@@ -173,7 +179,7 @@ class Problem(Base, metaclass=ABCMeta):
173
179
 
174
180
  Returns
175
181
  -------
176
- n : int
182
+ n: int
177
183
  The number of float variables
178
184
 
179
185
  """
@@ -235,7 +241,7 @@ class Problem(Base, metaclass=ABCMeta):
235
241
 
236
242
  Parameters
237
243
  ----------
238
- objective : iwopy.Objective
244
+ objective: iwopy.Objective
239
245
  The objective
240
246
  varmap_int: dict, optional
241
247
  Mapping from objective variables to
@@ -245,7 +251,7 @@ class Problem(Base, metaclass=ABCMeta):
245
251
  Mapping from objective variables to
246
252
  problem variables. Key: str or int,
247
253
  value: str or int
248
- verbosity : int
254
+ verbosity: int
249
255
  The verbosity level, 0 = silent
250
256
 
251
257
  """
@@ -267,7 +273,7 @@ class Problem(Base, metaclass=ABCMeta):
267
273
 
268
274
  Parameters
269
275
  ----------
270
- constraint : iwopy.Constraint
276
+ constraint: iwopy.Constraint
271
277
  The constraint
272
278
  varmap_int: dict, optional
273
279
  Mapping from objective variables to
@@ -277,7 +283,7 @@ class Problem(Base, metaclass=ABCMeta):
277
283
  Mapping from objective variables to
278
284
  problem variables. Key: str or int,
279
285
  value: str or int
280
- verbosity : int
286
+ verbosity: int
281
287
  The verbosity level, 0 = silent
282
288
 
283
289
  """
@@ -306,7 +312,7 @@ class Problem(Base, metaclass=ABCMeta):
306
312
 
307
313
  Returns
308
314
  -------
309
- cmi : numpy.ndarray
315
+ cmi: numpy.ndarray
310
316
  The minimal constraint values, shape: (n_constraints,)
311
317
 
312
318
  """
@@ -319,7 +325,7 @@ class Problem(Base, metaclass=ABCMeta):
319
325
 
320
326
  Returns
321
327
  -------
322
- cma : numpy.ndarray
328
+ cma: numpy.ndarray
323
329
  The maximal constraint values, shape: (n_constraints,)
324
330
 
325
331
  """
@@ -332,7 +338,7 @@ class Problem(Base, metaclass=ABCMeta):
332
338
 
333
339
  Returns
334
340
  -------
335
- ctol : numpy.ndarray
341
+ ctol: numpy.ndarray
336
342
  The constraint tolerance values, shape: (n_constraints,)
337
343
 
338
344
  """
@@ -346,7 +352,7 @@ class Problem(Base, metaclass=ABCMeta):
346
352
 
347
353
  Returns
348
354
  -------
349
- n_obj : int
355
+ n_obj: int
350
356
  The total number of objective
351
357
  functions
352
358
 
@@ -361,7 +367,7 @@ class Problem(Base, metaclass=ABCMeta):
361
367
 
362
368
  Returns
363
369
  -------
364
- n_con : int
370
+ n_con: int
365
371
  The total number of constraint
366
372
  functions
367
373
 
@@ -434,31 +440,31 @@ class Problem(Base, metaclass=ABCMeta):
434
440
 
435
441
  Parameters
436
442
  ----------
437
- vars_int : np.array
443
+ vars_int: np.array
438
444
  The integer variable values, shape: (n_vars_int,)
439
- vars_float : np.array
445
+ vars_float: np.array
440
446
  The float variable values, shape: (n_vars_float,)
441
- func : iwopy.core.OptFunctionList, optional
447
+ func: iwopy.core.OptFunctionList, optional
442
448
  The functions to be differentiated, or None
443
449
  for a list of all objectives and all constraints
444
450
  (in that order)
445
- components : list of int, optional
451
+ components: list of int, optional
446
452
  The function's component selection, or None for all
447
- ivars : list of int
453
+ ivars: list of int
448
454
  The indices of the function int variables in the problem
449
- fvars : list of int
455
+ fvars: list of int
450
456
  The indices of the function float variables in the problem
451
- vrs : list of int
457
+ vrs: list of int
452
458
  The function float variable indices wrt which the
453
459
  derivatives are to be calculated
454
- pop : bool
460
+ pop: bool
455
461
  Flag for vectorizing calculations via population
456
- verbosity : int
462
+ verbosity: int
457
463
  The verbosity level, 0 = silent
458
464
 
459
465
  Returns
460
466
  -------
461
- gradients : numpy.ndarray
467
+ gradients: numpy.ndarray
462
468
  The gradients of the functions, shape:
463
469
  (n_components, n_vrs)
464
470
 
@@ -501,28 +507,28 @@ class Problem(Base, metaclass=ABCMeta):
501
507
 
502
508
  Parameters
503
509
  ----------
504
- vars_int : np.array
510
+ vars_int: np.array
505
511
  The integer variable values, shape: (n_vars_int,)
506
- vars_float : np.array
512
+ vars_float: np.array
507
513
  The float variable values, shape: (n_vars_float,)
508
- func : iwopy.core.OptFunctionList, optional
514
+ func: iwopy.core.OptFunctionList, optional
509
515
  The functions to be differentiated, or None
510
516
  for a list of all objectives and all constraints
511
517
  (in that order)
512
- components : list of int, optional
518
+ components: list of int, optional
513
519
  The function's component selection, or None for all
514
- vars : list of int or str, optional
520
+ vars: list of int or str, optional
515
521
  The float variables wrt which the
516
522
  derivatives are to be calculated, or
517
523
  None for all
518
- verbosity : int
524
+ verbosity: int
519
525
  The verbosity level, 0 = silent
520
- pop : bool
526
+ pop: bool
521
527
  Flag for vectorizing calculations via population
522
528
 
523
529
  Returns
524
530
  -------
525
- gradients : numpy.ndarray
531
+ gradients: numpy.ndarray
526
532
  The gradients of the functions, shape:
527
533
  (n_components, n_vars)
528
534
 
@@ -605,7 +611,7 @@ class Problem(Base, metaclass=ABCMeta):
605
611
 
606
612
  Parameters
607
613
  ----------
608
- verbosity : int
614
+ verbosity: int
609
615
  The verbosity level, 0 = silent
610
616
 
611
617
  """
@@ -624,22 +630,22 @@ class Problem(Base, metaclass=ABCMeta):
624
630
  if self._mem_size is not None:
625
631
  self.memory = Memory(self._mem_size, self._mem_keyf)
626
632
  if verbosity:
627
- print(f" Memory size : {self.memory.size}")
633
+ print(f" Memory size : {self.memory.size}")
628
634
  print(self._hline)
629
635
 
630
636
  n_int = self.n_vars_int
631
637
  n_float = self.n_vars_float
632
638
  if verbosity:
633
- print(f" n_vars_int : {n_int}")
634
- print(f" n_vars_float : {n_float}")
639
+ print(f" n_vars_int : {n_int}")
640
+ print(f" n_vars_float: {n_float}")
635
641
  print(self._hline)
636
642
 
637
643
  if verbosity:
638
- print(f" n_objectives : {self.objs.n_functions}")
639
- print(f" n_obj_cmptns : {self.n_objectives}")
644
+ print(f" n_objectives: {self.objs.n_functions}")
645
+ print(f" n_obj_cmptns: {self.n_objectives}")
640
646
  print(self._hline)
641
647
  print(f" n_constraints: {self.cons.n_functions}")
642
- print(f" n_con_cmptns : {self.n_constraints}")
648
+ print(f" n_con_cmptns: {self.n_constraints}")
643
649
  print(self._hline)
644
650
 
645
651
  if self.n_objectives == 0:
@@ -661,7 +667,7 @@ class Problem(Base, metaclass=ABCMeta):
661
667
 
662
668
  Returns
663
669
  -------
664
- maximize : numpy.ndarray
670
+ maximize: numpy.ndarray
665
671
  Boolean flag for maximization of objective,
666
672
  shape: (n_objectives,)
667
673
 
@@ -674,14 +680,14 @@ class Problem(Base, metaclass=ABCMeta):
674
680
 
675
681
  Parameters
676
682
  ----------
677
- vars_int : np.array
683
+ vars_int: np.array
678
684
  The integer variable values, shape: (n_vars_int,)
679
- vars_float : np.array
685
+ vars_float: np.array
680
686
  The float variable values, shape: (n_vars_float,)
681
687
 
682
688
  Returns
683
689
  -------
684
- problem_results : Any
690
+ problem_results: Any
685
691
  The results of the variable application
686
692
  to the problem
687
693
 
@@ -695,14 +701,14 @@ class Problem(Base, metaclass=ABCMeta):
695
701
 
696
702
  Parameters
697
703
  ----------
698
- vars_int : np.array
704
+ vars_int: np.array
699
705
  The integer variable values, shape: (n_pop, n_vars_int)
700
- vars_float : np.array
706
+ vars_float: np.array
701
707
  The float variable values, shape: (n_pop, n_vars_float)
702
708
 
703
709
  Returns
704
710
  -------
705
- problem_results : Any
711
+ problem_results: Any
706
712
  The results of the variable application
707
713
  to the problem
708
714
 
@@ -715,20 +721,20 @@ class Problem(Base, metaclass=ABCMeta):
715
721
 
716
722
  Parameters
717
723
  ----------
718
- vars_int : np.array
724
+ vars_int: np.array
719
725
  The integer variable values, shape: (n_vars_int,)
720
- vars_float : np.array
726
+ vars_float: np.array
721
727
  The float variable values, shape: (n_vars_float,)
722
- ret_prob_res : bool
728
+ ret_prob_res: bool
723
729
  Flag for additionally returning of problem results
724
730
 
725
731
  Returns
726
732
  -------
727
- objs : np.array
733
+ objs: np.array
728
734
  The objective function values, shape: (n_objectives,)
729
- con : np.array
735
+ con: np.array
730
736
  The constraints values, shape: (n_constraints,)
731
- prob_res : object, optional
737
+ prob_res: object, optional
732
738
  The problem results
733
739
 
734
740
  """
@@ -763,20 +769,20 @@ class Problem(Base, metaclass=ABCMeta):
763
769
 
764
770
  Parameters
765
771
  ----------
766
- vars_int : np.array
772
+ vars_int: np.array
767
773
  The integer variable values, shape: (n_pop, n_vars_int)
768
- vars_float : np.array
774
+ vars_float: np.array
769
775
  The float variable values, shape: (n_pop, n_vars_float)
770
- ret_prob_res : bool
776
+ ret_prob_res: bool
771
777
  Flag for additionally returning of problem results
772
778
 
773
779
  Returns
774
780
  -------
775
- objs : np.array
781
+ objs: np.array
776
782
  The objective function values, shape: (n_pop, n_objectives)
777
- cons : np.array
783
+ cons: np.array
778
784
  The constraints values, shape: (n_pop, n_constraints)
779
- prob_res : object, optional
785
+ prob_res: object, optional
780
786
  The problem results
781
787
 
782
788
  """
@@ -835,14 +841,14 @@ class Problem(Base, metaclass=ABCMeta):
835
841
 
836
842
  Parameters
837
843
  ----------
838
- constraint_values : np.array
844
+ constraint_values: np.array
839
845
  The constraint values, shape: (n_components,)
840
- verbosity : int
846
+ verbosity: int
841
847
  The verbosity level, 0 = silent
842
848
 
843
849
  Returns
844
850
  -------
845
- values : np.array
851
+ values: np.array
846
852
  The boolean result, shape: (n_components,)
847
853
 
848
854
  """
@@ -864,14 +870,14 @@ class Problem(Base, metaclass=ABCMeta):
864
870
 
865
871
  Parameters
866
872
  ----------
867
- constraint_values : np.array
873
+ constraint_values: np.array
868
874
  The constraint values, shape: (n_pop, n_components)
869
- verbosity : int
875
+ verbosity: int
870
876
  The verbosity level, 0 = silent
871
877
 
872
878
  Returns
873
879
  -------
874
- values : np.array
880
+ values: np.array
875
881
  The boolean result, shape: (n_pop, n_components)
876
882
 
877
883
  """
@@ -893,21 +899,21 @@ class Problem(Base, metaclass=ABCMeta):
893
899
 
894
900
  Parameters
895
901
  ----------
896
- vars_int : np.array
902
+ vars_int: np.array
897
903
  The optimal integer variable values, shape: (n_vars_int,)
898
- vars_float : np.array
904
+ vars_float: np.array
899
905
  The optimal float variable values, shape: (n_vars_float,)
900
- verbosity : int
906
+ verbosity: int
901
907
  The verbosity level, 0 = silent
902
908
 
903
909
  Returns
904
910
  -------
905
- problem_results : Any
911
+ problem_results: Any
906
912
  The results of the variable application
907
913
  to the problem
908
- objs : np.array
914
+ objs: np.array
909
915
  The objective function values, shape: (n_objectives,)
910
- cons : np.array
916
+ cons: np.array
911
917
  The constraints values, shape: (n_constraints,)
912
918
 
913
919
  """
@@ -927,23 +933,23 @@ class Problem(Base, metaclass=ABCMeta):
927
933
 
928
934
  Parameters
929
935
  ----------
930
- vars_int : np.array
936
+ vars_int: np.array
931
937
  The integer variable values of the final
932
938
  generation, shape: (n_pop, n_vars_int)
933
- vars_float : np.array
939
+ vars_float: np.array
934
940
  The float variable values of the final
935
941
  generation, shape: (n_pop, n_vars_float)
936
- verbosity : int
942
+ verbosity: int
937
943
  The verbosity level, 0 = silent
938
944
 
939
945
  Returns
940
946
  -------
941
- problem_results : Any
947
+ problem_results: Any
942
948
  The results of the variable application
943
949
  to the problem
944
- objs : np.array
950
+ objs: np.array
945
951
  The final objective function values, shape: (n_pop, n_components)
946
- cons : np.array
952
+ cons: np.array
947
953
  The final constraint values, shape: (n_pop, n_constraints)
948
954
 
949
955
  """
@@ -963,14 +969,14 @@ class Problem(Base, metaclass=ABCMeta):
963
969
 
964
970
  Parameters
965
971
  ----------
966
- prob_res_list : list
972
+ prob_res_list: list
967
973
  The problem results
968
- coeffs : numpy.ndarray
974
+ coeffs: numpy.ndarray
969
975
  The coefficients
970
976
 
971
977
  Returns
972
978
  -------
973
- prob_res : object
979
+ prob_res: object
974
980
  The weighted sum of problem results
975
981
 
976
982
  """
@@ -987,14 +993,14 @@ class Problem(Base, metaclass=ABCMeta):
987
993
 
988
994
  Parameters
989
995
  ----------
990
- prob_res_list : list
996
+ prob_res_list: list
991
997
  The problem results
992
- coeffs : numpy.ndarray
998
+ coeffs: numpy.ndarray
993
999
  The coefficients
994
1000
 
995
1001
  Returns
996
1002
  -------
997
- prob_res : object
1003
+ prob_res: object
998
1004
  The weighted sum of problem results
999
1005
 
1000
1006
  """
@@ -1011,14 +1017,20 @@ class ProblemDefaultFunc(OptFunctionList):
1011
1017
  The default function of a problem
1012
1018
  for gradient calculations.
1013
1019
 
1014
- Parameters
1015
- ----------
1016
- problem : iwopy.core.Problem
1017
- The problem
1020
+ :group: core
1018
1021
 
1019
1022
  """
1020
1023
 
1021
1024
  def __init__(self, problem):
1025
+ """
1026
+ Constructor
1027
+
1028
+ Parameters
1029
+ ----------
1030
+ problem: iwopy.core.Problem
1031
+ The problem
1032
+
1033
+ """
1022
1034
  super().__init__(problem, "objs_cons")
1023
1035
  for f in problem.objs.functions:
1024
1036
  self.append(f)
@@ -1 +1,4 @@
1
+ from .algos import AlgoFactory
2
+ from .imports import load
1
3
  from .optimizer import Optimizer_pygmo
4
+ from .problem import UDP
@@ -4,6 +4,9 @@ from . import imports
4
4
  class AlgoFactory:
5
5
  """
6
6
  Creates a pygmo algorithm from parameters
7
+
8
+ :group: interfaces.pygmo
9
+
7
10
  """
8
11
 
9
12
  @staticmethod
@@ -15,9 +18,9 @@ class AlgoFactory:
15
18
 
16
19
  Parameters
17
20
  ----------
18
- type : str
21
+ type: str
19
22
  Name of the driver type
20
- kwargs : dict, optional
23
+ kwargs: dict, optional
21
24
  Additional parameters, type dependent
22
25
 
23
26
  Returns
@@ -5,6 +5,17 @@ loaded = False
5
5
 
6
6
 
7
7
  def load(verbosity=1):
8
+ """
9
+ Loads the pygmo package dynamically
10
+
11
+ Parameters
12
+ ----------
13
+ verbosity: int
14
+ The verbosity level, 0 = silent
15
+
16
+ :group: interfaces.pygmo
17
+
18
+ """
8
19
 
9
20
  global pygmo, loaded
10
21
 
@@ -12,33 +12,39 @@ class Optimizer_pygmo(Optimizer):
12
12
  Interface to the pygmo optimizers
13
13
  for serial runs.
14
14
 
15
- Parameters
16
- ----------
17
- problem : iwopy.Problem
18
- The problem to optimize
19
- problem_pars : dict
20
- Parameters for the problem
21
- algo_pars : dict
22
- Parameters for the alorithm
23
- setup_pars : dict
24
- Parameters for the calculation setup
25
-
26
15
  Attributes
27
16
  ----------
28
- problem_pars : dict
17
+ problem_pars: dict
29
18
  Parameters for the problem
30
- algo_pars : dict
19
+ algo_pars: dict
31
20
  Parameters for the alorithm
32
- setup_pars : dict
21
+ setup_pars: dict
33
22
  Parameters for the calculation setup
34
- udp : iwopy.interfaces.imports.pygmo.UDA
23
+ udp: iwopy.interfaces.imports.pygmo.UDA
35
24
  The pygmo problem
36
- algo : imports.pygmo.algo
25
+ algo: imports.pygmo.algo
37
26
  The pygmo algorithm
38
27
 
28
+ :group: interfaces.pygmo
29
+
39
30
  """
40
31
 
41
32
  def __init__(self, problem, problem_pars, algo_pars, setup_pars={}):
33
+ """
34
+ Constructor
35
+
36
+ Parameters
37
+ ----------
38
+ problem: iwopy.Problem
39
+ The problem to optimize
40
+ problem_pars: dict
41
+ Parameters for the problem
42
+ algo_pars: dict
43
+ Parameters for the alorithm
44
+ setup_pars: dict
45
+ Parameters for the calculation setup
46
+
47
+ """
42
48
  super().__init__(problem)
43
49
 
44
50
  imports.load()
@@ -56,7 +62,7 @@ class Optimizer_pygmo(Optimizer):
56
62
 
57
63
  Parameters
58
64
  ----------
59
- verbosity : int
65
+ verbosity: int
60
66
  The verbosity level, 0 = silent
61
67
 
62
68
  """
@@ -113,7 +119,7 @@ class Optimizer_pygmo(Optimizer):
113
119
 
114
120
  Parameters
115
121
  ----------
116
- verbosity : int
122
+ verbosity: int
117
123
  The verbosity level, 0 = silent
118
124
 
119
125
  Returns