ista-daslab-optimizers 1.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ista_daslab_optimizers/__init__.py +6 -0
- ista_daslab_optimizers/acdc/__init__.py +5 -0
- ista_daslab_optimizers/acdc/acdc.py +387 -0
- ista_daslab_optimizers/acdc/wd_scheduler.py +31 -0
- ista_daslab_optimizers/dense_mfac/__init__.py +5 -0
- ista_daslab_optimizers/dense_mfac/dense_core_mfac.py +164 -0
- ista_daslab_optimizers/dense_mfac/dense_mfac.py +93 -0
- ista_daslab_optimizers/fft_low_rank/dct_adamw.py +351 -0
- ista_daslab_optimizers/fft_low_rank/fft_projector.py +192 -0
- ista_daslab_optimizers/fft_low_rank/trion.py +242 -0
- ista_daslab_optimizers/ista_optimizer/__init__.py +5 -0
- ista_daslab_optimizers/ista_optimizer/ista_optimizer.py +36 -0
- ista_daslab_optimizers/micro_adam/__init__.py +5 -0
- ista_daslab_optimizers/micro_adam/micro_adam.py +402 -0
- ista_daslab_optimizers/sparse_mfac/__init__.py +7 -0
- ista_daslab_optimizers/sparse_mfac/sparse_core_mfac_w_ef.py +226 -0
- ista_daslab_optimizers/sparse_mfac/sparse_mfac.py +87 -0
- ista_daslab_optimizers/tools.py +218 -0
- ista_daslab_optimizers/utils/dct.py +45 -0
- ista_daslab_optimizers/utils/global_cache.py +45 -0
- ista_daslab_optimizers/utils/matrix_storage.py +58 -0
- ista_daslab_optimizers/utils/newton_schulz_triton.py +374 -0
- ista_daslab_optimizers/utils/quantizers.py +71 -0
- ista_daslab_optimizers/utils/schedulers.py +41 -0
- ista_daslab_optimizers-1.1.8.dist-info/METADATA +333 -0
- ista_daslab_optimizers-1.1.8.dist-info/RECORD +29 -0
- ista_daslab_optimizers-1.1.8.dist-info/WHEEL +5 -0
- ista_daslab_optimizers-1.1.8.dist-info/licenses/LICENSE +201 -0
- ista_daslab_optimizers-1.1.8.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,87 @@
|
|
|
1
|
+
import wandb
|
|
2
|
+
import torch
|
|
3
|
+
from .sparse_core_mfac_w_ef import SparseCoreMFACwithEF
|
|
4
|
+
from ..tools import get_first_device, get_gpus, get_weights_and_gradients, update_model, get_gpu_mem_usage
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class SparseMFAC(torch.optim.Optimizer):
|
|
8
|
+
def __init__(self, params, lr: float, damp: float, m: int, k_init: float, weight_decay: float, use_bf16: bool):
|
|
9
|
+
super(SparseMFAC, self).__init__(params, dict(lr=lr, weight_decay=weight_decay))
|
|
10
|
+
self.lr = lr
|
|
11
|
+
self.weight_decay = weight_decay
|
|
12
|
+
self.m = m
|
|
13
|
+
self.damp = damp
|
|
14
|
+
self.use_bf16 = use_bf16
|
|
15
|
+
self.k_init = k_init
|
|
16
|
+
|
|
17
|
+
self.device = get_first_device()
|
|
18
|
+
self.d = sum([p.numel() for group in self.param_groups for p in group['params']])
|
|
19
|
+
|
|
20
|
+
##### Sparse M-FAC preconditioner
|
|
21
|
+
self.core_mfac = SparseCoreMFACwithEF(
|
|
22
|
+
m=self.m,
|
|
23
|
+
d=self.d,
|
|
24
|
+
k_init=self.k_init,
|
|
25
|
+
dev=self.device,
|
|
26
|
+
gpus=[self.device] if torch.distributed.is_initialized() else get_gpus(),
|
|
27
|
+
damp=damp,
|
|
28
|
+
use_bf16=use_bf16)
|
|
29
|
+
|
|
30
|
+
##### scalar variables
|
|
31
|
+
self.steps = 0
|
|
32
|
+
self.log_interval = 100
|
|
33
|
+
self.grad_norms_sum = 0
|
|
34
|
+
|
|
35
|
+
self.wandb_data = dict()
|
|
36
|
+
self.cos = torch.nn.CosineSimilarity(dim=0, eps=1e-6)
|
|
37
|
+
|
|
38
|
+
@torch.no_grad()
|
|
39
|
+
def step(self, closure=None):
|
|
40
|
+
self.steps += 1
|
|
41
|
+
|
|
42
|
+
loss = None
|
|
43
|
+
if closure is not None:
|
|
44
|
+
with torch.enable_grad():
|
|
45
|
+
loss = closure()
|
|
46
|
+
|
|
47
|
+
##################################################
|
|
48
|
+
########## [1] GET GRADIENT
|
|
49
|
+
##################################################
|
|
50
|
+
g_dense = get_weights_and_gradients(self.param_groups, get_weights=False, get_grad=True, grad_bf16=self.use_bf16)
|
|
51
|
+
norm_g_dense = g_dense.norm(p=2)
|
|
52
|
+
self.grad_norms_sum += norm_g_dense
|
|
53
|
+
|
|
54
|
+
##################################################
|
|
55
|
+
########## [2] PRECONDITION
|
|
56
|
+
##################################################
|
|
57
|
+
update = self.core_mfac.apply_ef_then_update_buffer_then_precondition(g_dense)
|
|
58
|
+
|
|
59
|
+
##################################################
|
|
60
|
+
########## [3] UPDATE THE MODEL
|
|
61
|
+
##################################################
|
|
62
|
+
lr = self.param_groups[0]['lr']
|
|
63
|
+
|
|
64
|
+
update_model(
|
|
65
|
+
params=self.param_groups,
|
|
66
|
+
update=update,
|
|
67
|
+
weight_decay=self.weight_decay,
|
|
68
|
+
alpha=None,
|
|
69
|
+
multiply_wd_w_lr=True)
|
|
70
|
+
|
|
71
|
+
##################################################
|
|
72
|
+
########## LOGS
|
|
73
|
+
##################################################
|
|
74
|
+
if self.log_interval > 0 and self.steps % self.log_interval == 0:
|
|
75
|
+
norm_error = self.core_mfac.error.norm(p=2)
|
|
76
|
+
self.wandb_data.update({
|
|
77
|
+
'epoch/step': self.steps,
|
|
78
|
+
'epoch/norm_g': norm_g_dense,
|
|
79
|
+
'epoch/norm_error': norm_error,
|
|
80
|
+
'epoch/ef_norm_div_grad_norm_sum': norm_error / self.grad_norms_sum,
|
|
81
|
+
'epoch/norm_u': update.norm(p=2),
|
|
82
|
+
'epoch/gpu_mem_usage': get_gpu_mem_usage(),
|
|
83
|
+
})
|
|
84
|
+
self.wandb_data.update(self.core_mfac.wandb_data)
|
|
85
|
+
wandb.log(self.wandb_data)
|
|
86
|
+
|
|
87
|
+
return loss
|
|
@@ -0,0 +1,218 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import gpustat
|
|
3
|
+
import torch
|
|
4
|
+
from enum import Enum
|
|
5
|
+
from importlib import import_module
|
|
6
|
+
import ista_daslab_cuda_tools
|
|
7
|
+
|
|
8
|
+
def get_cuda_capability(device=0):
|
|
9
|
+
cc = torch.cuda.get_device_capability(device) # tuple, for example (8, 6) for CUDA Capability 8.6
|
|
10
|
+
return f'{cc[0]}{cc[1]}'
|
|
11
|
+
|
|
12
|
+
class CopyDirection(Enum):
|
|
13
|
+
k2d = 0
|
|
14
|
+
d2k = 1
|
|
15
|
+
|
|
16
|
+
class Strategy(Enum):
|
|
17
|
+
"""Apply Top-K globally"""
|
|
18
|
+
GLOBAL = 1
|
|
19
|
+
|
|
20
|
+
"""Apply Top-K in blocks of specific size"""
|
|
21
|
+
BLOCK = 2
|
|
22
|
+
|
|
23
|
+
@staticmethod
|
|
24
|
+
def factory(name: str):
|
|
25
|
+
if name == 'gl': return Strategy.GLOBAL
|
|
26
|
+
if name == 'bl': return Strategy.BLOCK
|
|
27
|
+
raise RuntimeError('Invalid strategy name')
|
|
28
|
+
|
|
29
|
+
def get_first_device():
|
|
30
|
+
if not torch.cuda.is_available():
|
|
31
|
+
return torch.device('cpu')
|
|
32
|
+
if torch.distributed.is_initialized():
|
|
33
|
+
return torch.device(f'cuda:{torch.distributed.get_rank()}')
|
|
34
|
+
return torch.device('cuda:0')
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def get_gpus():
|
|
38
|
+
if not torch.cuda.is_available():
|
|
39
|
+
return ['cpu']
|
|
40
|
+
device = get_first_device()
|
|
41
|
+
if torch.cuda.device_count() == 1:
|
|
42
|
+
return [device]
|
|
43
|
+
|
|
44
|
+
return [
|
|
45
|
+
torch.device(f'cuda:{i}')
|
|
46
|
+
for i in range(len(os.environ['CUDA_VISIBLE_DEVICES'].split(',')))
|
|
47
|
+
]
|
|
48
|
+
|
|
49
|
+
def get_gpu_mem_usage():
|
|
50
|
+
"""
|
|
51
|
+
This method returns the GPU memory usage for the current process.
|
|
52
|
+
It uses gpustat to query the GPU used by the current process (using CUDA_VISIBLE_DEVICES)
|
|
53
|
+
|
|
54
|
+
GPUSTAT usage:
|
|
55
|
+
stat = gpustat.new_query().gpus # this is a list containing information about each GPU indexed from 0 to 7
|
|
56
|
+
stat[i] (GPU #i) has the following keys:
|
|
57
|
+
- 'index'
|
|
58
|
+
- 'uuid'
|
|
59
|
+
- 'name'
|
|
60
|
+
- 'temperature.gpu'
|
|
61
|
+
- 'fan.speed'
|
|
62
|
+
- 'utilization.gpu'
|
|
63
|
+
- 'utilization.enc'
|
|
64
|
+
- 'utilization.dec'
|
|
65
|
+
- 'power.draw'
|
|
66
|
+
- 'enforced.power.limit'
|
|
67
|
+
- 'memory.used'
|
|
68
|
+
- 'memory.total'
|
|
69
|
+
- 'processes'
|
|
70
|
+
Among these keys, only the key 'processes' is used here.
|
|
71
|
+
stat[i].processes is a list of dicts, where each dict contains information about each process currently running on the GPU #i
|
|
72
|
+
- 'username'
|
|
73
|
+
- 'command'
|
|
74
|
+
- 'full_command'
|
|
75
|
+
- 'gpu_memory_usage'
|
|
76
|
+
- 'cpu_percent'
|
|
77
|
+
- 'cpu_memory_usage'
|
|
78
|
+
- 'pid'
|
|
79
|
+
"""
|
|
80
|
+
gpus = gpustat.new_query().gpus
|
|
81
|
+
gids = list(map(int, os.environ['CUDA_VISIBLE_DEVICES'].split(',')))
|
|
82
|
+
gpu_mem = sum([int(proc['gpu_memory_usage']) for gid in gids for proc in gpus[gid]['processes'] if int(proc['pid']) == os.getpid()])
|
|
83
|
+
return gpu_mem
|
|
84
|
+
|
|
85
|
+
def block_split(model_size, block_size):
|
|
86
|
+
if model_size < block_size:
|
|
87
|
+
return 1, model_size
|
|
88
|
+
### this is the shorter version that only returns the number of full blocks of size "block_size"
|
|
89
|
+
### and the starting position of the last and smallest block
|
|
90
|
+
blocks_count = int(model_size / block_size)
|
|
91
|
+
start_index_last_block = model_size - model_size % block_size
|
|
92
|
+
return blocks_count, start_index_last_block
|
|
93
|
+
|
|
94
|
+
def get_weights_and_gradients(params, get_weights, get_grad=True, grad_bf16=False):
|
|
95
|
+
"""
|
|
96
|
+
This method returns:
|
|
97
|
+
- w: the raw weights collected from the model if get_weights=True
|
|
98
|
+
- g: the gradients (without WD added)
|
|
99
|
+
"""
|
|
100
|
+
w, g = [], []
|
|
101
|
+
for group in params:
|
|
102
|
+
for p in group['params']:
|
|
103
|
+
if p.grad is None or not p.requires_grad:
|
|
104
|
+
continue
|
|
105
|
+
|
|
106
|
+
if get_weights:
|
|
107
|
+
w.append(p.reshape(-1))
|
|
108
|
+
if get_grad:
|
|
109
|
+
if grad_bf16:
|
|
110
|
+
if p.grad.dtype != torch.bfloat16:
|
|
111
|
+
g.append(p.grad.reshape(-1).to(dtype=torch.bfloat16))
|
|
112
|
+
else:
|
|
113
|
+
g.append(p.grad.reshape(-1))
|
|
114
|
+
else:
|
|
115
|
+
g.append(p.grad.reshape(-1))
|
|
116
|
+
|
|
117
|
+
if get_weights and get_grad:
|
|
118
|
+
return torch.cat(w), torch.cat(g)
|
|
119
|
+
if get_weights:
|
|
120
|
+
return torch.cat(w)
|
|
121
|
+
if get_grad:
|
|
122
|
+
return torch.cat(g)
|
|
123
|
+
raise RuntimeError(f'invalid combination of parameters: {get_weights=}, {get_grad=}')
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def update_model(params, update, weight_decay=0, alpha=None, multiply_wd_w_lr=False):
|
|
127
|
+
"""
|
|
128
|
+
Applies the `update` to the model
|
|
129
|
+
When alpha=None, alpha is set to lr in the group
|
|
130
|
+
Returns the shrinking factor for the weights
|
|
131
|
+
"""
|
|
132
|
+
count = 0
|
|
133
|
+
for group in params:
|
|
134
|
+
lr = group['lr']
|
|
135
|
+
wd = group.get('weight_decay', weight_decay) # if the param groups do not have weight decay, then use the externally provided one
|
|
136
|
+
for p in group['params']:
|
|
137
|
+
if p.grad is None:
|
|
138
|
+
continue
|
|
139
|
+
u = update[count:(count + p.numel())].reshape(p.shape).to(p.device)
|
|
140
|
+
if wd > 0:
|
|
141
|
+
if multiply_wd_w_lr:
|
|
142
|
+
p.mul_(1 - lr * wd)
|
|
143
|
+
else:
|
|
144
|
+
p.mul_(1 - wd)
|
|
145
|
+
p.add_(u, alpha=-lr if alpha is None else alpha)
|
|
146
|
+
count += p.numel()
|
|
147
|
+
|
|
148
|
+
class KernelVersionsManager:
|
|
149
|
+
def __init__(self, version_SP, version_LCG, m, d, d_block_size):
|
|
150
|
+
self.version_SP = version_SP
|
|
151
|
+
self.version_LCG = version_LCG
|
|
152
|
+
self.m = m
|
|
153
|
+
self.d = d
|
|
154
|
+
self.d_block_size = d_block_size
|
|
155
|
+
|
|
156
|
+
self.BLOCK_INDEX = 0
|
|
157
|
+
self.THREAD_INDEX = 1
|
|
158
|
+
|
|
159
|
+
# set number of blocks (initially None) based on the number of threads (see page 80 in the PhD #8)
|
|
160
|
+
# if self.d > 300_000_000:
|
|
161
|
+
# print(f'Model size is larger than 300M. Switching SP version from {self.version_SP} to 252')
|
|
162
|
+
# self.version_SP = 252
|
|
163
|
+
|
|
164
|
+
self.SP_BLOCKS_THREADS = {
|
|
165
|
+
23: [self.m, self.m],
|
|
166
|
+
# 24: [1024, 1024],
|
|
167
|
+
# 251: [None, 1024],
|
|
168
|
+
# 252: [None, self.m],
|
|
169
|
+
# 261: [None, 128],
|
|
170
|
+
# 262: [None, 128],
|
|
171
|
+
# 272: [None, 1024],
|
|
172
|
+
}
|
|
173
|
+
|
|
174
|
+
self.LCG_BLOCKS_THREADS = {
|
|
175
|
+
# 42: [68, 256],
|
|
176
|
+
# 43: [117, 32],
|
|
177
|
+
51: [None, 1024],
|
|
178
|
+
# 524: [None, 128],
|
|
179
|
+
# 53: [None, 128],
|
|
180
|
+
# 54: [None, 128],
|
|
181
|
+
}
|
|
182
|
+
|
|
183
|
+
self.set_blocks_count(self.SP_BLOCKS_THREADS, self.version_SP, op='SP')
|
|
184
|
+
self.set_blocks_count(self.LCG_BLOCKS_THREADS, self.version_LCG, op='LCG')
|
|
185
|
+
# self.SP_BLOCKS_THREADS[self.version_SP][0] = 10
|
|
186
|
+
|
|
187
|
+
def set_blocks_count(self, op_blocks_threads, op_version, op):
|
|
188
|
+
"""
|
|
189
|
+
Safety measure: for small models, there might be too many thread blocks launched and most of them will process data out of bounds of arrays out, indices and values
|
|
190
|
+
"""
|
|
191
|
+
def div_inc(a, b):
|
|
192
|
+
r = a // b
|
|
193
|
+
return (r + 1) if (a % b > 0) else r
|
|
194
|
+
|
|
195
|
+
if op_blocks_threads[op_version][self.BLOCK_INDEX] is None:
|
|
196
|
+
blocks_count = div_inc(self.d, self.d_block_size)
|
|
197
|
+
op_max_blocks = ista_daslab_cuda_tools.get_sm_count()
|
|
198
|
+
op_required_blocks = min(blocks_count, op_max_blocks)
|
|
199
|
+
if op_required_blocks < op_max_blocks:
|
|
200
|
+
print(f'Maximum number of blocks for {op} is {op_max_blocks}, but this model requires only {op_required_blocks}')
|
|
201
|
+
# return op_required_blocks
|
|
202
|
+
op_blocks_threads[op_version][self.BLOCK_INDEX] = op_required_blocks
|
|
203
|
+
op_blocks_threads[op_version][self.BLOCK_INDEX] = op_max_blocks
|
|
204
|
+
|
|
205
|
+
print(f'{op_blocks_threads=}, {op_version=}, {op=}, {op_blocks_threads[op_version][self.BLOCK_INDEX]=}')
|
|
206
|
+
|
|
207
|
+
def get_SP_blocks(self):
|
|
208
|
+
return self.SP_BLOCKS_THREADS[self.version_SP][self.BLOCK_INDEX]
|
|
209
|
+
|
|
210
|
+
def get_SP_threads(self):
|
|
211
|
+
return self.SP_BLOCKS_THREADS[self.version_SP][self.THREAD_INDEX]
|
|
212
|
+
|
|
213
|
+
def get_LCG_blocks(self):
|
|
214
|
+
return self.LCG_BLOCKS_THREADS[self.version_LCG][self.BLOCK_INDEX]
|
|
215
|
+
|
|
216
|
+
def get_LCG_threads(self):
|
|
217
|
+
return self.LCG_BLOCKS_THREADS[self.version_LCG][self.THREAD_INDEX]
|
|
218
|
+
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import math
|
|
3
|
+
|
|
4
|
+
from ista_daslab_optimizers.utils.global_cache import GlobalCache
|
|
5
|
+
|
|
6
|
+
def dct3_matrix(n, dtype, device):
|
|
7
|
+
"""
|
|
8
|
+
This function returns the orthogonal transformation for Discrete Cosine Transform (DCT-3).
|
|
9
|
+
"""
|
|
10
|
+
lin = torch.arange(n)
|
|
11
|
+
I = lin.repeat(n, 1).to(torch.float)
|
|
12
|
+
Q = math.sqrt(2 / n) * torch.cos(torch.pi * (I.t() * (2. * I + 1.)) / (2. * n))
|
|
13
|
+
del lin, I
|
|
14
|
+
Q[0, :] *= math.sqrt(0.5)
|
|
15
|
+
return Q.to(device=device, dtype=dtype)
|
|
16
|
+
|
|
17
|
+
def dct_type2_makhoul(X):
|
|
18
|
+
N = X.shape[1]
|
|
19
|
+
|
|
20
|
+
if GlobalCache.contains(category='perm', key=N):
|
|
21
|
+
perm = GlobalCache.get(category='perm', key=N)
|
|
22
|
+
else:
|
|
23
|
+
even_idx = torch.arange(0, N, 2) # 0, 2, 4, ...
|
|
24
|
+
odd_idx = torch.arange(1, N, 2).flip(0) # last odd → first odd
|
|
25
|
+
perm = torch.cat([even_idx, odd_idx]).to(X.device)
|
|
26
|
+
|
|
27
|
+
GlobalCache.add(category='perm', key=N, item=perm)
|
|
28
|
+
#
|
|
29
|
+
# X_input = X[:, perm]
|
|
30
|
+
# if X_input.dtype != torch.float:
|
|
31
|
+
# X_input = X_input.to(torch.float)
|
|
32
|
+
# X_fft = torch.fft.fft(X_input, dim=1)
|
|
33
|
+
|
|
34
|
+
X_fft = torch.fft.fft(X[:, perm].contiguous(), dim=1)
|
|
35
|
+
|
|
36
|
+
if GlobalCache.contains(category='twiddle', key=N):
|
|
37
|
+
W = GlobalCache.get(category='twiddle', key=N)
|
|
38
|
+
else:
|
|
39
|
+
W = 2 * torch.exp((-1j * torch.pi * torch.arange(N, device=X.device) / (2 * N)))
|
|
40
|
+
W[0] /= math.sqrt(4 * N)
|
|
41
|
+
W[1:] /= math.sqrt(2 * N)
|
|
42
|
+
|
|
43
|
+
GlobalCache.add(category='twiddle', key=N, item=W.reshape(1, N))
|
|
44
|
+
|
|
45
|
+
return (X_fft * W).real
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
class GlobalCache:
|
|
2
|
+
_instance = None
|
|
3
|
+
|
|
4
|
+
@staticmethod
|
|
5
|
+
def init():
|
|
6
|
+
if GlobalCache._instance is None:
|
|
7
|
+
GlobalCache._instance = GlobalCache()
|
|
8
|
+
|
|
9
|
+
@staticmethod
|
|
10
|
+
def contains(category, key):
|
|
11
|
+
return GlobalCache.get_instance()._contains(category, key)
|
|
12
|
+
|
|
13
|
+
@staticmethod
|
|
14
|
+
def get_instance():
|
|
15
|
+
if GlobalCache._instance is None:
|
|
16
|
+
GlobalCache.init()
|
|
17
|
+
return GlobalCache._instance
|
|
18
|
+
|
|
19
|
+
@staticmethod
|
|
20
|
+
def get(category, key):
|
|
21
|
+
return GlobalCache.get_instance()._get(category, key)
|
|
22
|
+
|
|
23
|
+
@staticmethod
|
|
24
|
+
def add(category, key, item):
|
|
25
|
+
return GlobalCache.get_instance()._add(category, key, item)
|
|
26
|
+
|
|
27
|
+
def __init__(self):
|
|
28
|
+
self.storage = dict()
|
|
29
|
+
|
|
30
|
+
def _contains(self, category, key):
|
|
31
|
+
if category not in self.storage:
|
|
32
|
+
return False
|
|
33
|
+
return key in self.storage[category]
|
|
34
|
+
|
|
35
|
+
def _add(self, category, key, item):
|
|
36
|
+
if category not in self.storage:
|
|
37
|
+
self.storage[category] = { key: item }
|
|
38
|
+
elif key not in self.storage[category]:
|
|
39
|
+
self.storage[category][key] = item
|
|
40
|
+
|
|
41
|
+
def _get(self, category, key):
|
|
42
|
+
# print(self.storage)
|
|
43
|
+
if self._contains(category, key):
|
|
44
|
+
return self.storage[category][key]
|
|
45
|
+
raise ValueError(f'GlobalCache does not contain category {category} and/or key {key}')
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.distributed as dist
|
|
3
|
+
from memory_efficient_optimizers.utils.dct import dct3_matrix
|
|
4
|
+
|
|
5
|
+
PROJ_DCT = 'dct'
|
|
6
|
+
PROJ_HDM = 'hdm'
|
|
7
|
+
|
|
8
|
+
ALL_PROJ = [
|
|
9
|
+
PROJ_DCT, # DCT projection
|
|
10
|
+
PROJ_HDM, # Hadamard projection
|
|
11
|
+
]
|
|
12
|
+
|
|
13
|
+
class MatrixStorage:
|
|
14
|
+
"""
|
|
15
|
+
This singleton class stores a dictionary where:
|
|
16
|
+
- keys = the matrix size
|
|
17
|
+
- values = the corresponding orthogonal matrix of DCT-3 or Hadamard transforms of size stored in the key
|
|
18
|
+
"""
|
|
19
|
+
_instance = None
|
|
20
|
+
|
|
21
|
+
@staticmethod
|
|
22
|
+
def init():
|
|
23
|
+
if MatrixStorage._instance is None:
|
|
24
|
+
MatrixStorage._instance = MatrixStorage()
|
|
25
|
+
|
|
26
|
+
@staticmethod
|
|
27
|
+
def get_instance():
|
|
28
|
+
if MatrixStorage._instance is None:
|
|
29
|
+
MatrixStorage.init()
|
|
30
|
+
return MatrixStorage._instance
|
|
31
|
+
|
|
32
|
+
@staticmethod
|
|
33
|
+
def get_matrix(size, proj, dtype):
|
|
34
|
+
return MatrixStorage.get_instance()._get_matrix(size, proj, dtype)
|
|
35
|
+
|
|
36
|
+
@staticmethod
|
|
37
|
+
def add_matrix(size, proj, dtype):
|
|
38
|
+
return MatrixStorage.get_instance()._add_matrix(size, proj, dtype)
|
|
39
|
+
|
|
40
|
+
def __init__(self):
|
|
41
|
+
self.storage = dict()
|
|
42
|
+
self.dtype = None
|
|
43
|
+
self.device = f'cuda:{dist.get_rank()}' if dist.is_initialized() else 'cuda:0'
|
|
44
|
+
|
|
45
|
+
def _add_matrix(self, size, proj, dtype):
|
|
46
|
+
if size not in self.storage:
|
|
47
|
+
if proj == PROJ_DCT:
|
|
48
|
+
self.storage[size] = dct3_matrix(size).to(device=self.device, dtype=dtype) # first row is zero
|
|
49
|
+
elif proj == PROJ_HDM:
|
|
50
|
+
self.storage[size] = hadamard_transform(torch.eye(size).to(device=self.device, dtype=dtype), scale=1./math.sqrt(size))
|
|
51
|
+
else:
|
|
52
|
+
raise RuntimeError(f'Projection {proj} is currently not supported!')
|
|
53
|
+
|
|
54
|
+
def _get_matrix(self, size, proj, dtype):
|
|
55
|
+
if size not in self.storage:
|
|
56
|
+
assert dtype is not None
|
|
57
|
+
self._add_matrix(size, proj, dtype)
|
|
58
|
+
return self.storage[size]
|