isage-benchmark-agent 0.1.0.1__cp311-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- isage_benchmark_agent-0.1.0.1.dist-info/METADATA +91 -0
- isage_benchmark_agent-0.1.0.1.dist-info/RECORD +51 -0
- isage_benchmark_agent-0.1.0.1.dist-info/WHEEL +5 -0
- isage_benchmark_agent-0.1.0.1.dist-info/entry_points.txt +2 -0
- isage_benchmark_agent-0.1.0.1.dist-info/licenses/LICENSE +21 -0
- isage_benchmark_agent-0.1.0.1.dist-info/top_level.txt +1 -0
- sage/__init__.py +0 -0
- sage/benchmark/__init__.py +0 -0
- sage/benchmark/benchmark_agent/__init__.py +108 -0
- sage/benchmark/benchmark_agent/__main__.py +177 -0
- sage/benchmark/benchmark_agent/acebench_loader.py +369 -0
- sage/benchmark/benchmark_agent/adapter_registry.py +3036 -0
- sage/benchmark/benchmark_agent/config/config_loader.py +176 -0
- sage/benchmark/benchmark_agent/config/default_config.yaml +24 -0
- sage/benchmark/benchmark_agent/config/planning_exp.yaml +34 -0
- sage/benchmark/benchmark_agent/config/timing_detection_exp.yaml +34 -0
- sage/benchmark/benchmark_agent/config/tool_selection_exp.yaml +32 -0
- sage/benchmark/benchmark_agent/data_paths.py +332 -0
- sage/benchmark/benchmark_agent/evaluation/__init__.py +217 -0
- sage/benchmark/benchmark_agent/evaluation/analyzers/__init__.py +11 -0
- sage/benchmark/benchmark_agent/evaluation/analyzers/planning_analyzer.py +111 -0
- sage/benchmark/benchmark_agent/evaluation/analyzers/timing_analyzer.py +135 -0
- sage/benchmark/benchmark_agent/evaluation/analyzers/tool_selection_analyzer.py +124 -0
- sage/benchmark/benchmark_agent/evaluation/evaluator.py +228 -0
- sage/benchmark/benchmark_agent/evaluation/metrics.py +650 -0
- sage/benchmark/benchmark_agent/evaluation/report_builder.py +217 -0
- sage/benchmark/benchmark_agent/evaluation/unified_tool_selection.py +602 -0
- sage/benchmark/benchmark_agent/experiments/__init__.py +63 -0
- sage/benchmark/benchmark_agent/experiments/base_experiment.py +263 -0
- sage/benchmark/benchmark_agent/experiments/method_comparison.py +742 -0
- sage/benchmark/benchmark_agent/experiments/planning_exp.py +262 -0
- sage/benchmark/benchmark_agent/experiments/timing_detection_exp.py +198 -0
- sage/benchmark/benchmark_agent/experiments/tool_selection_exp.py +250 -0
- sage/benchmark/benchmark_agent/scripts/__init__.py +26 -0
- sage/benchmark/benchmark_agent/scripts/experiments/__init__.py +40 -0
- sage/benchmark/benchmark_agent/scripts/experiments/exp_analysis_ablation.py +425 -0
- sage/benchmark/benchmark_agent/scripts/experiments/exp_analysis_error.py +400 -0
- sage/benchmark/benchmark_agent/scripts/experiments/exp_analysis_robustness.py +439 -0
- sage/benchmark/benchmark_agent/scripts/experiments/exp_analysis_scaling.py +565 -0
- sage/benchmark/benchmark_agent/scripts/experiments/exp_cross_dataset.py +406 -0
- sage/benchmark/benchmark_agent/scripts/experiments/exp_main_planning.py +315 -0
- sage/benchmark/benchmark_agent/scripts/experiments/exp_main_selection.py +344 -0
- sage/benchmark/benchmark_agent/scripts/experiments/exp_main_timing.py +270 -0
- sage/benchmark/benchmark_agent/scripts/experiments/exp_training_comparison.py +620 -0
- sage/benchmark/benchmark_agent/scripts/experiments/exp_utils.py +427 -0
- sage/benchmark/benchmark_agent/scripts/experiments/figure_generator.py +677 -0
- sage/benchmark/benchmark_agent/scripts/experiments/llm_service.py +332 -0
- sage/benchmark/benchmark_agent/scripts/experiments/run_paper1_experiments.py +627 -0
- sage/benchmark/benchmark_agent/scripts/experiments/sage_bench_cli.py +422 -0
- sage/benchmark/benchmark_agent/scripts/experiments/table_generator.py +430 -0
- sage/benchmark/benchmark_agent/tools_loader.py +212 -0
|
@@ -0,0 +1,677 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Figure Generator - 统一图表生成模块
|
|
3
|
+
|
|
4
|
+
为 Paper 1 所有实验生成一致风格的图表:
|
|
5
|
+
- 使用学术论文标准样式
|
|
6
|
+
- 支持 PDF + PNG 双格式输出
|
|
7
|
+
- 颜色方案对色盲友好
|
|
8
|
+
"""
|
|
9
|
+
|
|
10
|
+
from __future__ import annotations
|
|
11
|
+
|
|
12
|
+
from pathlib import Path
|
|
13
|
+
from typing import Any, Optional
|
|
14
|
+
|
|
15
|
+
try: # Support both `python -m experiments...` and standalone usage
|
|
16
|
+
from . import exp_utils as _exp_utils
|
|
17
|
+
except ImportError: # pragma: no cover - fallback for direct script execution
|
|
18
|
+
import exp_utils as _exp_utils # type: ignore
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
21
|
+
|
|
22
|
+
# =============================================================================
|
|
23
|
+
# 图表样式配置
|
|
24
|
+
# =============================================================================
|
|
25
|
+
|
|
26
|
+
# Matplotlib 样式设置
|
|
27
|
+
FIGURE_STYLE = {
|
|
28
|
+
"font.family": "serif",
|
|
29
|
+
"font.serif": ["Times New Roman", "DejaVu Serif"],
|
|
30
|
+
"font.size": 10,
|
|
31
|
+
"axes.titlesize": 12,
|
|
32
|
+
"axes.labelsize": 10,
|
|
33
|
+
"xtick.labelsize": 9,
|
|
34
|
+
"ytick.labelsize": 9,
|
|
35
|
+
"legend.fontsize": 9,
|
|
36
|
+
"figure.figsize": (8, 6),
|
|
37
|
+
"figure.dpi": 100,
|
|
38
|
+
"savefig.dpi": 300,
|
|
39
|
+
"savefig.format": "pdf",
|
|
40
|
+
"savefig.bbox": "tight",
|
|
41
|
+
"axes.grid": True,
|
|
42
|
+
"grid.alpha": 0.3,
|
|
43
|
+
}
|
|
44
|
+
|
|
45
|
+
# 颜色方案 (colorblind-friendly, based on ColorBrewer)
|
|
46
|
+
COLORS = {
|
|
47
|
+
# 主色调
|
|
48
|
+
"primary": "#1f77b4", # 蓝色
|
|
49
|
+
"secondary": "#ff7f0e", # 橙色
|
|
50
|
+
"tertiary": "#2ca02c", # 绿色
|
|
51
|
+
"quaternary": "#d62728", # 红色
|
|
52
|
+
"quinary": "#9467bd", # 紫色
|
|
53
|
+
# 语义色
|
|
54
|
+
"success": "#2ca02c",
|
|
55
|
+
"warning": "#ff7f0e",
|
|
56
|
+
"danger": "#d62728",
|
|
57
|
+
"info": "#1f77b4",
|
|
58
|
+
# 特殊用途
|
|
59
|
+
"target_line": "#7f7f7f", # 灰色目标线
|
|
60
|
+
"baseline": "#bcbd22", # 黄绿色 baseline
|
|
61
|
+
"best": "#17becf", # 青色最佳
|
|
62
|
+
}
|
|
63
|
+
|
|
64
|
+
# 策略颜色映射
|
|
65
|
+
STRATEGY_COLORS = {
|
|
66
|
+
# Timing
|
|
67
|
+
"rule_based": COLORS["primary"],
|
|
68
|
+
"llm_based": COLORS["secondary"],
|
|
69
|
+
"hybrid": COLORS["tertiary"],
|
|
70
|
+
"embedding": COLORS["quaternary"],
|
|
71
|
+
# Planning
|
|
72
|
+
"simple": COLORS["primary"],
|
|
73
|
+
"hierarchical": COLORS["secondary"],
|
|
74
|
+
"react": COLORS["quaternary"],
|
|
75
|
+
# Selection
|
|
76
|
+
"keyword": COLORS["primary"],
|
|
77
|
+
"gorilla": COLORS["quaternary"],
|
|
78
|
+
"dfsdt": COLORS["quinary"],
|
|
79
|
+
}
|
|
80
|
+
|
|
81
|
+
# 图表尺寸预设
|
|
82
|
+
FIGURE_SIZES = {
|
|
83
|
+
"single": (6, 4), # 单列
|
|
84
|
+
"double": (10, 4), # 双列
|
|
85
|
+
"wide": (12, 4), # 宽幅
|
|
86
|
+
"square": (6, 6), # 方形
|
|
87
|
+
"tall": (6, 8), # 高图
|
|
88
|
+
}
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
# =============================================================================
|
|
92
|
+
# 输出目录辅助函数
|
|
93
|
+
# =============================================================================
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
def get_figures_dir(output_dir: Optional[Path] = None) -> Path:
|
|
97
|
+
"""Delegate to exp_utils so legacy imports keep working."""
|
|
98
|
+
|
|
99
|
+
return _exp_utils.get_figures_dir(output_dir)
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
def get_tables_dir(output_dir: Optional[Path] = None) -> Path:
|
|
103
|
+
"""Delegate to exp_utils so legacy imports keep working."""
|
|
104
|
+
|
|
105
|
+
return _exp_utils.get_tables_dir(output_dir)
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
# =============================================================================
|
|
109
|
+
# 图表生成函数
|
|
110
|
+
# =============================================================================
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def setup_matplotlib():
|
|
114
|
+
"""设置 matplotlib 样式。"""
|
|
115
|
+
try:
|
|
116
|
+
import matplotlib.pyplot as plt
|
|
117
|
+
|
|
118
|
+
plt.rcParams.update(FIGURE_STYLE)
|
|
119
|
+
return plt
|
|
120
|
+
except ImportError:
|
|
121
|
+
print(" Warning: matplotlib not available")
|
|
122
|
+
return None
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def plot_challenge_comparison(
|
|
126
|
+
results: list[dict],
|
|
127
|
+
challenge: str,
|
|
128
|
+
metrics: list[str],
|
|
129
|
+
target: float,
|
|
130
|
+
output_path: Optional[Path] = None,
|
|
131
|
+
title: Optional[str] = None,
|
|
132
|
+
) -> Any:
|
|
133
|
+
"""
|
|
134
|
+
绘制单个 Challenge 的策略对比图。
|
|
135
|
+
|
|
136
|
+
Args:
|
|
137
|
+
results: [{"strategy": str, "metrics": {"accuracy": 0.9, ...}}, ...]
|
|
138
|
+
challenge: 挑战名称
|
|
139
|
+
metrics: 要展示的指标列表
|
|
140
|
+
target: 目标线
|
|
141
|
+
output_path: 输出路径
|
|
142
|
+
title: 图表标题
|
|
143
|
+
|
|
144
|
+
Returns:
|
|
145
|
+
matplotlib Figure 对象
|
|
146
|
+
"""
|
|
147
|
+
plt = setup_matplotlib()
|
|
148
|
+
if plt is None:
|
|
149
|
+
return None
|
|
150
|
+
|
|
151
|
+
fig, ax = plt.subplots(figsize=FIGURE_SIZES["single"])
|
|
152
|
+
|
|
153
|
+
strategies = [r["strategy"] for r in results]
|
|
154
|
+
x = np.arange(len(strategies))
|
|
155
|
+
width = 0.8 / len(metrics)
|
|
156
|
+
|
|
157
|
+
# 绘制每个指标的柱状图
|
|
158
|
+
for i, metric in enumerate(metrics):
|
|
159
|
+
values = [r["metrics"].get(metric, 0) * 100 for r in results]
|
|
160
|
+
offset = (i - len(metrics) / 2 + 0.5) * width
|
|
161
|
+
bars = ax.bar(x + offset, values, width, label=metric.replace("_", " ").title())
|
|
162
|
+
|
|
163
|
+
# 在柱子上标注数值
|
|
164
|
+
for bar, val in zip(bars, values):
|
|
165
|
+
height = bar.get_height()
|
|
166
|
+
ax.annotate(
|
|
167
|
+
f"{val:.1f}",
|
|
168
|
+
xy=(bar.get_x() + bar.get_width() / 2, height),
|
|
169
|
+
xytext=(0, 3),
|
|
170
|
+
textcoords="offset points",
|
|
171
|
+
ha="center",
|
|
172
|
+
va="bottom",
|
|
173
|
+
fontsize=8,
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
# 目标线
|
|
177
|
+
ax.axhline(
|
|
178
|
+
y=target * 100,
|
|
179
|
+
color=COLORS["target_line"],
|
|
180
|
+
linestyle="--",
|
|
181
|
+
linewidth=2,
|
|
182
|
+
label=f"Target ({target * 100:.0f}%)",
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
# 设置
|
|
186
|
+
ax.set_xlabel("Strategy")
|
|
187
|
+
ax.set_ylabel("Score (%)")
|
|
188
|
+
ax.set_title(title or f"{challenge.title()} Challenge: Strategy Comparison")
|
|
189
|
+
ax.set_xticks(x)
|
|
190
|
+
ax.set_xticklabels([s.replace("_", " ").title() for s in strategies], rotation=15, ha="right")
|
|
191
|
+
ax.set_ylim(0, 105)
|
|
192
|
+
ax.legend(loc="upper right")
|
|
193
|
+
|
|
194
|
+
plt.tight_layout()
|
|
195
|
+
|
|
196
|
+
# 保存
|
|
197
|
+
if output_path:
|
|
198
|
+
fig.savefig(output_path, format="pdf", bbox_inches="tight")
|
|
199
|
+
# 同时保存 PNG
|
|
200
|
+
png_path = output_path.with_suffix(".png")
|
|
201
|
+
fig.savefig(png_path, format="png", dpi=300, bbox_inches="tight")
|
|
202
|
+
|
|
203
|
+
return fig
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
def plot_scaling_curve(
|
|
207
|
+
results: dict[str, list[tuple[float, float]]],
|
|
208
|
+
x_label: str,
|
|
209
|
+
y_label: str,
|
|
210
|
+
title: str,
|
|
211
|
+
output_path: Optional[Path] = None,
|
|
212
|
+
log_x: bool = False,
|
|
213
|
+
) -> Any:
|
|
214
|
+
"""
|
|
215
|
+
绘制 Scaling 曲线图。
|
|
216
|
+
|
|
217
|
+
Args:
|
|
218
|
+
results: {"strategy_name": [(x1, y1), (x2, y2), ...], ...}
|
|
219
|
+
x_label: X轴标签
|
|
220
|
+
y_label: Y轴标签
|
|
221
|
+
title: 标题
|
|
222
|
+
output_path: 输出路径
|
|
223
|
+
log_x: X轴是否使用对数刻度
|
|
224
|
+
|
|
225
|
+
Returns:
|
|
226
|
+
matplotlib Figure 对象
|
|
227
|
+
"""
|
|
228
|
+
plt = setup_matplotlib()
|
|
229
|
+
if plt is None:
|
|
230
|
+
return None
|
|
231
|
+
|
|
232
|
+
fig, ax = plt.subplots(figsize=FIGURE_SIZES["single"])
|
|
233
|
+
|
|
234
|
+
for strategy, points in results.items():
|
|
235
|
+
x_vals = [p[0] for p in points]
|
|
236
|
+
y_vals = [p[1] * 100 for p in points] # 转换为百分比
|
|
237
|
+
color = STRATEGY_COLORS.get(strategy, COLORS["primary"])
|
|
238
|
+
ax.plot(
|
|
239
|
+
x_vals,
|
|
240
|
+
y_vals,
|
|
241
|
+
"o-",
|
|
242
|
+
label=strategy.replace("_", " ").title(),
|
|
243
|
+
color=color,
|
|
244
|
+
linewidth=2,
|
|
245
|
+
markersize=6,
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
if log_x:
|
|
249
|
+
ax.set_xscale("log")
|
|
250
|
+
|
|
251
|
+
ax.set_xlabel(x_label)
|
|
252
|
+
ax.set_ylabel(y_label)
|
|
253
|
+
ax.set_title(title)
|
|
254
|
+
ax.legend(loc="best")
|
|
255
|
+
ax.grid(True, alpha=0.3)
|
|
256
|
+
|
|
257
|
+
plt.tight_layout()
|
|
258
|
+
|
|
259
|
+
if output_path:
|
|
260
|
+
fig.savefig(output_path, format="pdf", bbox_inches="tight")
|
|
261
|
+
png_path = output_path.with_suffix(".png")
|
|
262
|
+
fig.savefig(png_path, format="png", dpi=300, bbox_inches="tight")
|
|
263
|
+
|
|
264
|
+
return fig
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
def plot_error_breakdown(
|
|
268
|
+
errors: dict[str, dict[str, int]],
|
|
269
|
+
challenge: str,
|
|
270
|
+
output_path: Optional[Path] = None,
|
|
271
|
+
) -> Any:
|
|
272
|
+
"""
|
|
273
|
+
绘制错误类型分解图。
|
|
274
|
+
|
|
275
|
+
Args:
|
|
276
|
+
errors: {"strategy": {"error_type": count, ...}, ...}
|
|
277
|
+
challenge: 挑战名称
|
|
278
|
+
output_path: 输出路径
|
|
279
|
+
|
|
280
|
+
Returns:
|
|
281
|
+
matplotlib Figure 对象
|
|
282
|
+
"""
|
|
283
|
+
plt = setup_matplotlib()
|
|
284
|
+
if plt is None:
|
|
285
|
+
return None
|
|
286
|
+
|
|
287
|
+
fig, axes = plt.subplots(1, len(errors), figsize=(4 * len(errors), 4))
|
|
288
|
+
if len(errors) == 1:
|
|
289
|
+
axes = [axes]
|
|
290
|
+
|
|
291
|
+
colors = list(COLORS.values())[:6]
|
|
292
|
+
|
|
293
|
+
for ax, (strategy, error_counts) in zip(axes, errors.items()):
|
|
294
|
+
labels = list(error_counts.keys())
|
|
295
|
+
sizes = list(error_counts.values())
|
|
296
|
+
|
|
297
|
+
if sum(sizes) > 0:
|
|
298
|
+
ax.pie(sizes, labels=labels, autopct="%1.1f%%", colors=colors[: len(labels)])
|
|
299
|
+
else:
|
|
300
|
+
ax.text(0.5, 0.5, "No Errors", ha="center", va="center")
|
|
301
|
+
|
|
302
|
+
ax.set_title(strategy.replace("_", " ").title())
|
|
303
|
+
|
|
304
|
+
fig.suptitle(f"{challenge.title()} Challenge: Error Breakdown")
|
|
305
|
+
plt.tight_layout()
|
|
306
|
+
|
|
307
|
+
if output_path:
|
|
308
|
+
fig.savefig(output_path, format="pdf", bbox_inches="tight")
|
|
309
|
+
png_path = output_path.with_suffix(".png")
|
|
310
|
+
fig.savefig(png_path, format="png", dpi=300, bbox_inches="tight")
|
|
311
|
+
|
|
312
|
+
return fig
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
def plot_ablation_heatmap(
|
|
316
|
+
ablation_results: dict[str, dict[str, float]],
|
|
317
|
+
title: str,
|
|
318
|
+
output_path: Optional[Path] = None,
|
|
319
|
+
) -> Any:
|
|
320
|
+
"""
|
|
321
|
+
绘制消融实验热力图。
|
|
322
|
+
|
|
323
|
+
Args:
|
|
324
|
+
ablation_results: {"config_name": {"metric1": 0.9, "metric2": 0.8}, ...}
|
|
325
|
+
title: 标题
|
|
326
|
+
output_path: 输出路径
|
|
327
|
+
|
|
328
|
+
Returns:
|
|
329
|
+
matplotlib Figure 对象
|
|
330
|
+
"""
|
|
331
|
+
plt = setup_matplotlib()
|
|
332
|
+
if plt is None:
|
|
333
|
+
return None
|
|
334
|
+
|
|
335
|
+
configs = list(ablation_results.keys())
|
|
336
|
+
metrics = list(next(iter(ablation_results.values())).keys())
|
|
337
|
+
|
|
338
|
+
data = np.array([[ablation_results[c][m] * 100 for m in metrics] for c in configs])
|
|
339
|
+
|
|
340
|
+
fig, ax = plt.subplots(figsize=FIGURE_SIZES["square"])
|
|
341
|
+
|
|
342
|
+
im = ax.imshow(data, cmap="RdYlGn", aspect="auto", vmin=0, vmax=100)
|
|
343
|
+
|
|
344
|
+
# 设置标签
|
|
345
|
+
ax.set_xticks(np.arange(len(metrics)))
|
|
346
|
+
ax.set_yticks(np.arange(len(configs)))
|
|
347
|
+
ax.set_xticklabels([m.replace("_", " ").title() for m in metrics])
|
|
348
|
+
ax.set_yticklabels([c.replace("_", " ").title() for c in configs])
|
|
349
|
+
|
|
350
|
+
# 旋转 x 标签
|
|
351
|
+
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
|
|
352
|
+
|
|
353
|
+
# 添加数值标注
|
|
354
|
+
for i in range(len(configs)):
|
|
355
|
+
for j in range(len(metrics)):
|
|
356
|
+
ax.text(j, i, f"{data[i, j]:.1f}", ha="center", va="center", color="black", fontsize=9)
|
|
357
|
+
|
|
358
|
+
ax.set_title(title)
|
|
359
|
+
fig.colorbar(im, ax=ax, label="Score (%)")
|
|
360
|
+
|
|
361
|
+
plt.tight_layout()
|
|
362
|
+
|
|
363
|
+
if output_path:
|
|
364
|
+
fig.savefig(output_path, format="pdf", bbox_inches="tight")
|
|
365
|
+
png_path = output_path.with_suffix(".png")
|
|
366
|
+
fig.savefig(png_path, format="png", dpi=300, bbox_inches="tight")
|
|
367
|
+
|
|
368
|
+
return fig
|
|
369
|
+
|
|
370
|
+
|
|
371
|
+
def plot_cross_dataset_comparison(
|
|
372
|
+
results: dict[str, dict[str, float]],
|
|
373
|
+
metric: str,
|
|
374
|
+
output_path: Optional[Path] = None,
|
|
375
|
+
) -> Any:
|
|
376
|
+
"""
|
|
377
|
+
绘制跨数据集对比图。
|
|
378
|
+
|
|
379
|
+
Args:
|
|
380
|
+
results: {"strategy": {"dataset1": 0.9, "dataset2": 0.8}, ...}
|
|
381
|
+
metric: 指标名称
|
|
382
|
+
output_path: 输出路径
|
|
383
|
+
|
|
384
|
+
Returns:
|
|
385
|
+
matplotlib Figure 对象
|
|
386
|
+
"""
|
|
387
|
+
plt = setup_matplotlib()
|
|
388
|
+
if plt is None:
|
|
389
|
+
return None
|
|
390
|
+
|
|
391
|
+
strategies = list(results.keys())
|
|
392
|
+
datasets = list(next(iter(results.values())).keys())
|
|
393
|
+
|
|
394
|
+
x = np.arange(len(datasets))
|
|
395
|
+
width = 0.8 / len(strategies)
|
|
396
|
+
|
|
397
|
+
fig, ax = plt.subplots(figsize=FIGURE_SIZES["wide"])
|
|
398
|
+
|
|
399
|
+
for i, strategy in enumerate(strategies):
|
|
400
|
+
values = [results[strategy].get(d, 0) * 100 for d in datasets]
|
|
401
|
+
offset = (i - len(strategies) / 2 + 0.5) * width
|
|
402
|
+
color = STRATEGY_COLORS.get(strategy.split(".")[-1], COLORS["primary"])
|
|
403
|
+
ax.bar(x + offset, values, width, label=strategy.replace("_", " ").title(), color=color)
|
|
404
|
+
|
|
405
|
+
ax.set_xlabel("Dataset")
|
|
406
|
+
ax.set_ylabel(f"{metric.replace('_', ' ').title()} (%)")
|
|
407
|
+
ax.set_title(f"Cross-Dataset Comparison: {metric.replace('_', ' ').title()}")
|
|
408
|
+
ax.set_xticks(x)
|
|
409
|
+
ax.set_xticklabels(datasets)
|
|
410
|
+
ax.legend(loc="upper right", ncol=2)
|
|
411
|
+
ax.set_ylim(0, 105)
|
|
412
|
+
|
|
413
|
+
plt.tight_layout()
|
|
414
|
+
|
|
415
|
+
if output_path:
|
|
416
|
+
fig.savefig(output_path, format="pdf", bbox_inches="tight")
|
|
417
|
+
png_path = output_path.with_suffix(".png")
|
|
418
|
+
fig.savefig(png_path, format="png", dpi=300, bbox_inches="tight")
|
|
419
|
+
|
|
420
|
+
return fig
|
|
421
|
+
|
|
422
|
+
|
|
423
|
+
# =============================================================================
|
|
424
|
+
# LaTeX 表格生成
|
|
425
|
+
# =============================================================================
|
|
426
|
+
|
|
427
|
+
|
|
428
|
+
def generate_main_results_table(
|
|
429
|
+
timing_results: list[dict],
|
|
430
|
+
planning_results: list[dict],
|
|
431
|
+
selection_results: list[dict],
|
|
432
|
+
output_path: Optional[Path] = None,
|
|
433
|
+
) -> str:
|
|
434
|
+
"""
|
|
435
|
+
生成主结果 LaTeX 表格。
|
|
436
|
+
|
|
437
|
+
Returns:
|
|
438
|
+
LaTeX 表格字符串
|
|
439
|
+
"""
|
|
440
|
+
latex = r"""
|
|
441
|
+
\begin{table}[t]
|
|
442
|
+
\centering
|
|
443
|
+
\caption{Main Results across Three Challenges}
|
|
444
|
+
\label{tab:main_results}
|
|
445
|
+
\begin{tabular}{llccc}
|
|
446
|
+
\toprule
|
|
447
|
+
\textbf{Challenge} & \textbf{Strategy} & \textbf{Primary} & \textbf{Secondary} & \textbf{Target Met} \\
|
|
448
|
+
\midrule
|
|
449
|
+
"""
|
|
450
|
+
|
|
451
|
+
# Timing 结果
|
|
452
|
+
for r in timing_results:
|
|
453
|
+
acc = r["metrics"].get("accuracy", 0) * 100
|
|
454
|
+
prec = r["metrics"].get("precision", 0) * 100
|
|
455
|
+
passed = "\\cmark" if r.get("passed", False) else "\\xmark"
|
|
456
|
+
latex += f"Timing & {r['strategy']} & {acc:.1f}\\% & {prec:.1f}\\% & {passed} \\\\\n"
|
|
457
|
+
|
|
458
|
+
latex += r"\midrule" + "\n"
|
|
459
|
+
|
|
460
|
+
# Planning 结果
|
|
461
|
+
for r in planning_results:
|
|
462
|
+
success = r["metrics"].get("plan_success_rate", 0) * 100
|
|
463
|
+
step_acc = r["metrics"].get("step_accuracy", 0) * 100
|
|
464
|
+
passed = "\\cmark" if r.get("passed", False) else "\\xmark"
|
|
465
|
+
latex += (
|
|
466
|
+
f"Planning & {r['strategy']} & {success:.1f}\\% & {step_acc:.1f}\\% & {passed} \\\\\n"
|
|
467
|
+
)
|
|
468
|
+
|
|
469
|
+
latex += r"\midrule" + "\n"
|
|
470
|
+
|
|
471
|
+
# Selection 结果
|
|
472
|
+
for r in selection_results:
|
|
473
|
+
topk = r["metrics"].get("top_k_accuracy", 0) * 100
|
|
474
|
+
mrr = r["metrics"].get("mrr", 0) * 100
|
|
475
|
+
passed = "\\cmark" if r.get("passed", False) else "\\xmark"
|
|
476
|
+
latex += f"Selection & {r['strategy']} & {topk:.1f}\\% & {mrr:.1f}\\% & {passed} \\\\\n"
|
|
477
|
+
|
|
478
|
+
latex += r"""
|
|
479
|
+
\bottomrule
|
|
480
|
+
\end{tabular}
|
|
481
|
+
\end{table}
|
|
482
|
+
"""
|
|
483
|
+
|
|
484
|
+
if output_path:
|
|
485
|
+
with open(output_path, "w", encoding="utf-8") as f:
|
|
486
|
+
f.write(latex)
|
|
487
|
+
|
|
488
|
+
return latex
|
|
489
|
+
|
|
490
|
+
|
|
491
|
+
def generate_detailed_table(
|
|
492
|
+
results: list[dict],
|
|
493
|
+
challenge: str,
|
|
494
|
+
metrics: list[str],
|
|
495
|
+
output_path: Optional[Path] = None,
|
|
496
|
+
) -> str:
|
|
497
|
+
"""
|
|
498
|
+
生成详细结果 LaTeX 表格。
|
|
499
|
+
|
|
500
|
+
Returns:
|
|
501
|
+
LaTeX 表格字符串
|
|
502
|
+
"""
|
|
503
|
+
metric_headers = " & ".join([f"\\textbf{{{m.replace('_', ' ').title()}}}" for m in metrics])
|
|
504
|
+
|
|
505
|
+
latex = f"""
|
|
506
|
+
\\begin{{table}}[t]
|
|
507
|
+
\\centering
|
|
508
|
+
\\caption{{{challenge.title()} Challenge: Detailed Results}}
|
|
509
|
+
\\label{{tab:{challenge}_detailed}}
|
|
510
|
+
\\begin{{tabular}}{{l{"c" * len(metrics)}}}
|
|
511
|
+
\\toprule
|
|
512
|
+
\\textbf{{Strategy}} & {metric_headers} \\\\
|
|
513
|
+
\\midrule
|
|
514
|
+
"""
|
|
515
|
+
|
|
516
|
+
for r in results:
|
|
517
|
+
values = " & ".join([f"{r['metrics'].get(m, 0) * 100:.1f}\\%" for m in metrics])
|
|
518
|
+
latex += f"{r['strategy']} & {values} \\\\\n"
|
|
519
|
+
|
|
520
|
+
latex += r"""
|
|
521
|
+
\bottomrule
|
|
522
|
+
\end{tabular}
|
|
523
|
+
\end{table}
|
|
524
|
+
"""
|
|
525
|
+
|
|
526
|
+
if output_path:
|
|
527
|
+
with open(output_path, "w", encoding="utf-8") as f:
|
|
528
|
+
f.write(latex)
|
|
529
|
+
|
|
530
|
+
return latex
|
|
531
|
+
|
|
532
|
+
|
|
533
|
+
# =============================================================================
|
|
534
|
+
# 批量生成
|
|
535
|
+
# =============================================================================
|
|
536
|
+
|
|
537
|
+
|
|
538
|
+
def generate_all_figures(
|
|
539
|
+
results_dir: Optional[Path] = None,
|
|
540
|
+
output_dir: Optional[Path] = None,
|
|
541
|
+
) -> dict[str, Path]:
|
|
542
|
+
"""
|
|
543
|
+
从结果目录生成所有图表。
|
|
544
|
+
|
|
545
|
+
Args:
|
|
546
|
+
results_dir: 结果目录 (默认 .sage/benchmark/paper1/)
|
|
547
|
+
output_dir: 输出目录 (默认 results_dir/figures/)
|
|
548
|
+
|
|
549
|
+
Returns:
|
|
550
|
+
{figure_name: output_path}
|
|
551
|
+
"""
|
|
552
|
+
import json
|
|
553
|
+
|
|
554
|
+
from .exp_utils import DEFAULT_OUTPUT_DIR, get_figures_dir
|
|
555
|
+
|
|
556
|
+
results_dir = results_dir or DEFAULT_OUTPUT_DIR
|
|
557
|
+
output_dir = output_dir or get_figures_dir()
|
|
558
|
+
|
|
559
|
+
print(f"\n Generating figures from: {results_dir}")
|
|
560
|
+
print(f" Output directory: {output_dir}")
|
|
561
|
+
|
|
562
|
+
output_dir.mkdir(parents=True, exist_ok=True)
|
|
563
|
+
generated = {}
|
|
564
|
+
|
|
565
|
+
# 加载结果文件
|
|
566
|
+
def load_json(path):
|
|
567
|
+
if path.exists():
|
|
568
|
+
with open(path, encoding="utf-8") as f:
|
|
569
|
+
return json.load(f)
|
|
570
|
+
return None
|
|
571
|
+
|
|
572
|
+
# Figure 1: Main Results Comparison
|
|
573
|
+
section_5_2 = results_dir / "section_5_2_main"
|
|
574
|
+
timing = load_json(section_5_2 / "timing_results.json")
|
|
575
|
+
planning = load_json(section_5_2 / "planning_results.json")
|
|
576
|
+
selection = load_json(section_5_2 / "selection_results.json")
|
|
577
|
+
|
|
578
|
+
if timing:
|
|
579
|
+
results = timing.get("results", [])
|
|
580
|
+
if results:
|
|
581
|
+
path = output_dir / "fig1_timing_comparison.pdf"
|
|
582
|
+
# Prepare data for plot_challenge_comparison
|
|
583
|
+
formatted_results = [
|
|
584
|
+
{"strategy": r.get("strategy", ""), "metrics": r.get("metrics", {})}
|
|
585
|
+
for r in results
|
|
586
|
+
]
|
|
587
|
+
plot_challenge_comparison(
|
|
588
|
+
results=formatted_results,
|
|
589
|
+
challenge="timing",
|
|
590
|
+
metrics=["accuracy"],
|
|
591
|
+
target=0.95,
|
|
592
|
+
title="RQ1: Timing Detection",
|
|
593
|
+
output_path=path,
|
|
594
|
+
)
|
|
595
|
+
generated["timing_comparison"] = path
|
|
596
|
+
print(f" Generated: {path.name}")
|
|
597
|
+
|
|
598
|
+
if planning:
|
|
599
|
+
results = planning.get("results", [])
|
|
600
|
+
if results:
|
|
601
|
+
path = output_dir / "fig2_planning_comparison.pdf"
|
|
602
|
+
formatted_results = [
|
|
603
|
+
{"strategy": r.get("strategy", ""), "metrics": r.get("metrics", {})}
|
|
604
|
+
for r in results
|
|
605
|
+
]
|
|
606
|
+
plot_challenge_comparison(
|
|
607
|
+
results=formatted_results,
|
|
608
|
+
challenge="planning",
|
|
609
|
+
metrics=["plan_success_rate"],
|
|
610
|
+
target=0.90,
|
|
611
|
+
title="RQ2: Task Planning",
|
|
612
|
+
output_path=path,
|
|
613
|
+
)
|
|
614
|
+
generated["planning_comparison"] = path
|
|
615
|
+
print(f" Generated: {path.name}")
|
|
616
|
+
|
|
617
|
+
if selection:
|
|
618
|
+
results = selection.get("results", [])
|
|
619
|
+
if results:
|
|
620
|
+
path = output_dir / "fig3_selection_comparison.pdf"
|
|
621
|
+
formatted_results = [
|
|
622
|
+
{"strategy": r.get("strategy", ""), "metrics": r.get("metrics", {})}
|
|
623
|
+
for r in results
|
|
624
|
+
]
|
|
625
|
+
plot_challenge_comparison(
|
|
626
|
+
results=formatted_results,
|
|
627
|
+
challenge="selection",
|
|
628
|
+
metrics=["top_k_accuracy"],
|
|
629
|
+
target=0.95,
|
|
630
|
+
title="RQ3: Tool Selection",
|
|
631
|
+
output_path=path,
|
|
632
|
+
)
|
|
633
|
+
generated["selection_comparison"] = path
|
|
634
|
+
print(f" Generated: {path.name}")
|
|
635
|
+
|
|
636
|
+
# Figure 4: Error Breakdown
|
|
637
|
+
section_5_3 = results_dir / "section_5_3_analysis"
|
|
638
|
+
error_data = load_json(section_5_3 / "error_analysis.json")
|
|
639
|
+
if error_data:
|
|
640
|
+
path = output_dir / "fig4_error_breakdown.pdf"
|
|
641
|
+
plot_error_breakdown(error_data, challenge="all", output_path=path)
|
|
642
|
+
generated["error_breakdown"] = path
|
|
643
|
+
print(f" Generated: {path.name}")
|
|
644
|
+
|
|
645
|
+
# Figure 5: Scaling Analysis
|
|
646
|
+
scaling_data = load_json(section_5_3 / "scaling_analysis.json")
|
|
647
|
+
if scaling_data and "tool_scaling" in scaling_data:
|
|
648
|
+
path = output_dir / "fig5_tool_scaling.pdf"
|
|
649
|
+
plot_scaling_curve(
|
|
650
|
+
results=scaling_data["tool_scaling"],
|
|
651
|
+
x_label="Number of Tools",
|
|
652
|
+
y_label="Top-K Accuracy",
|
|
653
|
+
title="Tool Set Size Scaling",
|
|
654
|
+
output_path=path,
|
|
655
|
+
)
|
|
656
|
+
generated["tool_scaling"] = path
|
|
657
|
+
print(f" Generated: {path.name}")
|
|
658
|
+
|
|
659
|
+
# Figure 6: Ablation Heatmap
|
|
660
|
+
ablation_data = load_json(section_5_3 / "ablation_results.json")
|
|
661
|
+
if ablation_data:
|
|
662
|
+
path = output_dir / "fig6_ablation_heatmap.pdf"
|
|
663
|
+
plot_ablation_heatmap(ablation_data, title="Ablation Study Results", output_path=path)
|
|
664
|
+
generated["ablation_heatmap"] = path
|
|
665
|
+
print(f" Generated: {path.name}")
|
|
666
|
+
|
|
667
|
+
# Figure 7: Cross-Dataset
|
|
668
|
+
section_5_4 = results_dir / "section_5_4_generalization"
|
|
669
|
+
cross_data = load_json(section_5_4 / "cross_dataset_results.json")
|
|
670
|
+
if cross_data:
|
|
671
|
+
path = output_dir / "fig7_cross_dataset.pdf"
|
|
672
|
+
plot_cross_dataset_comparison(cross_data, metric="top5_accuracy", output_path=path)
|
|
673
|
+
generated["cross_dataset"] = path
|
|
674
|
+
print(f" Generated: {path.name}")
|
|
675
|
+
|
|
676
|
+
print(f"\n Total figures generated: {len(generated)}")
|
|
677
|
+
return generated
|