isaacus 0.1.0a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
isaacus/_models.py ADDED
@@ -0,0 +1,801 @@
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ import inspect
5
+ from typing import TYPE_CHECKING, Any, Type, Union, Generic, TypeVar, Callable, cast
6
+ from datetime import date, datetime
7
+ from typing_extensions import (
8
+ Unpack,
9
+ Literal,
10
+ ClassVar,
11
+ Protocol,
12
+ Required,
13
+ ParamSpec,
14
+ TypedDict,
15
+ TypeGuard,
16
+ final,
17
+ override,
18
+ runtime_checkable,
19
+ )
20
+
21
+ import pydantic
22
+ import pydantic.generics
23
+ from pydantic.fields import FieldInfo
24
+
25
+ from ._types import (
26
+ Body,
27
+ IncEx,
28
+ Query,
29
+ ModelT,
30
+ Headers,
31
+ Timeout,
32
+ NotGiven,
33
+ AnyMapping,
34
+ HttpxRequestFiles,
35
+ )
36
+ from ._utils import (
37
+ PropertyInfo,
38
+ is_list,
39
+ is_given,
40
+ json_safe,
41
+ lru_cache,
42
+ is_mapping,
43
+ parse_date,
44
+ coerce_boolean,
45
+ parse_datetime,
46
+ strip_not_given,
47
+ extract_type_arg,
48
+ is_annotated_type,
49
+ is_type_alias_type,
50
+ strip_annotated_type,
51
+ )
52
+ from ._compat import (
53
+ PYDANTIC_V2,
54
+ ConfigDict,
55
+ GenericModel as BaseGenericModel,
56
+ get_args,
57
+ is_union,
58
+ parse_obj,
59
+ get_origin,
60
+ is_literal_type,
61
+ get_model_config,
62
+ get_model_fields,
63
+ field_get_default,
64
+ )
65
+ from ._constants import RAW_RESPONSE_HEADER
66
+
67
+ if TYPE_CHECKING:
68
+ from pydantic_core.core_schema import ModelField, LiteralSchema, ModelFieldsSchema
69
+
70
+ __all__ = ["BaseModel", "GenericModel"]
71
+
72
+ _T = TypeVar("_T")
73
+ _BaseModelT = TypeVar("_BaseModelT", bound="BaseModel")
74
+
75
+ P = ParamSpec("P")
76
+
77
+
78
+ @runtime_checkable
79
+ class _ConfigProtocol(Protocol):
80
+ allow_population_by_field_name: bool
81
+
82
+
83
+ class BaseModel(pydantic.BaseModel):
84
+ if PYDANTIC_V2:
85
+ model_config: ClassVar[ConfigDict] = ConfigDict(
86
+ extra="allow", defer_build=coerce_boolean(os.environ.get("DEFER_PYDANTIC_BUILD", "true"))
87
+ )
88
+ else:
89
+
90
+ @property
91
+ @override
92
+ def model_fields_set(self) -> set[str]:
93
+ # a forwards-compat shim for pydantic v2
94
+ return self.__fields_set__ # type: ignore
95
+
96
+ class Config(pydantic.BaseConfig): # pyright: ignore[reportDeprecated]
97
+ extra: Any = pydantic.Extra.allow # type: ignore
98
+
99
+ def to_dict(
100
+ self,
101
+ *,
102
+ mode: Literal["json", "python"] = "python",
103
+ use_api_names: bool = True,
104
+ exclude_unset: bool = True,
105
+ exclude_defaults: bool = False,
106
+ exclude_none: bool = False,
107
+ warnings: bool = True,
108
+ ) -> dict[str, object]:
109
+ """Recursively generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
110
+
111
+ By default, fields that were not set by the API will not be included,
112
+ and keys will match the API response, *not* the property names from the model.
113
+
114
+ For example, if the API responds with `"fooBar": true` but we've defined a `foo_bar: bool` property,
115
+ the output will use the `"fooBar"` key (unless `use_api_names=False` is passed).
116
+
117
+ Args:
118
+ mode:
119
+ If mode is 'json', the dictionary will only contain JSON serializable types. e.g. `datetime` will be turned into a string, `"2024-3-22T18:11:19.117000Z"`.
120
+ If mode is 'python', the dictionary may contain any Python objects. e.g. `datetime(2024, 3, 22)`
121
+
122
+ use_api_names: Whether to use the key that the API responded with or the property name. Defaults to `True`.
123
+ exclude_unset: Whether to exclude fields that have not been explicitly set.
124
+ exclude_defaults: Whether to exclude fields that are set to their default value from the output.
125
+ exclude_none: Whether to exclude fields that have a value of `None` from the output.
126
+ warnings: Whether to log warnings when invalid fields are encountered. This is only supported in Pydantic v2.
127
+ """
128
+ return self.model_dump(
129
+ mode=mode,
130
+ by_alias=use_api_names,
131
+ exclude_unset=exclude_unset,
132
+ exclude_defaults=exclude_defaults,
133
+ exclude_none=exclude_none,
134
+ warnings=warnings,
135
+ )
136
+
137
+ def to_json(
138
+ self,
139
+ *,
140
+ indent: int | None = 2,
141
+ use_api_names: bool = True,
142
+ exclude_unset: bool = True,
143
+ exclude_defaults: bool = False,
144
+ exclude_none: bool = False,
145
+ warnings: bool = True,
146
+ ) -> str:
147
+ """Generates a JSON string representing this model as it would be received from or sent to the API (but with indentation).
148
+
149
+ By default, fields that were not set by the API will not be included,
150
+ and keys will match the API response, *not* the property names from the model.
151
+
152
+ For example, if the API responds with `"fooBar": true` but we've defined a `foo_bar: bool` property,
153
+ the output will use the `"fooBar"` key (unless `use_api_names=False` is passed).
154
+
155
+ Args:
156
+ indent: Indentation to use in the JSON output. If `None` is passed, the output will be compact. Defaults to `2`
157
+ use_api_names: Whether to use the key that the API responded with or the property name. Defaults to `True`.
158
+ exclude_unset: Whether to exclude fields that have not been explicitly set.
159
+ exclude_defaults: Whether to exclude fields that have the default value.
160
+ exclude_none: Whether to exclude fields that have a value of `None`.
161
+ warnings: Whether to show any warnings that occurred during serialization. This is only supported in Pydantic v2.
162
+ """
163
+ return self.model_dump_json(
164
+ indent=indent,
165
+ by_alias=use_api_names,
166
+ exclude_unset=exclude_unset,
167
+ exclude_defaults=exclude_defaults,
168
+ exclude_none=exclude_none,
169
+ warnings=warnings,
170
+ )
171
+
172
+ @override
173
+ def __str__(self) -> str:
174
+ # mypy complains about an invalid self arg
175
+ return f"{self.__repr_name__()}({self.__repr_str__(', ')})" # type: ignore[misc]
176
+
177
+ # Override the 'construct' method in a way that supports recursive parsing without validation.
178
+ # Based on https://github.com/samuelcolvin/pydantic/issues/1168#issuecomment-817742836.
179
+ @classmethod
180
+ @override
181
+ def construct( # pyright: ignore[reportIncompatibleMethodOverride]
182
+ __cls: Type[ModelT],
183
+ _fields_set: set[str] | None = None,
184
+ **values: object,
185
+ ) -> ModelT:
186
+ m = __cls.__new__(__cls)
187
+ fields_values: dict[str, object] = {}
188
+
189
+ config = get_model_config(__cls)
190
+ populate_by_name = (
191
+ config.allow_population_by_field_name
192
+ if isinstance(config, _ConfigProtocol)
193
+ else config.get("populate_by_name")
194
+ )
195
+
196
+ if _fields_set is None:
197
+ _fields_set = set()
198
+
199
+ model_fields = get_model_fields(__cls)
200
+ for name, field in model_fields.items():
201
+ key = field.alias
202
+ if key is None or (key not in values and populate_by_name):
203
+ key = name
204
+
205
+ if key in values:
206
+ fields_values[name] = _construct_field(value=values[key], field=field, key=key)
207
+ _fields_set.add(name)
208
+ else:
209
+ fields_values[name] = field_get_default(field)
210
+
211
+ _extra = {}
212
+ for key, value in values.items():
213
+ if key not in model_fields:
214
+ if PYDANTIC_V2:
215
+ _extra[key] = value
216
+ else:
217
+ _fields_set.add(key)
218
+ fields_values[key] = value
219
+
220
+ object.__setattr__(m, "__dict__", fields_values)
221
+
222
+ if PYDANTIC_V2:
223
+ # these properties are copied from Pydantic's `model_construct()` method
224
+ object.__setattr__(m, "__pydantic_private__", None)
225
+ object.__setattr__(m, "__pydantic_extra__", _extra)
226
+ object.__setattr__(m, "__pydantic_fields_set__", _fields_set)
227
+ else:
228
+ # init_private_attributes() does not exist in v2
229
+ m._init_private_attributes() # type: ignore
230
+
231
+ # copied from Pydantic v1's `construct()` method
232
+ object.__setattr__(m, "__fields_set__", _fields_set)
233
+
234
+ return m
235
+
236
+ if not TYPE_CHECKING:
237
+ # type checkers incorrectly complain about this assignment
238
+ # because the type signatures are technically different
239
+ # although not in practice
240
+ model_construct = construct
241
+
242
+ if not PYDANTIC_V2:
243
+ # we define aliases for some of the new pydantic v2 methods so
244
+ # that we can just document these methods without having to specify
245
+ # a specific pydantic version as some users may not know which
246
+ # pydantic version they are currently using
247
+
248
+ @override
249
+ def model_dump(
250
+ self,
251
+ *,
252
+ mode: Literal["json", "python"] | str = "python",
253
+ include: IncEx | None = None,
254
+ exclude: IncEx | None = None,
255
+ by_alias: bool = False,
256
+ exclude_unset: bool = False,
257
+ exclude_defaults: bool = False,
258
+ exclude_none: bool = False,
259
+ round_trip: bool = False,
260
+ warnings: bool | Literal["none", "warn", "error"] = True,
261
+ context: dict[str, Any] | None = None,
262
+ serialize_as_any: bool = False,
263
+ ) -> dict[str, Any]:
264
+ """Usage docs: https://docs.pydantic.dev/2.4/concepts/serialization/#modelmodel_dump
265
+
266
+ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
267
+
268
+ Args:
269
+ mode: The mode in which `to_python` should run.
270
+ If mode is 'json', the dictionary will only contain JSON serializable types.
271
+ If mode is 'python', the dictionary may contain any Python objects.
272
+ include: A list of fields to include in the output.
273
+ exclude: A list of fields to exclude from the output.
274
+ by_alias: Whether to use the field's alias in the dictionary key if defined.
275
+ exclude_unset: Whether to exclude fields that are unset or None from the output.
276
+ exclude_defaults: Whether to exclude fields that are set to their default value from the output.
277
+ exclude_none: Whether to exclude fields that have a value of `None` from the output.
278
+ round_trip: Whether to enable serialization and deserialization round-trip support.
279
+ warnings: Whether to log warnings when invalid fields are encountered.
280
+
281
+ Returns:
282
+ A dictionary representation of the model.
283
+ """
284
+ if mode not in {"json", "python"}:
285
+ raise ValueError("mode must be either 'json' or 'python'")
286
+ if round_trip != False:
287
+ raise ValueError("round_trip is only supported in Pydantic v2")
288
+ if warnings != True:
289
+ raise ValueError("warnings is only supported in Pydantic v2")
290
+ if context is not None:
291
+ raise ValueError("context is only supported in Pydantic v2")
292
+ if serialize_as_any != False:
293
+ raise ValueError("serialize_as_any is only supported in Pydantic v2")
294
+ dumped = super().dict( # pyright: ignore[reportDeprecated]
295
+ include=include,
296
+ exclude=exclude,
297
+ by_alias=by_alias,
298
+ exclude_unset=exclude_unset,
299
+ exclude_defaults=exclude_defaults,
300
+ exclude_none=exclude_none,
301
+ )
302
+
303
+ return cast(dict[str, Any], json_safe(dumped)) if mode == "json" else dumped
304
+
305
+ @override
306
+ def model_dump_json(
307
+ self,
308
+ *,
309
+ indent: int | None = None,
310
+ include: IncEx | None = None,
311
+ exclude: IncEx | None = None,
312
+ by_alias: bool = False,
313
+ exclude_unset: bool = False,
314
+ exclude_defaults: bool = False,
315
+ exclude_none: bool = False,
316
+ round_trip: bool = False,
317
+ warnings: bool | Literal["none", "warn", "error"] = True,
318
+ context: dict[str, Any] | None = None,
319
+ serialize_as_any: bool = False,
320
+ ) -> str:
321
+ """Usage docs: https://docs.pydantic.dev/2.4/concepts/serialization/#modelmodel_dump_json
322
+
323
+ Generates a JSON representation of the model using Pydantic's `to_json` method.
324
+
325
+ Args:
326
+ indent: Indentation to use in the JSON output. If None is passed, the output will be compact.
327
+ include: Field(s) to include in the JSON output. Can take either a string or set of strings.
328
+ exclude: Field(s) to exclude from the JSON output. Can take either a string or set of strings.
329
+ by_alias: Whether to serialize using field aliases.
330
+ exclude_unset: Whether to exclude fields that have not been explicitly set.
331
+ exclude_defaults: Whether to exclude fields that have the default value.
332
+ exclude_none: Whether to exclude fields that have a value of `None`.
333
+ round_trip: Whether to use serialization/deserialization between JSON and class instance.
334
+ warnings: Whether to show any warnings that occurred during serialization.
335
+
336
+ Returns:
337
+ A JSON string representation of the model.
338
+ """
339
+ if round_trip != False:
340
+ raise ValueError("round_trip is only supported in Pydantic v2")
341
+ if warnings != True:
342
+ raise ValueError("warnings is only supported in Pydantic v2")
343
+ if context is not None:
344
+ raise ValueError("context is only supported in Pydantic v2")
345
+ if serialize_as_any != False:
346
+ raise ValueError("serialize_as_any is only supported in Pydantic v2")
347
+ return super().json( # type: ignore[reportDeprecated]
348
+ indent=indent,
349
+ include=include,
350
+ exclude=exclude,
351
+ by_alias=by_alias,
352
+ exclude_unset=exclude_unset,
353
+ exclude_defaults=exclude_defaults,
354
+ exclude_none=exclude_none,
355
+ )
356
+
357
+
358
+ def _construct_field(value: object, field: FieldInfo, key: str) -> object:
359
+ if value is None:
360
+ return field_get_default(field)
361
+
362
+ if PYDANTIC_V2:
363
+ type_ = field.annotation
364
+ else:
365
+ type_ = cast(type, field.outer_type_) # type: ignore
366
+
367
+ if type_ is None:
368
+ raise RuntimeError(f"Unexpected field type is None for {key}")
369
+
370
+ return construct_type(value=value, type_=type_)
371
+
372
+
373
+ def is_basemodel(type_: type) -> bool:
374
+ """Returns whether or not the given type is either a `BaseModel` or a union of `BaseModel`"""
375
+ if is_union(type_):
376
+ for variant in get_args(type_):
377
+ if is_basemodel(variant):
378
+ return True
379
+
380
+ return False
381
+
382
+ return is_basemodel_type(type_)
383
+
384
+
385
+ def is_basemodel_type(type_: type) -> TypeGuard[type[BaseModel] | type[GenericModel]]:
386
+ origin = get_origin(type_) or type_
387
+ if not inspect.isclass(origin):
388
+ return False
389
+ return issubclass(origin, BaseModel) or issubclass(origin, GenericModel)
390
+
391
+
392
+ def build(
393
+ base_model_cls: Callable[P, _BaseModelT],
394
+ *args: P.args,
395
+ **kwargs: P.kwargs,
396
+ ) -> _BaseModelT:
397
+ """Construct a BaseModel class without validation.
398
+
399
+ This is useful for cases where you need to instantiate a `BaseModel`
400
+ from an API response as this provides type-safe params which isn't supported
401
+ by helpers like `construct_type()`.
402
+
403
+ ```py
404
+ build(MyModel, my_field_a="foo", my_field_b=123)
405
+ ```
406
+ """
407
+ if args:
408
+ raise TypeError(
409
+ "Received positional arguments which are not supported; Keyword arguments must be used instead",
410
+ )
411
+
412
+ return cast(_BaseModelT, construct_type(type_=base_model_cls, value=kwargs))
413
+
414
+
415
+ def construct_type_unchecked(*, value: object, type_: type[_T]) -> _T:
416
+ """Loose coercion to the expected type with construction of nested values.
417
+
418
+ Note: the returned value from this function is not guaranteed to match the
419
+ given type.
420
+ """
421
+ return cast(_T, construct_type(value=value, type_=type_))
422
+
423
+
424
+ def construct_type(*, value: object, type_: object) -> object:
425
+ """Loose coercion to the expected type with construction of nested values.
426
+
427
+ If the given value does not match the expected type then it is returned as-is.
428
+ """
429
+
430
+ # store a reference to the original type we were given before we extract any inner
431
+ # types so that we can properly resolve forward references in `TypeAliasType` annotations
432
+ original_type = None
433
+
434
+ # we allow `object` as the input type because otherwise, passing things like
435
+ # `Literal['value']` will be reported as a type error by type checkers
436
+ type_ = cast("type[object]", type_)
437
+ if is_type_alias_type(type_):
438
+ original_type = type_ # type: ignore[unreachable]
439
+ type_ = type_.__value__ # type: ignore[unreachable]
440
+
441
+ # unwrap `Annotated[T, ...]` -> `T`
442
+ if is_annotated_type(type_):
443
+ meta: tuple[Any, ...] = get_args(type_)[1:]
444
+ type_ = extract_type_arg(type_, 0)
445
+ else:
446
+ meta = tuple()
447
+
448
+ # we need to use the origin class for any types that are subscripted generics
449
+ # e.g. Dict[str, object]
450
+ origin = get_origin(type_) or type_
451
+ args = get_args(type_)
452
+
453
+ if is_union(origin):
454
+ try:
455
+ return validate_type(type_=cast("type[object]", original_type or type_), value=value)
456
+ except Exception:
457
+ pass
458
+
459
+ # if the type is a discriminated union then we want to construct the right variant
460
+ # in the union, even if the data doesn't match exactly, otherwise we'd break code
461
+ # that relies on the constructed class types, e.g.
462
+ #
463
+ # class FooType:
464
+ # kind: Literal['foo']
465
+ # value: str
466
+ #
467
+ # class BarType:
468
+ # kind: Literal['bar']
469
+ # value: int
470
+ #
471
+ # without this block, if the data we get is something like `{'kind': 'bar', 'value': 'foo'}` then
472
+ # we'd end up constructing `FooType` when it should be `BarType`.
473
+ discriminator = _build_discriminated_union_meta(union=type_, meta_annotations=meta)
474
+ if discriminator and is_mapping(value):
475
+ variant_value = value.get(discriminator.field_alias_from or discriminator.field_name)
476
+ if variant_value and isinstance(variant_value, str):
477
+ variant_type = discriminator.mapping.get(variant_value)
478
+ if variant_type:
479
+ return construct_type(type_=variant_type, value=value)
480
+
481
+ # if the data is not valid, use the first variant that doesn't fail while deserializing
482
+ for variant in args:
483
+ try:
484
+ return construct_type(value=value, type_=variant)
485
+ except Exception:
486
+ continue
487
+
488
+ raise RuntimeError(f"Could not convert data into a valid instance of {type_}")
489
+
490
+ if origin == dict:
491
+ if not is_mapping(value):
492
+ return value
493
+
494
+ _, items_type = get_args(type_) # Dict[_, items_type]
495
+ return {key: construct_type(value=item, type_=items_type) for key, item in value.items()}
496
+
497
+ if (
498
+ not is_literal_type(type_)
499
+ and inspect.isclass(origin)
500
+ and (issubclass(origin, BaseModel) or issubclass(origin, GenericModel))
501
+ ):
502
+ if is_list(value):
503
+ return [cast(Any, type_).construct(**entry) if is_mapping(entry) else entry for entry in value]
504
+
505
+ if is_mapping(value):
506
+ if issubclass(type_, BaseModel):
507
+ return type_.construct(**value) # type: ignore[arg-type]
508
+
509
+ return cast(Any, type_).construct(**value)
510
+
511
+ if origin == list:
512
+ if not is_list(value):
513
+ return value
514
+
515
+ inner_type = args[0] # List[inner_type]
516
+ return [construct_type(value=entry, type_=inner_type) for entry in value]
517
+
518
+ if origin == float:
519
+ if isinstance(value, int):
520
+ coerced = float(value)
521
+ if coerced != value:
522
+ return value
523
+ return coerced
524
+
525
+ return value
526
+
527
+ if type_ == datetime:
528
+ try:
529
+ return parse_datetime(value) # type: ignore
530
+ except Exception:
531
+ return value
532
+
533
+ if type_ == date:
534
+ try:
535
+ return parse_date(value) # type: ignore
536
+ except Exception:
537
+ return value
538
+
539
+ return value
540
+
541
+
542
+ @runtime_checkable
543
+ class CachedDiscriminatorType(Protocol):
544
+ __discriminator__: DiscriminatorDetails
545
+
546
+
547
+ class DiscriminatorDetails:
548
+ field_name: str
549
+ """The name of the discriminator field in the variant class, e.g.
550
+
551
+ ```py
552
+ class Foo(BaseModel):
553
+ type: Literal['foo']
554
+ ```
555
+
556
+ Will result in field_name='type'
557
+ """
558
+
559
+ field_alias_from: str | None
560
+ """The name of the discriminator field in the API response, e.g.
561
+
562
+ ```py
563
+ class Foo(BaseModel):
564
+ type: Literal['foo'] = Field(alias='type_from_api')
565
+ ```
566
+
567
+ Will result in field_alias_from='type_from_api'
568
+ """
569
+
570
+ mapping: dict[str, type]
571
+ """Mapping of discriminator value to variant type, e.g.
572
+
573
+ {'foo': FooVariant, 'bar': BarVariant}
574
+ """
575
+
576
+ def __init__(
577
+ self,
578
+ *,
579
+ mapping: dict[str, type],
580
+ discriminator_field: str,
581
+ discriminator_alias: str | None,
582
+ ) -> None:
583
+ self.mapping = mapping
584
+ self.field_name = discriminator_field
585
+ self.field_alias_from = discriminator_alias
586
+
587
+
588
+ def _build_discriminated_union_meta(*, union: type, meta_annotations: tuple[Any, ...]) -> DiscriminatorDetails | None:
589
+ if isinstance(union, CachedDiscriminatorType):
590
+ return union.__discriminator__
591
+
592
+ discriminator_field_name: str | None = None
593
+
594
+ for annotation in meta_annotations:
595
+ if isinstance(annotation, PropertyInfo) and annotation.discriminator is not None:
596
+ discriminator_field_name = annotation.discriminator
597
+ break
598
+
599
+ if not discriminator_field_name:
600
+ return None
601
+
602
+ mapping: dict[str, type] = {}
603
+ discriminator_alias: str | None = None
604
+
605
+ for variant in get_args(union):
606
+ variant = strip_annotated_type(variant)
607
+ if is_basemodel_type(variant):
608
+ if PYDANTIC_V2:
609
+ field = _extract_field_schema_pv2(variant, discriminator_field_name)
610
+ if not field:
611
+ continue
612
+
613
+ # Note: if one variant defines an alias then they all should
614
+ discriminator_alias = field.get("serialization_alias")
615
+
616
+ field_schema = field["schema"]
617
+
618
+ if field_schema["type"] == "literal":
619
+ for entry in cast("LiteralSchema", field_schema)["expected"]:
620
+ if isinstance(entry, str):
621
+ mapping[entry] = variant
622
+ else:
623
+ field_info = cast("dict[str, FieldInfo]", variant.__fields__).get(discriminator_field_name) # pyright: ignore[reportDeprecated, reportUnnecessaryCast]
624
+ if not field_info:
625
+ continue
626
+
627
+ # Note: if one variant defines an alias then they all should
628
+ discriminator_alias = field_info.alias
629
+
630
+ if field_info.annotation and is_literal_type(field_info.annotation):
631
+ for entry in get_args(field_info.annotation):
632
+ if isinstance(entry, str):
633
+ mapping[entry] = variant
634
+
635
+ if not mapping:
636
+ return None
637
+
638
+ details = DiscriminatorDetails(
639
+ mapping=mapping,
640
+ discriminator_field=discriminator_field_name,
641
+ discriminator_alias=discriminator_alias,
642
+ )
643
+ cast(CachedDiscriminatorType, union).__discriminator__ = details
644
+ return details
645
+
646
+
647
+ def _extract_field_schema_pv2(model: type[BaseModel], field_name: str) -> ModelField | None:
648
+ schema = model.__pydantic_core_schema__
649
+ if schema["type"] != "model":
650
+ return None
651
+
652
+ fields_schema = schema["schema"]
653
+ if fields_schema["type"] != "model-fields":
654
+ return None
655
+
656
+ fields_schema = cast("ModelFieldsSchema", fields_schema)
657
+
658
+ field = fields_schema["fields"].get(field_name)
659
+ if not field:
660
+ return None
661
+
662
+ return cast("ModelField", field) # pyright: ignore[reportUnnecessaryCast]
663
+
664
+
665
+ def validate_type(*, type_: type[_T], value: object) -> _T:
666
+ """Strict validation that the given value matches the expected type"""
667
+ if inspect.isclass(type_) and issubclass(type_, pydantic.BaseModel):
668
+ return cast(_T, parse_obj(type_, value))
669
+
670
+ return cast(_T, _validate_non_model_type(type_=type_, value=value))
671
+
672
+
673
+ def set_pydantic_config(typ: Any, config: pydantic.ConfigDict) -> None:
674
+ """Add a pydantic config for the given type.
675
+
676
+ Note: this is a no-op on Pydantic v1.
677
+ """
678
+ setattr(typ, "__pydantic_config__", config) # noqa: B010
679
+
680
+
681
+ # our use of subclasssing here causes weirdness for type checkers,
682
+ # so we just pretend that we don't subclass
683
+ if TYPE_CHECKING:
684
+ GenericModel = BaseModel
685
+ else:
686
+
687
+ class GenericModel(BaseGenericModel, BaseModel):
688
+ pass
689
+
690
+
691
+ if PYDANTIC_V2:
692
+ from pydantic import TypeAdapter as _TypeAdapter
693
+
694
+ _CachedTypeAdapter = cast("TypeAdapter[object]", lru_cache(maxsize=None)(_TypeAdapter))
695
+
696
+ if TYPE_CHECKING:
697
+ from pydantic import TypeAdapter
698
+ else:
699
+ TypeAdapter = _CachedTypeAdapter
700
+
701
+ def _validate_non_model_type(*, type_: type[_T], value: object) -> _T:
702
+ return TypeAdapter(type_).validate_python(value)
703
+
704
+ elif not TYPE_CHECKING: # TODO: condition is weird
705
+
706
+ class RootModel(GenericModel, Generic[_T]):
707
+ """Used as a placeholder to easily convert runtime types to a Pydantic format
708
+ to provide validation.
709
+
710
+ For example:
711
+ ```py
712
+ validated = RootModel[int](__root__="5").__root__
713
+ # validated: 5
714
+ ```
715
+ """
716
+
717
+ __root__: _T
718
+
719
+ def _validate_non_model_type(*, type_: type[_T], value: object) -> _T:
720
+ model = _create_pydantic_model(type_).validate(value)
721
+ return cast(_T, model.__root__)
722
+
723
+ def _create_pydantic_model(type_: _T) -> Type[RootModel[_T]]:
724
+ return RootModel[type_] # type: ignore
725
+
726
+
727
+ class FinalRequestOptionsInput(TypedDict, total=False):
728
+ method: Required[str]
729
+ url: Required[str]
730
+ params: Query
731
+ headers: Headers
732
+ max_retries: int
733
+ timeout: float | Timeout | None
734
+ files: HttpxRequestFiles | None
735
+ idempotency_key: str
736
+ json_data: Body
737
+ extra_json: AnyMapping
738
+
739
+
740
+ @final
741
+ class FinalRequestOptions(pydantic.BaseModel):
742
+ method: str
743
+ url: str
744
+ params: Query = {}
745
+ headers: Union[Headers, NotGiven] = NotGiven()
746
+ max_retries: Union[int, NotGiven] = NotGiven()
747
+ timeout: Union[float, Timeout, None, NotGiven] = NotGiven()
748
+ files: Union[HttpxRequestFiles, None] = None
749
+ idempotency_key: Union[str, None] = None
750
+ post_parser: Union[Callable[[Any], Any], NotGiven] = NotGiven()
751
+
752
+ # It should be noted that we cannot use `json` here as that would override
753
+ # a BaseModel method in an incompatible fashion.
754
+ json_data: Union[Body, None] = None
755
+ extra_json: Union[AnyMapping, None] = None
756
+
757
+ if PYDANTIC_V2:
758
+ model_config: ClassVar[ConfigDict] = ConfigDict(arbitrary_types_allowed=True)
759
+ else:
760
+
761
+ class Config(pydantic.BaseConfig): # pyright: ignore[reportDeprecated]
762
+ arbitrary_types_allowed: bool = True
763
+
764
+ def get_max_retries(self, max_retries: int) -> int:
765
+ if isinstance(self.max_retries, NotGiven):
766
+ return max_retries
767
+ return self.max_retries
768
+
769
+ def _strip_raw_response_header(self) -> None:
770
+ if not is_given(self.headers):
771
+ return
772
+
773
+ if self.headers.get(RAW_RESPONSE_HEADER):
774
+ self.headers = {**self.headers}
775
+ self.headers.pop(RAW_RESPONSE_HEADER)
776
+
777
+ # override the `construct` method so that we can run custom transformations.
778
+ # this is necessary as we don't want to do any actual runtime type checking
779
+ # (which means we can't use validators) but we do want to ensure that `NotGiven`
780
+ # values are not present
781
+ #
782
+ # type ignore required because we're adding explicit types to `**values`
783
+ @classmethod
784
+ def construct( # type: ignore
785
+ cls,
786
+ _fields_set: set[str] | None = None,
787
+ **values: Unpack[FinalRequestOptionsInput],
788
+ ) -> FinalRequestOptions:
789
+ kwargs: dict[str, Any] = {
790
+ # we unconditionally call `strip_not_given` on any value
791
+ # as it will just ignore any non-mapping types
792
+ key: strip_not_given(value)
793
+ for key, value in values.items()
794
+ }
795
+ if PYDANTIC_V2:
796
+ return super().model_construct(_fields_set, **kwargs)
797
+ return cast(FinalRequestOptions, super().construct(_fields_set, **kwargs)) # pyright: ignore[reportDeprecated]
798
+
799
+ if not TYPE_CHECKING:
800
+ # type checkers incorrectly complain about this assignment
801
+ model_construct = construct