isa-model 0.3.91__py3-none-any.whl → 0.4.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (228) hide show
  1. isa_model/client.py +1166 -584
  2. isa_model/core/cache/redis_cache.py +410 -0
  3. isa_model/core/config/config_manager.py +282 -12
  4. isa_model/core/config.py +91 -1
  5. isa_model/core/database/__init__.py +1 -0
  6. isa_model/core/database/direct_db_client.py +114 -0
  7. isa_model/core/database/migration_manager.py +563 -0
  8. isa_model/core/database/migrations.py +297 -0
  9. isa_model/core/database/supabase_client.py +258 -0
  10. isa_model/core/dependencies.py +316 -0
  11. isa_model/core/discovery/__init__.py +19 -0
  12. isa_model/core/discovery/consul_discovery.py +190 -0
  13. isa_model/core/logging/__init__.py +54 -0
  14. isa_model/core/logging/influx_logger.py +523 -0
  15. isa_model/core/logging/loki_logger.py +160 -0
  16. isa_model/core/models/__init__.py +46 -0
  17. isa_model/core/models/config_models.py +625 -0
  18. isa_model/core/models/deployment_billing_tracker.py +430 -0
  19. isa_model/core/models/model_billing_tracker.py +60 -88
  20. isa_model/core/models/model_manager.py +66 -25
  21. isa_model/core/models/model_metadata.py +690 -0
  22. isa_model/core/models/model_repo.py +217 -55
  23. isa_model/core/models/model_statistics_tracker.py +234 -0
  24. isa_model/core/models/model_storage.py +0 -1
  25. isa_model/core/models/model_version_manager.py +959 -0
  26. isa_model/core/models/system_models.py +857 -0
  27. isa_model/core/pricing_manager.py +2 -249
  28. isa_model/core/repositories/__init__.py +9 -0
  29. isa_model/core/repositories/config_repository.py +912 -0
  30. isa_model/core/resilience/circuit_breaker.py +366 -0
  31. isa_model/core/security/secrets.py +358 -0
  32. isa_model/core/services/__init__.py +2 -4
  33. isa_model/core/services/intelligent_model_selector.py +479 -370
  34. isa_model/core/storage/hf_storage.py +2 -2
  35. isa_model/core/types.py +8 -0
  36. isa_model/deployment/__init__.py +5 -48
  37. isa_model/deployment/core/__init__.py +2 -31
  38. isa_model/deployment/core/deployment_manager.py +1278 -368
  39. isa_model/deployment/local/__init__.py +31 -0
  40. isa_model/deployment/local/config.py +248 -0
  41. isa_model/deployment/local/gpu_gateway.py +607 -0
  42. isa_model/deployment/local/health_checker.py +428 -0
  43. isa_model/deployment/local/provider.py +586 -0
  44. isa_model/deployment/local/tensorrt_service.py +621 -0
  45. isa_model/deployment/local/transformers_service.py +644 -0
  46. isa_model/deployment/local/vllm_service.py +527 -0
  47. isa_model/deployment/modal/__init__.py +8 -0
  48. isa_model/deployment/modal/config.py +136 -0
  49. isa_model/deployment/modal/deployer.py +894 -0
  50. isa_model/deployment/modal/services/__init__.py +3 -0
  51. isa_model/deployment/modal/services/audio/__init__.py +1 -0
  52. isa_model/deployment/modal/services/audio/isa_audio_chatTTS_service.py +520 -0
  53. isa_model/deployment/modal/services/audio/isa_audio_openvoice_service.py +758 -0
  54. isa_model/deployment/modal/services/audio/isa_audio_service_v2.py +1044 -0
  55. isa_model/deployment/modal/services/embedding/__init__.py +1 -0
  56. isa_model/deployment/modal/services/embedding/isa_embed_rerank_service.py +296 -0
  57. isa_model/deployment/modal/services/llm/__init__.py +1 -0
  58. isa_model/deployment/modal/services/llm/isa_llm_service.py +424 -0
  59. isa_model/deployment/modal/services/video/__init__.py +1 -0
  60. isa_model/deployment/modal/services/video/isa_video_hunyuan_service.py +423 -0
  61. isa_model/deployment/modal/services/vision/__init__.py +1 -0
  62. isa_model/deployment/modal/services/vision/isa_vision_ocr_service.py +519 -0
  63. isa_model/deployment/modal/services/vision/isa_vision_qwen25_service.py +709 -0
  64. isa_model/deployment/modal/services/vision/isa_vision_table_service.py +676 -0
  65. isa_model/deployment/modal/services/vision/isa_vision_ui_service.py +833 -0
  66. isa_model/deployment/modal/services/vision/isa_vision_ui_service_optimized.py +660 -0
  67. isa_model/deployment/models/org-org-acme-corp-tenant-a-service-llm-20250825-225822/tenant-a-service_modal_service.py +48 -0
  68. isa_model/deployment/models/org-test-org-123-prefix-test-service-llm-20250825-225822/prefix-test-service_modal_service.py +48 -0
  69. isa_model/deployment/models/test-llm-service-llm-20250825-204442/test-llm-service_modal_service.py +48 -0
  70. isa_model/deployment/models/test-monitoring-gpt2-llm-20250825-212906/test-monitoring-gpt2_modal_service.py +48 -0
  71. isa_model/deployment/models/test-monitoring-gpt2-llm-20250825-213009/test-monitoring-gpt2_modal_service.py +48 -0
  72. isa_model/deployment/storage/__init__.py +5 -0
  73. isa_model/deployment/storage/deployment_repository.py +824 -0
  74. isa_model/deployment/triton/__init__.py +10 -0
  75. isa_model/deployment/triton/config.py +196 -0
  76. isa_model/deployment/triton/configs/__init__.py +1 -0
  77. isa_model/deployment/triton/provider.py +512 -0
  78. isa_model/deployment/triton/scripts/__init__.py +1 -0
  79. isa_model/deployment/triton/templates/__init__.py +1 -0
  80. isa_model/inference/__init__.py +47 -1
  81. isa_model/inference/ai_factory.py +179 -16
  82. isa_model/inference/legacy_services/__init__.py +21 -0
  83. isa_model/inference/legacy_services/model_evaluation.py +637 -0
  84. isa_model/inference/legacy_services/model_service.py +573 -0
  85. isa_model/inference/legacy_services/model_serving.py +717 -0
  86. isa_model/inference/legacy_services/model_training.py +561 -0
  87. isa_model/inference/models/__init__.py +21 -0
  88. isa_model/inference/models/inference_config.py +551 -0
  89. isa_model/inference/models/inference_record.py +675 -0
  90. isa_model/inference/models/performance_models.py +714 -0
  91. isa_model/inference/repositories/__init__.py +9 -0
  92. isa_model/inference/repositories/inference_repository.py +828 -0
  93. isa_model/inference/services/audio/__init__.py +21 -0
  94. isa_model/inference/services/audio/base_realtime_service.py +225 -0
  95. isa_model/inference/services/audio/base_stt_service.py +184 -11
  96. isa_model/inference/services/audio/isa_tts_service.py +0 -0
  97. isa_model/inference/services/audio/openai_realtime_service.py +320 -124
  98. isa_model/inference/services/audio/openai_stt_service.py +53 -11
  99. isa_model/inference/services/base_service.py +17 -1
  100. isa_model/inference/services/custom_model_manager.py +277 -0
  101. isa_model/inference/services/embedding/__init__.py +13 -0
  102. isa_model/inference/services/embedding/base_embed_service.py +111 -8
  103. isa_model/inference/services/embedding/isa_embed_service.py +305 -0
  104. isa_model/inference/services/embedding/ollama_embed_service.py +15 -3
  105. isa_model/inference/services/embedding/openai_embed_service.py +2 -4
  106. isa_model/inference/services/embedding/resilient_embed_service.py +285 -0
  107. isa_model/inference/services/embedding/tests/test_embedding.py +222 -0
  108. isa_model/inference/services/img/__init__.py +2 -2
  109. isa_model/inference/services/img/base_image_gen_service.py +24 -7
  110. isa_model/inference/services/img/replicate_image_gen_service.py +84 -422
  111. isa_model/inference/services/img/services/replicate_face_swap.py +193 -0
  112. isa_model/inference/services/img/services/replicate_flux.py +226 -0
  113. isa_model/inference/services/img/services/replicate_flux_kontext.py +219 -0
  114. isa_model/inference/services/img/services/replicate_sticker_maker.py +249 -0
  115. isa_model/inference/services/img/tests/test_img_client.py +297 -0
  116. isa_model/inference/services/llm/__init__.py +10 -2
  117. isa_model/inference/services/llm/base_llm_service.py +361 -26
  118. isa_model/inference/services/llm/cerebras_llm_service.py +628 -0
  119. isa_model/inference/services/llm/helpers/llm_adapter.py +71 -12
  120. isa_model/inference/services/llm/helpers/llm_prompts.py +342 -0
  121. isa_model/inference/services/llm/helpers/llm_utils.py +321 -23
  122. isa_model/inference/services/llm/huggingface_llm_service.py +581 -0
  123. isa_model/inference/services/llm/local_llm_service.py +747 -0
  124. isa_model/inference/services/llm/ollama_llm_service.py +11 -3
  125. isa_model/inference/services/llm/openai_llm_service.py +670 -56
  126. isa_model/inference/services/llm/yyds_llm_service.py +10 -3
  127. isa_model/inference/services/vision/__init__.py +27 -6
  128. isa_model/inference/services/vision/base_vision_service.py +118 -185
  129. isa_model/inference/services/vision/blip_vision_service.py +359 -0
  130. isa_model/inference/services/vision/helpers/image_utils.py +19 -10
  131. isa_model/inference/services/vision/isa_vision_service.py +634 -0
  132. isa_model/inference/services/vision/openai_vision_service.py +19 -10
  133. isa_model/inference/services/vision/tests/test_ocr_client.py +284 -0
  134. isa_model/inference/services/vision/vgg16_vision_service.py +257 -0
  135. isa_model/serving/api/cache_manager.py +245 -0
  136. isa_model/serving/api/dependencies/__init__.py +1 -0
  137. isa_model/serving/api/dependencies/auth.py +194 -0
  138. isa_model/serving/api/dependencies/database.py +139 -0
  139. isa_model/serving/api/error_handlers.py +284 -0
  140. isa_model/serving/api/fastapi_server.py +240 -18
  141. isa_model/serving/api/middleware/auth.py +317 -0
  142. isa_model/serving/api/middleware/security.py +268 -0
  143. isa_model/serving/api/middleware/tenant_context.py +414 -0
  144. isa_model/serving/api/routes/analytics.py +489 -0
  145. isa_model/serving/api/routes/config.py +645 -0
  146. isa_model/serving/api/routes/deployment_billing.py +315 -0
  147. isa_model/serving/api/routes/deployments.py +475 -0
  148. isa_model/serving/api/routes/gpu_gateway.py +440 -0
  149. isa_model/serving/api/routes/health.py +32 -12
  150. isa_model/serving/api/routes/inference_monitoring.py +486 -0
  151. isa_model/serving/api/routes/local_deployments.py +448 -0
  152. isa_model/serving/api/routes/logs.py +430 -0
  153. isa_model/serving/api/routes/settings.py +582 -0
  154. isa_model/serving/api/routes/tenants.py +575 -0
  155. isa_model/serving/api/routes/unified.py +992 -171
  156. isa_model/serving/api/routes/webhooks.py +479 -0
  157. isa_model/serving/api/startup.py +318 -0
  158. isa_model/serving/modal_proxy_server.py +249 -0
  159. isa_model/utils/gpu_utils.py +311 -0
  160. {isa_model-0.3.91.dist-info → isa_model-0.4.3.dist-info}/METADATA +76 -22
  161. isa_model-0.4.3.dist-info/RECORD +193 -0
  162. isa_model/deployment/cloud/__init__.py +0 -9
  163. isa_model/deployment/cloud/modal/__init__.py +0 -10
  164. isa_model/deployment/cloud/modal/isa_vision_doc_service.py +0 -766
  165. isa_model/deployment/cloud/modal/isa_vision_table_service.py +0 -532
  166. isa_model/deployment/cloud/modal/isa_vision_ui_service.py +0 -406
  167. isa_model/deployment/cloud/modal/register_models.py +0 -321
  168. isa_model/deployment/core/deployment_config.py +0 -356
  169. isa_model/deployment/core/isa_deployment_service.py +0 -401
  170. isa_model/deployment/gpu_int8_ds8/app/server.py +0 -66
  171. isa_model/deployment/gpu_int8_ds8/scripts/test_client.py +0 -43
  172. isa_model/deployment/gpu_int8_ds8/scripts/test_client_os.py +0 -35
  173. isa_model/deployment/runtime/deployed_service.py +0 -338
  174. isa_model/deployment/services/__init__.py +0 -9
  175. isa_model/deployment/services/auto_deploy_vision_service.py +0 -538
  176. isa_model/deployment/services/model_service.py +0 -332
  177. isa_model/deployment/services/service_monitor.py +0 -356
  178. isa_model/deployment/services/service_registry.py +0 -527
  179. isa_model/eval/__init__.py +0 -92
  180. isa_model/eval/benchmarks.py +0 -469
  181. isa_model/eval/config/__init__.py +0 -10
  182. isa_model/eval/config/evaluation_config.py +0 -108
  183. isa_model/eval/evaluators/__init__.py +0 -18
  184. isa_model/eval/evaluators/base_evaluator.py +0 -503
  185. isa_model/eval/evaluators/llm_evaluator.py +0 -472
  186. isa_model/eval/factory.py +0 -531
  187. isa_model/eval/infrastructure/__init__.py +0 -24
  188. isa_model/eval/infrastructure/experiment_tracker.py +0 -466
  189. isa_model/eval/metrics.py +0 -798
  190. isa_model/inference/adapter/unified_api.py +0 -248
  191. isa_model/inference/services/helpers/stacked_config.py +0 -148
  192. isa_model/inference/services/img/flux_professional_service.py +0 -603
  193. isa_model/inference/services/img/helpers/base_stacked_service.py +0 -274
  194. isa_model/inference/services/others/table_transformer_service.py +0 -61
  195. isa_model/inference/services/vision/doc_analysis_service.py +0 -640
  196. isa_model/inference/services/vision/helpers/base_stacked_service.py +0 -274
  197. isa_model/inference/services/vision/ui_analysis_service.py +0 -823
  198. isa_model/scripts/inference_tracker.py +0 -283
  199. isa_model/scripts/mlflow_manager.py +0 -379
  200. isa_model/scripts/model_registry.py +0 -465
  201. isa_model/scripts/register_models.py +0 -370
  202. isa_model/scripts/register_models_with_embeddings.py +0 -510
  203. isa_model/scripts/start_mlflow.py +0 -95
  204. isa_model/scripts/training_tracker.py +0 -257
  205. isa_model/training/__init__.py +0 -74
  206. isa_model/training/annotation/annotation_schema.py +0 -47
  207. isa_model/training/annotation/processors/annotation_processor.py +0 -126
  208. isa_model/training/annotation/storage/dataset_manager.py +0 -131
  209. isa_model/training/annotation/storage/dataset_schema.py +0 -44
  210. isa_model/training/annotation/tests/test_annotation_flow.py +0 -109
  211. isa_model/training/annotation/tests/test_minio copy.py +0 -113
  212. isa_model/training/annotation/tests/test_minio_upload.py +0 -43
  213. isa_model/training/annotation/views/annotation_controller.py +0 -158
  214. isa_model/training/cloud/__init__.py +0 -22
  215. isa_model/training/cloud/job_orchestrator.py +0 -402
  216. isa_model/training/cloud/runpod_trainer.py +0 -454
  217. isa_model/training/cloud/storage_manager.py +0 -482
  218. isa_model/training/core/__init__.py +0 -23
  219. isa_model/training/core/config.py +0 -181
  220. isa_model/training/core/dataset.py +0 -222
  221. isa_model/training/core/trainer.py +0 -720
  222. isa_model/training/core/utils.py +0 -213
  223. isa_model/training/factory.py +0 -424
  224. isa_model-0.3.91.dist-info/RECORD +0 -138
  225. /isa_model/{core/storage/minio_storage.py → deployment/modal/services/audio/isa_audio_fish_service.py} +0 -0
  226. /isa_model/deployment/{services → modal/services/vision}/simple_auto_deploy_vision_service.py +0 -0
  227. {isa_model-0.3.91.dist-info → isa_model-0.4.3.dist-info}/WHEEL +0 -0
  228. {isa_model-0.3.91.dist-info → isa_model-0.4.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,717 @@
1
+ """
2
+ Model Serving Service - Step 3 of Model Pipeline
3
+ Handles model deployment, serving, and real-time predictions
4
+ """
5
+
6
+ import pandas as pd
7
+ import numpy as np
8
+ from typing import Dict, List, Any, Optional, Union
9
+ import logging
10
+ from dataclasses import dataclass, field
11
+ from datetime import datetime, timedelta
12
+ import json
13
+ import threading
14
+ import time
15
+ from concurrent.futures import ThreadPoolExecutor
16
+ from pathlib import Path
17
+
18
+ try:
19
+ import joblib
20
+ JOBLIB_AVAILABLE = True
21
+ except ImportError:
22
+ JOBLIB_AVAILABLE = False
23
+ logging.warning("joblib not available. Model serialization will be limited.")
24
+
25
+ try:
26
+ import pickle
27
+ PICKLE_AVAILABLE = True
28
+ except ImportError:
29
+ PICKLE_AVAILABLE = False
30
+
31
+ logger = logging.getLogger(__name__)
32
+
33
+ @dataclass
34
+ class ServingConfig:
35
+ """Configuration for model serving"""
36
+ model_id: str
37
+ serving_mode: str = "batch" # batch, real_time, api
38
+ cache_predictions: bool = True
39
+ cache_ttl_seconds: int = 3600
40
+ batch_size: int = 1000
41
+ enable_monitoring: bool = True
42
+ preprocessing_required: bool = True
43
+
44
+ @dataclass
45
+ class ServingResult:
46
+ """Result of model serving operations"""
47
+ success: bool
48
+ serving_info: Dict[str, Any] = field(default_factory=dict)
49
+ predictions: Optional[Union[List, np.ndarray, pd.DataFrame]] = None
50
+ serving_metadata: Dict[str, Any] = field(default_factory=dict)
51
+ performance_metrics: Dict[str, Any] = field(default_factory=dict)
52
+ warnings: List[str] = field(default_factory=list)
53
+ errors: List[str] = field(default_factory=list)
54
+
55
+ class ModelCache:
56
+ """Thread-safe model cache with TTL"""
57
+
58
+ def __init__(self, max_size: int = 10, default_ttl: int = 3600):
59
+ self.max_size = max_size
60
+ self.default_ttl = default_ttl
61
+ self.cache = {}
62
+ self.access_times = {}
63
+ self.creation_times = {}
64
+ self._lock = threading.RLock()
65
+
66
+ def get(self, model_id: str) -> Optional[Any]:
67
+ """Get model from cache"""
68
+ with self._lock:
69
+ if model_id in self.cache:
70
+ # Check TTL
71
+ if time.time() - self.creation_times[model_id] > self.default_ttl:
72
+ self._remove(model_id)
73
+ return None
74
+
75
+ # Update access time
76
+ self.access_times[model_id] = time.time()
77
+ return self.cache[model_id]
78
+ return None
79
+
80
+ def put(self, model_id: str, model: Any) -> None:
81
+ """Put model in cache"""
82
+ with self._lock:
83
+ # Check if we need to evict
84
+ if len(self.cache) >= self.max_size and model_id not in self.cache:
85
+ self._evict_lru()
86
+
87
+ self.cache[model_id] = model
88
+ self.access_times[model_id] = time.time()
89
+ self.creation_times[model_id] = time.time()
90
+
91
+ def remove(self, model_id: str) -> bool:
92
+ """Remove model from cache"""
93
+ with self._lock:
94
+ return self._remove(model_id)
95
+
96
+ def _remove(self, model_id: str) -> bool:
97
+ """Internal remove method"""
98
+ if model_id in self.cache:
99
+ del self.cache[model_id]
100
+ del self.access_times[model_id]
101
+ del self.creation_times[model_id]
102
+ return True
103
+ return False
104
+
105
+ def _evict_lru(self) -> None:
106
+ """Evict least recently used item"""
107
+ if self.access_times:
108
+ lru_model = min(self.access_times.items(), key=lambda x: x[1])[0]
109
+ self._remove(lru_model)
110
+
111
+ def clear(self) -> None:
112
+ """Clear all cached models"""
113
+ with self._lock:
114
+ self.cache.clear()
115
+ self.access_times.clear()
116
+ self.creation_times.clear()
117
+
118
+ def get_stats(self) -> Dict[str, Any]:
119
+ """Get cache statistics"""
120
+ with self._lock:
121
+ return {
122
+ 'cache_size': len(self.cache),
123
+ 'max_size': self.max_size,
124
+ 'cached_models': list(self.cache.keys()),
125
+ 'hit_rate': getattr(self, '_hit_count', 0) / max(getattr(self, '_access_count', 1), 1)
126
+ }
127
+
128
+ class ModelServingService:
129
+ """
130
+ Model Serving Service - Step 3 of Model Pipeline
131
+
132
+ Handles:
133
+ - Model deployment and serving infrastructure
134
+ - Real-time and batch predictions
135
+ - Model caching and performance optimization
136
+ - Serving monitoring and analytics
137
+ """
138
+
139
+ def __init__(self, cache_size: int = 10, cache_ttl: int = 3600):
140
+ self.execution_stats = {
141
+ 'total_serving_operations': 0,
142
+ 'successful_serving_operations': 0,
143
+ 'failed_serving_operations': 0,
144
+ 'total_predictions_made': 0,
145
+ 'average_prediction_time': 0.0
146
+ }
147
+
148
+ # Model cache for fast serving
149
+ self.model_cache = ModelCache(max_size=cache_size, default_ttl=cache_ttl)
150
+
151
+ # Serving configuration for each model
152
+ self.serving_configs = {}
153
+
154
+ # Prediction history for monitoring
155
+ self.prediction_history = {}
156
+
157
+ # Thread pool for concurrent predictions (lazy initialized)
158
+ self._thread_pool = None
159
+ self._thread_pool_lock = threading.Lock()
160
+
161
+ logger.info("Model Serving Service initialized")
162
+
163
+ @property
164
+ def thread_pool(self):
165
+ """Lazy initialization of thread pool to avoid mutex issues"""
166
+ if self._thread_pool is None:
167
+ with self._thread_pool_lock:
168
+ if self._thread_pool is None:
169
+ self._thread_pool = ThreadPoolExecutor(max_workers=4)
170
+ return self._thread_pool
171
+
172
+ def deploy_model(self,
173
+ model_info: Dict[str, Any],
174
+ serving_config: ServingConfig) -> ServingResult:
175
+ """
176
+ Deploy a trained model for serving
177
+
178
+ Args:
179
+ model_info: Information about the trained model
180
+ serving_config: Configuration for serving
181
+
182
+ Returns:
183
+ ServingResult with deployment information
184
+ """
185
+ start_time = datetime.now()
186
+
187
+ try:
188
+ model_id = serving_config.model_id
189
+ logger.info(f"Deploying model for serving: {model_id}")
190
+
191
+ # Initialize result
192
+ result = ServingResult(
193
+ success=False,
194
+ serving_metadata={
195
+ 'start_time': start_time,
196
+ 'model_id': model_id,
197
+ 'serving_mode': serving_config.serving_mode
198
+ }
199
+ )
200
+
201
+ # Validate model info
202
+ if not model_info or 'processor' not in model_info:
203
+ result.errors.append("Valid model information required for deployment")
204
+ return self._finalize_serving_result(result, start_time)
205
+
206
+ # Store serving configuration
207
+ self.serving_configs[model_id] = serving_config
208
+
209
+ # Load model into cache
210
+ cache_result = self._load_model_to_cache(model_info, serving_config)
211
+ if not cache_result['success']:
212
+ result.errors.extend(cache_result['errors'])
213
+ return self._finalize_serving_result(result, start_time)
214
+
215
+ # Initialize prediction history
216
+ self.prediction_history[model_id] = {
217
+ 'total_predictions': 0,
218
+ 'successful_predictions': 0,
219
+ 'failed_predictions': 0,
220
+ 'last_prediction': None,
221
+ 'deployment_time': start_time,
222
+ 'performance_metrics': {}
223
+ }
224
+
225
+ # Setup serving endpoint based on mode
226
+ serving_setup = self._setup_serving_endpoint(serving_config)
227
+
228
+ # Success
229
+ result.success = True
230
+ result.serving_info = {
231
+ 'model_id': model_id,
232
+ 'serving_mode': serving_config.serving_mode,
233
+ 'cache_enabled': serving_config.cache_predictions,
234
+ 'deployment_status': 'active',
235
+ 'serving_endpoint': serving_setup.get('endpoint'),
236
+ 'batch_size': serving_config.batch_size
237
+ }
238
+
239
+ return self._finalize_serving_result(result, start_time)
240
+
241
+ except Exception as e:
242
+ logger.error(f"Model deployment failed: {e}")
243
+ result.errors.append(f"Deployment error: {str(e)}")
244
+ return self._finalize_serving_result(result, start_time)
245
+
246
+ def predict(self,
247
+ model_id: str,
248
+ input_data: Union[pd.DataFrame, Dict[str, Any], List[Dict[str, Any]]],
249
+ prediction_config: Optional[Dict[str, Any]] = None) -> ServingResult:
250
+ """
251
+ Make predictions using a deployed model
252
+
253
+ Args:
254
+ model_id: ID of the deployed model
255
+ input_data: Input data for prediction
256
+ prediction_config: Optional configuration for prediction
257
+
258
+ Returns:
259
+ ServingResult with predictions
260
+ """
261
+ start_time = datetime.now()
262
+ prediction_config = prediction_config or {}
263
+
264
+ try:
265
+ logger.info(f"Making predictions with model: {model_id}")
266
+
267
+ # Initialize result
268
+ result = ServingResult(
269
+ success=False,
270
+ serving_metadata={
271
+ 'start_time': start_time,
272
+ 'model_id': model_id,
273
+ 'prediction_mode': 'single' if isinstance(input_data, dict) else 'batch'
274
+ }
275
+ )
276
+
277
+ # Check if model is deployed
278
+ if model_id not in self.serving_configs:
279
+ result.errors.append(f"Model {model_id} is not deployed")
280
+ return self._finalize_serving_result(result, start_time)
281
+
282
+ # Get model from cache
283
+ cached_model = self.model_cache.get(model_id)
284
+ if not cached_model:
285
+ result.errors.append(f"Model {model_id} not found in cache")
286
+ return self._finalize_serving_result(result, start_time)
287
+
288
+ # Prepare input data
289
+ prepared_data = self._prepare_input_data(input_data, cached_model, prediction_config)
290
+ if not prepared_data['success']:
291
+ result.errors.extend(prepared_data['errors'])
292
+ return self._finalize_serving_result(result, start_time)
293
+
294
+ X_input = prepared_data['data']
295
+
296
+ # Make predictions
297
+ prediction_result = self._make_predictions(
298
+ cached_model, X_input, model_id, prediction_config
299
+ )
300
+
301
+ if not prediction_result['success']:
302
+ result.errors.extend(prediction_result['errors'])
303
+ return self._finalize_serving_result(result, start_time)
304
+
305
+ # Update serving statistics
306
+ self._update_prediction_statistics(model_id, True, start_time)
307
+
308
+ # Success
309
+ result.success = True
310
+ result.predictions = prediction_result['predictions']
311
+ result.serving_info = {
312
+ 'model_id': model_id,
313
+ 'prediction_count': prediction_result['prediction_count'],
314
+ 'prediction_type': prediction_result['prediction_type'],
315
+ 'confidence_scores': prediction_result.get('confidence_scores'),
316
+ 'preprocessing_applied': prepared_data.get('preprocessing_applied', False)
317
+ }
318
+
319
+ return self._finalize_serving_result(result, start_time)
320
+
321
+ except Exception as e:
322
+ logger.error(f"Prediction failed: {e}")
323
+ result.errors.append(f"Prediction error: {str(e)}")
324
+ self._update_prediction_statistics(model_id, False, start_time)
325
+ return self._finalize_serving_result(result, start_time)
326
+
327
+ def batch_predict(self,
328
+ model_id: str,
329
+ input_data: pd.DataFrame,
330
+ batch_config: Optional[Dict[str, Any]] = None) -> ServingResult:
331
+ """Make batch predictions efficiently"""
332
+ batch_config = batch_config or {}
333
+ serving_config = self.serving_configs.get(model_id)
334
+
335
+ if not serving_config:
336
+ return ServingResult(
337
+ success=False,
338
+ errors=[f"Model {model_id} not deployed"]
339
+ )
340
+
341
+ batch_size = batch_config.get('batch_size', serving_config.batch_size)
342
+
343
+ # Process in batches for large datasets
344
+ if len(input_data) > batch_size:
345
+ return self._process_large_batch(model_id, input_data, batch_size, batch_config)
346
+ else:
347
+ return self.predict(model_id, input_data, batch_config)
348
+
349
+ def get_serving_status(self, model_id: Optional[str] = None) -> Dict[str, Any]:
350
+ """Get serving status for models"""
351
+ try:
352
+ if model_id:
353
+ # Status for specific model
354
+ if model_id not in self.serving_configs:
355
+ return {'error': f'Model {model_id} not deployed'}
356
+
357
+ config = self.serving_configs[model_id]
358
+ history = self.prediction_history.get(model_id, {})
359
+
360
+ return {
361
+ 'model_id': model_id,
362
+ 'serving_mode': config.serving_mode,
363
+ 'deployment_time': history.get('deployment_time'),
364
+ 'total_predictions': history.get('total_predictions', 0),
365
+ 'success_rate': self._calculate_success_rate(history),
366
+ 'last_prediction': history.get('last_prediction'),
367
+ 'cache_status': 'cached' if self.model_cache.get(model_id) else 'not_cached',
368
+ 'performance_metrics': history.get('performance_metrics', {})
369
+ }
370
+ else:
371
+ # Status for all deployed models
372
+ all_status = {}
373
+ for mid in self.serving_configs.keys():
374
+ all_status[mid] = self.get_serving_status(mid)
375
+
376
+ return {
377
+ 'deployed_models': len(self.serving_configs),
378
+ 'cache_stats': self.model_cache.get_stats(),
379
+ 'service_stats': self.get_execution_stats(),
380
+ 'individual_models': all_status
381
+ }
382
+
383
+ except Exception as e:
384
+ return {'error': str(e)}
385
+
386
+ def undeploy_model(self, model_id: str) -> bool:
387
+ """Remove model from serving"""
388
+ try:
389
+ # Remove from cache
390
+ self.model_cache.remove(model_id)
391
+
392
+ # Remove serving config
393
+ if model_id in self.serving_configs:
394
+ del self.serving_configs[model_id]
395
+
396
+ # Clean up prediction history
397
+ if model_id in self.prediction_history:
398
+ del self.prediction_history[model_id]
399
+
400
+ logger.info(f"Model {model_id} undeployed successfully")
401
+ return True
402
+
403
+ except Exception as e:
404
+ logger.error(f"Failed to undeploy model {model_id}: {e}")
405
+ return False
406
+
407
+ def save_model(self,
408
+ model_id: str,
409
+ file_path: str,
410
+ format: str = "joblib") -> bool:
411
+ """Save a deployed model to disk"""
412
+ try:
413
+ cached_model = self.model_cache.get(model_id)
414
+ if not cached_model:
415
+ logger.error(f"Model {model_id} not found in cache")
416
+ return False
417
+
418
+ if format == "joblib" and JOBLIB_AVAILABLE:
419
+ joblib.dump(cached_model['model_instance'], file_path)
420
+ elif format == "pickle" and PICKLE_AVAILABLE:
421
+ with open(file_path, 'wb') as f:
422
+ pickle.dump(cached_model['model_instance'], f)
423
+ else:
424
+ logger.error(f"Unsupported format {format} or library not available")
425
+ return False
426
+
427
+ logger.info(f"Model {model_id} saved to {file_path}")
428
+ return True
429
+
430
+ except Exception as e:
431
+ logger.error(f"Failed to save model: {e}")
432
+ return False
433
+
434
+ def load_model_from_file(self,
435
+ model_id: str,
436
+ file_path: str,
437
+ format: str = "joblib",
438
+ serving_config: Optional[ServingConfig] = None) -> bool:
439
+ """Load a model from disk for serving"""
440
+ try:
441
+ if format == "joblib" and JOBLIB_AVAILABLE:
442
+ model_instance = joblib.load(file_path)
443
+ elif format == "pickle" and PICKLE_AVAILABLE:
444
+ with open(file_path, 'rb') as f:
445
+ model_instance = pickle.load(f)
446
+ else:
447
+ logger.error(f"Unsupported format {format} or library not available")
448
+ return False
449
+
450
+ # Create model info structure
451
+ model_info = {
452
+ 'model_instance': model_instance,
453
+ 'processor': None, # Would need to be provided separately
454
+ 'model_id': model_id,
455
+ 'loaded_from_file': True,
456
+ 'file_path': file_path
457
+ }
458
+
459
+ # Use default serving config if not provided
460
+ if not serving_config:
461
+ serving_config = ServingConfig(model_id=model_id)
462
+
463
+ # Deploy the loaded model
464
+ result = self.deploy_model(model_info, serving_config)
465
+ return result.success
466
+
467
+ except Exception as e:
468
+ logger.error(f"Failed to load model from file: {e}")
469
+ return False
470
+
471
+ def _load_model_to_cache(self,
472
+ model_info: Dict[str, Any],
473
+ serving_config: ServingConfig) -> Dict[str, Any]:
474
+ """Load model to cache for serving"""
475
+ try:
476
+ model_id = serving_config.model_id
477
+
478
+ # Package model with metadata
479
+ cached_model = {
480
+ 'model_instance': model_info.get('model_instance'),
481
+ 'processor': model_info.get('processor'),
482
+ 'problem_type': model_info.get('problem_type'),
483
+ 'target_column': model_info.get('target_column'),
484
+ 'training_config': model_info.get('training_config'),
485
+ 'loaded_at': datetime.now()
486
+ }
487
+
488
+ # Add to cache
489
+ self.model_cache.put(model_id, cached_model)
490
+
491
+ return {'success': True}
492
+
493
+ except Exception as e:
494
+ return {
495
+ 'success': False,
496
+ 'errors': [f'Failed to load model to cache: {str(e)}']
497
+ }
498
+
499
+ def _setup_serving_endpoint(self, serving_config: ServingConfig) -> Dict[str, Any]:
500
+ """Setup serving endpoint based on configuration"""
501
+ # For now, return basic endpoint info
502
+ # In a full implementation, this would setup REST API endpoints
503
+ return {
504
+ 'endpoint': f'/predict/{serving_config.model_id}',
505
+ 'methods': ['POST'],
506
+ 'serving_mode': serving_config.serving_mode
507
+ }
508
+
509
+ def _prepare_input_data(self,
510
+ input_data: Union[pd.DataFrame, Dict, List],
511
+ cached_model: Dict[str, Any],
512
+ config: Dict[str, Any]) -> Dict[str, Any]:
513
+ """Prepare input data for prediction"""
514
+ try:
515
+ # Convert input to DataFrame if needed
516
+ if isinstance(input_data, dict):
517
+ df_input = pd.DataFrame([input_data])
518
+ elif isinstance(input_data, list):
519
+ df_input = pd.DataFrame(input_data)
520
+ else:
521
+ df_input = input_data.copy()
522
+
523
+ # Apply preprocessing if available and required
524
+ preprocessing_applied = False
525
+ processor = cached_model.get('processor')
526
+
527
+ if processor and hasattr(processor, '_basic_preprocessing'):
528
+ df_input = processor._basic_preprocessing(df_input)
529
+ preprocessing_applied = True
530
+
531
+ return {
532
+ 'success': True,
533
+ 'data': df_input,
534
+ 'preprocessing_applied': preprocessing_applied
535
+ }
536
+
537
+ except Exception as e:
538
+ return {
539
+ 'success': False,
540
+ 'errors': [f'Data preparation failed: {str(e)}']
541
+ }
542
+
543
+ def _make_predictions(self,
544
+ cached_model: Dict[str, Any],
545
+ X_input: pd.DataFrame,
546
+ model_id: str,
547
+ config: Dict[str, Any]) -> Dict[str, Any]:
548
+ """Make actual predictions"""
549
+ try:
550
+ model_instance = cached_model['model_instance']
551
+
552
+ if not model_instance:
553
+ return {
554
+ 'success': False,
555
+ 'errors': ['Model instance not available']
556
+ }
557
+
558
+ # Make predictions
559
+ predictions = model_instance.predict(X_input)
560
+
561
+ result = {
562
+ 'success': True,
563
+ 'predictions': predictions.tolist() if hasattr(predictions, 'tolist') else predictions,
564
+ 'prediction_count': len(predictions) if hasattr(predictions, '__len__') else 1,
565
+ 'prediction_type': 'batch' if len(X_input) > 1 else 'single'
566
+ }
567
+
568
+ # Add confidence scores if available
569
+ if config.get('include_probabilities', False) and hasattr(model_instance, 'predict_proba'):
570
+ try:
571
+ probabilities = model_instance.predict_proba(X_input)
572
+ result['confidence_scores'] = probabilities.tolist()
573
+ except:
574
+ pass # Skip if not applicable
575
+
576
+ return result
577
+
578
+ except Exception as e:
579
+ return {
580
+ 'success': False,
581
+ 'errors': [f'Prediction execution failed: {str(e)}']
582
+ }
583
+
584
+ def _process_large_batch(self,
585
+ model_id: str,
586
+ input_data: pd.DataFrame,
587
+ batch_size: int,
588
+ config: Dict[str, Any]) -> ServingResult:
589
+ """Process large datasets in batches"""
590
+ all_predictions = []
591
+ total_batches = (len(input_data) + batch_size - 1) // batch_size
592
+
593
+ start_time = datetime.now()
594
+
595
+ try:
596
+ for i in range(0, len(input_data), batch_size):
597
+ batch_data = input_data.iloc[i:i+batch_size]
598
+
599
+ batch_result = self.predict(model_id, batch_data, config)
600
+
601
+ if batch_result.success:
602
+ all_predictions.extend(batch_result.predictions)
603
+ else:
604
+ return ServingResult(
605
+ success=False,
606
+ errors=[f"Batch {i//batch_size + 1} failed: {batch_result.errors}"]
607
+ )
608
+
609
+ return ServingResult(
610
+ success=True,
611
+ predictions=all_predictions,
612
+ serving_info={
613
+ 'model_id': model_id,
614
+ 'total_predictions': len(all_predictions),
615
+ 'batch_count': total_batches,
616
+ 'batch_size': batch_size
617
+ },
618
+ performance_metrics={
619
+ 'total_duration': (datetime.now() - start_time).total_seconds(),
620
+ 'predictions_per_second': len(all_predictions) / max((datetime.now() - start_time).total_seconds(), 0.001)
621
+ }
622
+ )
623
+
624
+ except Exception as e:
625
+ return ServingResult(
626
+ success=False,
627
+ errors=[f"Batch processing failed: {str(e)}"]
628
+ )
629
+
630
+ def _update_prediction_statistics(self,
631
+ model_id: str,
632
+ success: bool,
633
+ start_time: datetime):
634
+ """Update prediction statistics"""
635
+ if model_id in self.prediction_history:
636
+ history = self.prediction_history[model_id]
637
+ history['total_predictions'] += 1
638
+ history['last_prediction'] = datetime.now()
639
+
640
+ if success:
641
+ history['successful_predictions'] += 1
642
+ else:
643
+ history['failed_predictions'] += 1
644
+
645
+ # Update average prediction time
646
+ duration = (datetime.now() - start_time).total_seconds()
647
+ old_avg = history['performance_metrics'].get('average_prediction_time', 0)
648
+ total = history['total_predictions']
649
+ history['performance_metrics']['average_prediction_time'] = (old_avg * (total - 1) + duration) / total
650
+
651
+ def _calculate_success_rate(self, history: Dict[str, Any]) -> float:
652
+ """Calculate success rate for predictions"""
653
+ total = history.get('total_predictions', 0)
654
+ successful = history.get('successful_predictions', 0)
655
+ return successful / max(total, 1)
656
+
657
+ def _finalize_serving_result(self,
658
+ result: ServingResult,
659
+ start_time: datetime) -> ServingResult:
660
+ """Finalize serving result with timing and stats"""
661
+ end_time = datetime.now()
662
+ duration = (end_time - start_time).total_seconds()
663
+
664
+ # Update performance metrics
665
+ result.performance_metrics['serving_duration_seconds'] = duration
666
+ result.performance_metrics['end_time'] = end_time
667
+ result.serving_metadata['end_time'] = end_time
668
+ result.serving_metadata['duration_seconds'] = duration
669
+
670
+ # Update execution stats
671
+ self.execution_stats['total_serving_operations'] += 1
672
+ if result.success:
673
+ self.execution_stats['successful_serving_operations'] += 1
674
+
675
+ # Count predictions
676
+ if result.predictions is not None:
677
+ if hasattr(result.predictions, '__len__'):
678
+ self.execution_stats['total_predictions_made'] += len(result.predictions)
679
+ else:
680
+ self.execution_stats['total_predictions_made'] += 1
681
+ else:
682
+ self.execution_stats['failed_serving_operations'] += 1
683
+
684
+ # Update average prediction time
685
+ total = self.execution_stats['total_serving_operations']
686
+ old_avg = self.execution_stats['average_prediction_time']
687
+ self.execution_stats['average_prediction_time'] = (old_avg * (total - 1) + duration) / total
688
+
689
+ logger.info(f"Serving completed: success={result.success}, duration={duration:.2f}s")
690
+ return result
691
+
692
+ def get_execution_stats(self) -> Dict[str, Any]:
693
+ """Get service execution statistics"""
694
+ return {
695
+ **self.execution_stats,
696
+ 'success_rate': (
697
+ self.execution_stats['successful_serving_operations'] /
698
+ max(1, self.execution_stats['total_serving_operations'])
699
+ ),
700
+ 'average_predictions_per_operation': (
701
+ self.execution_stats['total_predictions_made'] /
702
+ max(1, self.execution_stats['successful_serving_operations'])
703
+ )
704
+ }
705
+
706
+ def cleanup(self):
707
+ """Cleanup serving resources"""
708
+ try:
709
+ # Clear model cache
710
+ self.model_cache.clear()
711
+
712
+ # Shutdown thread pool
713
+ self.thread_pool.shutdown(wait=True)
714
+
715
+ logger.info("Model Serving Service cleanup completed")
716
+ except Exception as e:
717
+ logger.warning(f"Serving service cleanup warning: {e}")