isa-model 0.3.6__py3-none-any.whl → 0.3.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- isa_model/client.py +200 -6
- isa_model/deployment/services/auto_deploy_vision_service.py +4 -3
- isa_model/deployment/services/simple_auto_deploy_vision_service.py +275 -0
- isa_model/inference/ai_factory.py +83 -3
- isa_model/serving/api/routes/unified.py +72 -0
- {isa_model-0.3.6.dist-info → isa_model-0.3.8.dist-info}/METADATA +1 -1
- {isa_model-0.3.6.dist-info → isa_model-0.3.8.dist-info}/RECORD +9 -18
- isa_model/inference/providers/__init__.py +0 -19
- isa_model/inference/providers/base_provider.py +0 -77
- isa_model/inference/providers/ml_provider.py +0 -50
- isa_model/inference/providers/modal_provider.py +0 -109
- isa_model/inference/providers/model_cache_manager.py +0 -341
- isa_model/inference/providers/ollama_provider.py +0 -92
- isa_model/inference/providers/openai_provider.py +0 -130
- isa_model/inference/providers/replicate_provider.py +0 -119
- isa_model/inference/providers/triton_provider.py +0 -439
- isa_model/inference/providers/yyds_provider.py +0 -108
- {isa_model-0.3.6.dist-info → isa_model-0.3.8.dist-info}/WHEEL +0 -0
- {isa_model-0.3.6.dist-info → isa_model-0.3.8.dist-info}/top_level.txt +0 -0
@@ -1,439 +0,0 @@
|
|
1
|
-
import os
|
2
|
-
import logging
|
3
|
-
import json
|
4
|
-
import numpy as np
|
5
|
-
import base64
|
6
|
-
from typing import Dict, Any, Optional, List, Union
|
7
|
-
|
8
|
-
from isa_model.inference.providers.base_provider import BaseProvider
|
9
|
-
from isa_model.inference.base import ModelType, Capability
|
10
|
-
from isa_model.inference.providers.model_cache_manager import ModelCacheManager
|
11
|
-
import asyncio
|
12
|
-
|
13
|
-
# 设置日志
|
14
|
-
logger = logging.getLogger(__name__)
|
15
|
-
|
16
|
-
class TritonProvider(BaseProvider):
|
17
|
-
"""
|
18
|
-
Provider for Triton Inference Server models.
|
19
|
-
"""
|
20
|
-
|
21
|
-
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
22
|
-
"""
|
23
|
-
Initialize the Triton provider.
|
24
|
-
|
25
|
-
Args:
|
26
|
-
config: Configuration for the provider
|
27
|
-
"""
|
28
|
-
super().__init__(config or {})
|
29
|
-
|
30
|
-
# Default configuration
|
31
|
-
self.default_config = {
|
32
|
-
"server_url": os.environ.get("TRITON_SERVER_URL", "http://localhost:8000"),
|
33
|
-
"model_repository": os.environ.get(
|
34
|
-
"MODEL_REPOSITORY",
|
35
|
-
os.path.join(os.getcwd(), "models/triton/model_repository")
|
36
|
-
),
|
37
|
-
"http_headers": {},
|
38
|
-
"verbose": True,
|
39
|
-
"client_timeout": 300.0, # 5 minutes timeout
|
40
|
-
"max_batch_size": 8,
|
41
|
-
"max_sequence_length": 2048,
|
42
|
-
"temperature": 0.7,
|
43
|
-
"top_p": 0.9,
|
44
|
-
"model_cache_size": 5, # LRU cache size
|
45
|
-
"tokenizer_name": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
46
|
-
}
|
47
|
-
|
48
|
-
# Merge provided config with defaults
|
49
|
-
self.config = {**self.default_config, **self.config}
|
50
|
-
|
51
|
-
# Set up logging
|
52
|
-
log_level = self.config.get("log_level", "INFO")
|
53
|
-
numeric_level = getattr(logging, log_level.upper(), logging.INFO)
|
54
|
-
logger.setLevel(numeric_level)
|
55
|
-
|
56
|
-
logger.info(f"Initialized Triton provider with URL: {self.config['server_url']}")
|
57
|
-
|
58
|
-
# Initialize model cache manager
|
59
|
-
self.model_cache = ModelCacheManager(
|
60
|
-
cache_size=self.config.get("model_cache_size"),
|
61
|
-
model_repository=self.config.get("model_repository")
|
62
|
-
)
|
63
|
-
|
64
|
-
# For MLflow Gateway compatibility
|
65
|
-
self.triton_url = config.get("triton_url", "localhost:8001")
|
66
|
-
|
67
|
-
def get_capabilities(self) -> Dict[ModelType, List[Capability]]:
|
68
|
-
"""Get provider capabilities by model type"""
|
69
|
-
return {
|
70
|
-
ModelType.LLM: [
|
71
|
-
Capability.CHAT,
|
72
|
-
Capability.COMPLETION
|
73
|
-
],
|
74
|
-
ModelType.EMBEDDING: [
|
75
|
-
Capability.EMBEDDING
|
76
|
-
],
|
77
|
-
ModelType.VISION: [
|
78
|
-
Capability.IMAGE_UNDERSTANDING
|
79
|
-
]
|
80
|
-
}
|
81
|
-
|
82
|
-
def get_models(self, model_type: ModelType) -> List[str]:
|
83
|
-
"""Get available models for given type"""
|
84
|
-
# Query the model cache manager for available models
|
85
|
-
return self.model_cache.list_available_models(model_type)
|
86
|
-
|
87
|
-
async def load_model(self, model_name: str, model_type: ModelType) -> bool:
|
88
|
-
"""Load a model into Triton server via Model Cache Manager"""
|
89
|
-
return await self.model_cache.load_model(model_name, model_type)
|
90
|
-
|
91
|
-
async def unload_model(self, model_name: str) -> bool:
|
92
|
-
"""Unload a model from Triton server"""
|
93
|
-
return await self.model_cache.unload_model(model_name)
|
94
|
-
|
95
|
-
def get_config(self) -> Dict[str, Any]:
|
96
|
-
"""
|
97
|
-
Get the configuration for this provider.
|
98
|
-
|
99
|
-
Returns:
|
100
|
-
Provider configuration
|
101
|
-
"""
|
102
|
-
return self.config
|
103
|
-
|
104
|
-
def create_client(self):
|
105
|
-
"""
|
106
|
-
Create a Triton client instance.
|
107
|
-
|
108
|
-
Returns:
|
109
|
-
Triton HTTP client
|
110
|
-
"""
|
111
|
-
try:
|
112
|
-
import tritonclient.http as httpclient
|
113
|
-
|
114
|
-
server_url = self.config.get("triton_url", self.config["server_url"])
|
115
|
-
|
116
|
-
client = httpclient.InferenceServerClient(
|
117
|
-
url=server_url,
|
118
|
-
verbose=self.config["verbose"],
|
119
|
-
connection_timeout=self.config["client_timeout"],
|
120
|
-
network_timeout=self.config["client_timeout"]
|
121
|
-
)
|
122
|
-
|
123
|
-
return client
|
124
|
-
except ImportError:
|
125
|
-
logger.error("tritonclient package not installed. Please install with: pip install tritonclient")
|
126
|
-
raise
|
127
|
-
except Exception as e:
|
128
|
-
logger.error(f"Error creating Triton client: {str(e)}")
|
129
|
-
raise
|
130
|
-
|
131
|
-
def is_server_live(self) -> bool:
|
132
|
-
"""
|
133
|
-
Check if the Triton server is live.
|
134
|
-
|
135
|
-
Returns:
|
136
|
-
True if the server is live, False otherwise
|
137
|
-
"""
|
138
|
-
try:
|
139
|
-
client = self.create_client()
|
140
|
-
return client.is_server_live()
|
141
|
-
except Exception as e:
|
142
|
-
logger.error(f"Error checking server liveness: {str(e)}")
|
143
|
-
return False
|
144
|
-
|
145
|
-
def is_model_ready(self, model_name: str) -> bool:
|
146
|
-
"""
|
147
|
-
Check if a model is ready on the Triton server.
|
148
|
-
|
149
|
-
Args:
|
150
|
-
model_name: Name of the model
|
151
|
-
|
152
|
-
Returns:
|
153
|
-
True if the model is ready, False otherwise
|
154
|
-
"""
|
155
|
-
try:
|
156
|
-
client = self.create_client()
|
157
|
-
return client.is_model_ready(model_name)
|
158
|
-
except Exception as e:
|
159
|
-
logger.error(f"Error checking model readiness: {str(e)}")
|
160
|
-
return False
|
161
|
-
|
162
|
-
def get_model_metadata(self, model_name: str) -> Dict[str, Any]:
|
163
|
-
"""
|
164
|
-
Get metadata for a model.
|
165
|
-
|
166
|
-
Args:
|
167
|
-
model_name: Name of the model
|
168
|
-
|
169
|
-
Returns:
|
170
|
-
Model metadata
|
171
|
-
"""
|
172
|
-
try:
|
173
|
-
client = self.create_client()
|
174
|
-
metadata = client.get_model_metadata(model_name)
|
175
|
-
return metadata
|
176
|
-
except Exception as e:
|
177
|
-
logger.error(f"Error getting model metadata: {str(e)}")
|
178
|
-
raise
|
179
|
-
|
180
|
-
def get_model_config(self, model_name: str) -> Dict[str, Any]:
|
181
|
-
"""
|
182
|
-
Get configuration for a model.
|
183
|
-
|
184
|
-
Args:
|
185
|
-
model_name: Name of the model
|
186
|
-
|
187
|
-
Returns:
|
188
|
-
Model configuration
|
189
|
-
"""
|
190
|
-
try:
|
191
|
-
client = self.create_client()
|
192
|
-
config = client.get_model_config(model_name)
|
193
|
-
return config
|
194
|
-
except Exception as e:
|
195
|
-
logger.error(f"Error getting model config: {str(e)}")
|
196
|
-
raise
|
197
|
-
|
198
|
-
def is_reasoning_model(self, model_name: str) -> bool:
|
199
|
-
"""Check if the model is optimized for reasoning tasks"""
|
200
|
-
# This is a simple implementation, could be enhanced to check model metadata
|
201
|
-
return model_name.lower().find("reasoning") != -1 or model_name.lower() in ["llama3", "mistral"]
|
202
|
-
|
203
|
-
# Methods for MLflow Gateway compatibility
|
204
|
-
|
205
|
-
async def completions(self, prompt: str, model_name: str, params: Dict[str, Any]) -> Dict[str, Any]:
|
206
|
-
"""
|
207
|
-
Generate completions for MLflow Gateway.
|
208
|
-
|
209
|
-
Args:
|
210
|
-
prompt: User prompt text
|
211
|
-
model_name: Name of the model to use
|
212
|
-
params: Additional parameters
|
213
|
-
|
214
|
-
Returns:
|
215
|
-
Completion response
|
216
|
-
"""
|
217
|
-
try:
|
218
|
-
import tritonclient.http as httpclient
|
219
|
-
|
220
|
-
# Create client
|
221
|
-
client = self.create_client()
|
222
|
-
|
223
|
-
# Generate config
|
224
|
-
generation_config = {
|
225
|
-
"temperature": params.get("temperature", 0.7),
|
226
|
-
"max_new_tokens": params.get("max_tokens", 512),
|
227
|
-
"top_p": params.get("top_p", 0.9),
|
228
|
-
"top_k": params.get("top_k", 50),
|
229
|
-
}
|
230
|
-
|
231
|
-
# Prepare inputs
|
232
|
-
inputs = []
|
233
|
-
|
234
|
-
# Add prompt input
|
235
|
-
prompt_data = np.array([prompt], dtype=np.object_)
|
236
|
-
prompt_input = httpclient.InferInput("prompt", prompt_data.shape, "BYTES")
|
237
|
-
prompt_input.set_data_from_numpy(prompt_data)
|
238
|
-
inputs.append(prompt_input)
|
239
|
-
|
240
|
-
# Add system prompt if provided
|
241
|
-
if "system_prompt" in params:
|
242
|
-
system_data = np.array([params["system_prompt"]], dtype=np.object_)
|
243
|
-
system_input = httpclient.InferInput("system_prompt", system_data.shape, "BYTES")
|
244
|
-
system_input.set_data_from_numpy(system_data)
|
245
|
-
inputs.append(system_input)
|
246
|
-
|
247
|
-
# Add generation config
|
248
|
-
config_data = np.array([json.dumps(generation_config)], dtype=np.object_)
|
249
|
-
config_input = httpclient.InferInput("generation_config", config_data.shape, "BYTES")
|
250
|
-
config_input.set_data_from_numpy(config_data)
|
251
|
-
inputs.append(config_input)
|
252
|
-
|
253
|
-
# Create output
|
254
|
-
outputs = [httpclient.InferRequestedOutput("text_output")]
|
255
|
-
|
256
|
-
# Run inference
|
257
|
-
response = await asyncio.to_thread(
|
258
|
-
client.infer,
|
259
|
-
model_name,
|
260
|
-
inputs,
|
261
|
-
outputs=outputs
|
262
|
-
)
|
263
|
-
|
264
|
-
# Process response
|
265
|
-
output = response.as_numpy("text_output")
|
266
|
-
text = output[0].decode('utf-8')
|
267
|
-
|
268
|
-
return {
|
269
|
-
"completion": text,
|
270
|
-
"metadata": {
|
271
|
-
"model": model_name,
|
272
|
-
"provider": "triton",
|
273
|
-
"token_usage": {
|
274
|
-
"prompt_tokens": len(prompt.split()),
|
275
|
-
"completion_tokens": len(text.split()),
|
276
|
-
"total_tokens": len(prompt.split()) + len(text.split())
|
277
|
-
}
|
278
|
-
}
|
279
|
-
}
|
280
|
-
|
281
|
-
except Exception as e:
|
282
|
-
logger.error(f"Error during completion: {str(e)}")
|
283
|
-
return {
|
284
|
-
"error": str(e),
|
285
|
-
"metadata": {
|
286
|
-
"model": model_name,
|
287
|
-
"provider": "triton"
|
288
|
-
}
|
289
|
-
}
|
290
|
-
|
291
|
-
async def embeddings(self, text: Union[str, List[str]], model_name: str, params: Dict[str, Any]) -> Dict[str, Any]:
|
292
|
-
"""
|
293
|
-
Generate embeddings for MLflow Gateway.
|
294
|
-
|
295
|
-
Args:
|
296
|
-
text: Text or list of texts to embed
|
297
|
-
model_name: Name of the model to use
|
298
|
-
params: Additional parameters
|
299
|
-
|
300
|
-
Returns:
|
301
|
-
Embedding response
|
302
|
-
"""
|
303
|
-
try:
|
304
|
-
import tritonclient.http as httpclient
|
305
|
-
|
306
|
-
# Create client
|
307
|
-
client = self.create_client()
|
308
|
-
|
309
|
-
# Normalize parameter
|
310
|
-
normalize = params.get("normalize", True)
|
311
|
-
|
312
|
-
# Handle input text (convert to list if it's a single string)
|
313
|
-
text_list = [text] if isinstance(text, str) else text
|
314
|
-
|
315
|
-
# Add text input
|
316
|
-
text_data = np.array(text_list, dtype=np.object_)
|
317
|
-
text_input = httpclient.InferInput("text_input", text_data.shape, "BYTES")
|
318
|
-
text_input.set_data_from_numpy(text_data)
|
319
|
-
|
320
|
-
# Add normalize parameter
|
321
|
-
normalize_data = np.array([normalize], dtype=bool)
|
322
|
-
normalize_input = httpclient.InferInput("normalize", normalize_data.shape, "BOOL")
|
323
|
-
normalize_input.set_data_from_numpy(normalize_data)
|
324
|
-
|
325
|
-
# Create inputs
|
326
|
-
inputs = [text_input, normalize_input]
|
327
|
-
|
328
|
-
# Create output
|
329
|
-
outputs = [httpclient.InferRequestedOutput("embedding")]
|
330
|
-
|
331
|
-
# Run inference
|
332
|
-
response = await asyncio.to_thread(
|
333
|
-
client.infer,
|
334
|
-
model_name,
|
335
|
-
inputs,
|
336
|
-
outputs=outputs
|
337
|
-
)
|
338
|
-
|
339
|
-
# Process response
|
340
|
-
embedding_output = response.as_numpy("embedding")
|
341
|
-
|
342
|
-
return {
|
343
|
-
"embedding": embedding_output.tolist(),
|
344
|
-
"metadata": {
|
345
|
-
"model": model_name,
|
346
|
-
"provider": "triton",
|
347
|
-
"dimensions": embedding_output.shape[-1]
|
348
|
-
}
|
349
|
-
}
|
350
|
-
|
351
|
-
except Exception as e:
|
352
|
-
logger.error(f"Error during embedding: {str(e)}")
|
353
|
-
return {
|
354
|
-
"error": str(e),
|
355
|
-
"metadata": {
|
356
|
-
"model": model_name,
|
357
|
-
"provider": "triton"
|
358
|
-
}
|
359
|
-
}
|
360
|
-
|
361
|
-
async def speech_to_text(self, audio: str, model_name: str, params: Dict[str, Any]) -> Dict[str, Any]:
|
362
|
-
"""
|
363
|
-
Transcribe audio for MLflow Gateway.
|
364
|
-
|
365
|
-
Args:
|
366
|
-
audio: Base64 encoded audio data or URL
|
367
|
-
model_name: Name of the model to use
|
368
|
-
params: Additional parameters
|
369
|
-
|
370
|
-
Returns:
|
371
|
-
Transcription response
|
372
|
-
"""
|
373
|
-
try:
|
374
|
-
import tritonclient.http as httpclient
|
375
|
-
|
376
|
-
# Create client
|
377
|
-
client = self.create_client()
|
378
|
-
|
379
|
-
# Decode audio from base64 or download from URL
|
380
|
-
if audio.startswith(("http://", "https://")):
|
381
|
-
import requests
|
382
|
-
audio_data = requests.get(audio).content
|
383
|
-
else:
|
384
|
-
audio_data = base64.b64decode(audio)
|
385
|
-
|
386
|
-
# Language parameter
|
387
|
-
language = params.get("language", "en")
|
388
|
-
|
389
|
-
# Process audio to get numpy array
|
390
|
-
import io
|
391
|
-
import librosa
|
392
|
-
|
393
|
-
with io.BytesIO(audio_data) as audio_bytes:
|
394
|
-
audio_array, _ = librosa.load(audio_bytes, sr=16000)
|
395
|
-
audio_array = audio_array.astype(np.float32)
|
396
|
-
|
397
|
-
# Create inputs
|
398
|
-
audio_input = httpclient.InferInput("audio_input", audio_array.shape, "FP32")
|
399
|
-
audio_input.set_data_from_numpy(audio_array)
|
400
|
-
|
401
|
-
language_data = np.array([language], dtype=np.object_)
|
402
|
-
language_input = httpclient.InferInput("language", language_data.shape, "BYTES")
|
403
|
-
language_input.set_data_from_numpy(language_data)
|
404
|
-
|
405
|
-
inputs = [audio_input, language_input]
|
406
|
-
|
407
|
-
# Create output
|
408
|
-
outputs = [httpclient.InferRequestedOutput("text_output")]
|
409
|
-
|
410
|
-
# Run inference
|
411
|
-
response = await asyncio.to_thread(
|
412
|
-
client.infer,
|
413
|
-
model_name,
|
414
|
-
inputs,
|
415
|
-
outputs=outputs
|
416
|
-
)
|
417
|
-
|
418
|
-
# Process response
|
419
|
-
output = response.as_numpy("text_output")
|
420
|
-
transcription = output[0].decode('utf-8')
|
421
|
-
|
422
|
-
return {
|
423
|
-
"text": transcription,
|
424
|
-
"metadata": {
|
425
|
-
"model": model_name,
|
426
|
-
"provider": "triton",
|
427
|
-
"language": language
|
428
|
-
}
|
429
|
-
}
|
430
|
-
|
431
|
-
except Exception as e:
|
432
|
-
logger.error(f"Error during speech-to-text: {str(e)}")
|
433
|
-
return {
|
434
|
-
"error": str(e),
|
435
|
-
"metadata": {
|
436
|
-
"model": model_name,
|
437
|
-
"provider": "triton"
|
438
|
-
}
|
439
|
-
}
|
@@ -1,108 +0,0 @@
|
|
1
|
-
from isa_model.inference.providers.base_provider import BaseProvider
|
2
|
-
from isa_model.inference.base import ModelType, Capability
|
3
|
-
from typing import Dict, List, Any
|
4
|
-
import logging
|
5
|
-
import os
|
6
|
-
|
7
|
-
logger = logging.getLogger(__name__)
|
8
|
-
|
9
|
-
class YydsProvider(BaseProvider):
|
10
|
-
"""Provider for YYDS API with proper API key management"""
|
11
|
-
|
12
|
-
def __init__(self, config=None):
|
13
|
-
"""Initialize the YYDS Provider with centralized config management"""
|
14
|
-
super().__init__(config)
|
15
|
-
self.name = "yyds"
|
16
|
-
|
17
|
-
logger.info(f"Initialized YydsProvider with URL: {self.config.get('base_url', 'https://api.yyds.com/v1')}")
|
18
|
-
|
19
|
-
if not self.has_valid_credentials():
|
20
|
-
logger.warning("YYDS API key not found. Set YYDS_API_KEY environment variable or pass api_key in config.")
|
21
|
-
|
22
|
-
def _load_provider_env_vars(self):
|
23
|
-
"""Load YYDS-specific environment variables"""
|
24
|
-
# Set defaults first
|
25
|
-
defaults = {
|
26
|
-
"base_url": "https://api.yyds.com/v1",
|
27
|
-
"timeout": 60,
|
28
|
-
"temperature": 0.7,
|
29
|
-
"top_p": 0.9,
|
30
|
-
"max_tokens": 1024
|
31
|
-
}
|
32
|
-
|
33
|
-
# Apply defaults only if not already set
|
34
|
-
for key, value in defaults.items():
|
35
|
-
if key not in self.config:
|
36
|
-
self.config[key] = value
|
37
|
-
|
38
|
-
# Load from environment variables (override config if present)
|
39
|
-
env_mappings = {
|
40
|
-
"api_key": "YYDS_API_KEY",
|
41
|
-
"base_url": "YYDS_API_BASE",
|
42
|
-
"organization": "YYDS_ORGANIZATION"
|
43
|
-
}
|
44
|
-
|
45
|
-
for config_key, env_var in env_mappings.items():
|
46
|
-
env_value = os.getenv(env_var)
|
47
|
-
if env_value:
|
48
|
-
self.config[config_key] = env_value
|
49
|
-
|
50
|
-
def _validate_config(self):
|
51
|
-
"""Validate YYDS configuration"""
|
52
|
-
if not self.config.get("api_key"):
|
53
|
-
logger.debug("YYDS API key not set - some functionality may not work")
|
54
|
-
|
55
|
-
def get_model_pricing(self, model_name: str) -> Dict[str, float]:
|
56
|
-
"""Get pricing information for a model - delegated to ModelManager"""
|
57
|
-
# Import here to avoid circular imports
|
58
|
-
from isa_model.core.model_manager import ModelManager
|
59
|
-
model_manager = ModelManager()
|
60
|
-
return model_manager.get_model_pricing("yyds", model_name)
|
61
|
-
|
62
|
-
def calculate_cost(self, model_name: str, input_tokens: int, output_tokens: int) -> float:
|
63
|
-
"""Calculate cost for a request - delegated to ModelManager"""
|
64
|
-
# Import here to avoid circular imports
|
65
|
-
from isa_model.core.model_manager import ModelManager
|
66
|
-
model_manager = ModelManager()
|
67
|
-
return model_manager.calculate_cost("yyds", model_name, input_tokens, output_tokens)
|
68
|
-
|
69
|
-
def set_api_key(self, api_key: str):
|
70
|
-
"""Set the API key after initialization"""
|
71
|
-
self.config["api_key"] = api_key
|
72
|
-
logger.info("YYDS API key updated")
|
73
|
-
|
74
|
-
def get_capabilities(self) -> Dict[ModelType, List[Capability]]:
|
75
|
-
"""Get provider capabilities by model type"""
|
76
|
-
return {
|
77
|
-
ModelType.LLM: [
|
78
|
-
Capability.CHAT,
|
79
|
-
Capability.COMPLETION
|
80
|
-
]
|
81
|
-
}
|
82
|
-
|
83
|
-
def get_models(self, model_type: ModelType) -> List[str]:
|
84
|
-
"""Get available models for given type"""
|
85
|
-
if model_type == ModelType.LLM:
|
86
|
-
return ["claude-sonnet-4-20250514", "claude-3-5-sonnet-20241022"]
|
87
|
-
else:
|
88
|
-
return []
|
89
|
-
|
90
|
-
def get_default_model(self, model_type: ModelType) -> str:
|
91
|
-
"""Get default model for a given type"""
|
92
|
-
if model_type == ModelType.LLM:
|
93
|
-
return "claude-sonnet-4-20250514"
|
94
|
-
else:
|
95
|
-
return ""
|
96
|
-
|
97
|
-
def get_config(self) -> Dict[str, Any]:
|
98
|
-
"""Get provider configuration"""
|
99
|
-
# Return a copy without sensitive information
|
100
|
-
config_copy = self.config.copy()
|
101
|
-
if "api_key" in config_copy:
|
102
|
-
config_copy["api_key"] = "***" if config_copy["api_key"] else ""
|
103
|
-
return config_copy
|
104
|
-
|
105
|
-
def is_reasoning_model(self, model_name: str) -> bool:
|
106
|
-
"""Check if the model is optimized for reasoning tasks"""
|
107
|
-
reasoning_models = ["claude-sonnet-4", "claude-3-5-sonnet"]
|
108
|
-
return any(rm in model_name.lower() for rm in reasoning_models)
|
File without changes
|
File without changes
|