isa-model 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- isa_model/__init__.py +5 -0
- isa_model/core/model_manager.py +143 -0
- isa_model/core/model_registry.py +115 -0
- isa_model/core/model_router.py +226 -0
- isa_model/core/model_storage.py +133 -0
- isa_model/core/model_version.py +0 -0
- isa_model/core/resource_manager.py +202 -0
- isa_model/core/storage/hf_storage.py +0 -0
- isa_model/core/storage/local_storage.py +0 -0
- isa_model/core/storage/minio_storage.py +0 -0
- isa_model/deployment/mlflow_gateway/__init__.py +8 -0
- isa_model/deployment/mlflow_gateway/start_gateway.py +65 -0
- isa_model/deployment/unified_multimodal_client.py +341 -0
- isa_model/inference/__init__.py +11 -0
- isa_model/inference/adapter/triton_adapter.py +453 -0
- isa_model/inference/adapter/unified_api.py +248 -0
- isa_model/inference/ai_factory.py +354 -0
- isa_model/inference/backends/Pytorch/bge_embed_backend.py +188 -0
- isa_model/inference/backends/Pytorch/gemma_backend.py +167 -0
- isa_model/inference/backends/Pytorch/llama_backend.py +166 -0
- isa_model/inference/backends/Pytorch/whisper_backend.py +194 -0
- isa_model/inference/backends/__init__.py +53 -0
- isa_model/inference/backends/base_backend_client.py +26 -0
- isa_model/inference/backends/container_services.py +104 -0
- isa_model/inference/backends/local_services.py +72 -0
- isa_model/inference/backends/openai_client.py +130 -0
- isa_model/inference/backends/replicate_client.py +197 -0
- isa_model/inference/backends/third_party_services.py +239 -0
- isa_model/inference/backends/triton_client.py +97 -0
- isa_model/inference/base.py +46 -0
- isa_model/inference/client_sdk/__init__.py +0 -0
- isa_model/inference/client_sdk/client.py +134 -0
- isa_model/inference/client_sdk/client_data_std.py +34 -0
- isa_model/inference/client_sdk/client_sdk_schema.py +16 -0
- isa_model/inference/client_sdk/exceptions.py +0 -0
- isa_model/inference/engine/triton/model_repository/bge/1/model.py +174 -0
- isa_model/inference/engine/triton/model_repository/gemma/1/model.py +250 -0
- isa_model/inference/engine/triton/model_repository/llama/1/model.py +76 -0
- isa_model/inference/engine/triton/model_repository/whisper/1/model.py +195 -0
- isa_model/inference/providers/__init__.py +19 -0
- isa_model/inference/providers/base_provider.py +30 -0
- isa_model/inference/providers/model_cache_manager.py +341 -0
- isa_model/inference/providers/ollama_provider.py +73 -0
- isa_model/inference/providers/openai_provider.py +87 -0
- isa_model/inference/providers/replicate_provider.py +94 -0
- isa_model/inference/providers/triton_provider.py +439 -0
- isa_model/inference/providers/vllm_provider.py +0 -0
- isa_model/inference/providers/yyds_provider.py +83 -0
- isa_model/inference/services/__init__.py +14 -0
- isa_model/inference/services/audio/fish_speech/handler.py +215 -0
- isa_model/inference/services/audio/runpod_tts_fish_service.py +212 -0
- isa_model/inference/services/audio/triton_speech_service.py +138 -0
- isa_model/inference/services/audio/whisper_service.py +186 -0
- isa_model/inference/services/audio/yyds_audio_service.py +71 -0
- isa_model/inference/services/base_service.py +106 -0
- isa_model/inference/services/base_tts_service.py +66 -0
- isa_model/inference/services/embedding/bge_service.py +183 -0
- isa_model/inference/services/embedding/ollama_embed_service.py +85 -0
- isa_model/inference/services/embedding/ollama_rerank_service.py +118 -0
- isa_model/inference/services/embedding/onnx_rerank_service.py +73 -0
- isa_model/inference/services/llm/__init__.py +16 -0
- isa_model/inference/services/llm/gemma_service.py +143 -0
- isa_model/inference/services/llm/llama_service.py +143 -0
- isa_model/inference/services/llm/ollama_llm_service.py +108 -0
- isa_model/inference/services/llm/openai_llm_service.py +129 -0
- isa_model/inference/services/llm/replicate_llm_service.py +179 -0
- isa_model/inference/services/llm/triton_llm_service.py +230 -0
- isa_model/inference/services/others/table_transformer_service.py +61 -0
- isa_model/inference/services/vision/__init__.py +12 -0
- isa_model/inference/services/vision/helpers/image_utils.py +58 -0
- isa_model/inference/services/vision/helpers/text_splitter.py +46 -0
- isa_model/inference/services/vision/ollama_vision_service.py +60 -0
- isa_model/inference/services/vision/replicate_vision_service.py +241 -0
- isa_model/inference/services/vision/triton_vision_service.py +199 -0
- isa_model/inference/services/vision/yyds_vision_service.py +80 -0
- isa_model/inference/utils/conversion/bge_rerank_convert.py +73 -0
- isa_model/inference/utils/conversion/onnx_converter.py +0 -0
- isa_model/inference/utils/conversion/torch_converter.py +0 -0
- isa_model/scripts/inference_tracker.py +283 -0
- isa_model/scripts/mlflow_manager.py +379 -0
- isa_model/scripts/model_registry.py +465 -0
- isa_model/scripts/start_mlflow.py +95 -0
- isa_model/scripts/training_tracker.py +257 -0
- isa_model/training/engine/llama_factory/__init__.py +39 -0
- isa_model/training/engine/llama_factory/config.py +115 -0
- isa_model/training/engine/llama_factory/data_adapter.py +284 -0
- isa_model/training/engine/llama_factory/examples/__init__.py +6 -0
- isa_model/training/engine/llama_factory/examples/finetune_with_tracking.py +185 -0
- isa_model/training/engine/llama_factory/examples/rlhf_with_tracking.py +163 -0
- isa_model/training/engine/llama_factory/factory.py +331 -0
- isa_model/training/engine/llama_factory/rl.py +254 -0
- isa_model/training/engine/llama_factory/trainer.py +171 -0
- isa_model/training/image_model/configs/create_config.py +37 -0
- isa_model/training/image_model/configs/create_flux_config.py +26 -0
- isa_model/training/image_model/configs/create_lora_config.py +21 -0
- isa_model/training/image_model/prepare_massed_compute.py +97 -0
- isa_model/training/image_model/prepare_upload.py +17 -0
- isa_model/training/image_model/raw_data/create_captions.py +16 -0
- isa_model/training/image_model/raw_data/create_lora_captions.py +20 -0
- isa_model/training/image_model/raw_data/pre_processing.py +200 -0
- isa_model/training/image_model/train/train.py +42 -0
- isa_model/training/image_model/train/train_flux.py +41 -0
- isa_model/training/image_model/train/train_lora.py +57 -0
- isa_model/training/image_model/train_main.py +25 -0
- isa_model/training/llm_model/annotation/annotation_schema.py +47 -0
- isa_model/training/llm_model/annotation/processors/annotation_processor.py +126 -0
- isa_model/training/llm_model/annotation/storage/dataset_manager.py +131 -0
- isa_model/training/llm_model/annotation/storage/dataset_schema.py +44 -0
- isa_model/training/llm_model/annotation/tests/test_annotation_flow.py +109 -0
- isa_model/training/llm_model/annotation/tests/test_minio copy.py +113 -0
- isa_model/training/llm_model/annotation/tests/test_minio_upload.py +43 -0
- isa_model/training/llm_model/annotation/views/annotation_controller.py +158 -0
- isa_model-0.1.0.dist-info/METADATA +116 -0
- isa_model-0.1.0.dist-info/RECORD +117 -0
- isa_model-0.1.0.dist-info/WHEEL +5 -0
- isa_model-0.1.0.dist-info/licenses/LICENSE +21 -0
- isa_model-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,118 @@
|
|
1
|
+
from typing import Dict, Any, List, Optional
|
2
|
+
from ollama import AsyncClient
|
3
|
+
from ...base_service import BaseRerankService
|
4
|
+
from ...base_provider import BaseProvider
|
5
|
+
from app.config.config_manager import config_manager
|
6
|
+
import httpx
|
7
|
+
import asyncio
|
8
|
+
from functools import wraps
|
9
|
+
|
10
|
+
logger = config_manager.get_logger(__name__)
|
11
|
+
|
12
|
+
def retry_on_connection_error(max_retries=3, delay=1):
|
13
|
+
"""Decorator to retry on connection errors"""
|
14
|
+
def decorator(func):
|
15
|
+
@wraps(func)
|
16
|
+
async def wrapper(*args, **kwargs):
|
17
|
+
last_error = None
|
18
|
+
for attempt in range(max_retries):
|
19
|
+
try:
|
20
|
+
return await func(*args, **kwargs)
|
21
|
+
except (httpx.RemoteProtocolError, httpx.ConnectError) as e:
|
22
|
+
last_error = e
|
23
|
+
if attempt < max_retries - 1:
|
24
|
+
logger.warning(f"Connection error on attempt {attempt + 1}, retrying in {delay}s: {str(e)}")
|
25
|
+
await asyncio.sleep(delay)
|
26
|
+
continue
|
27
|
+
raise last_error
|
28
|
+
return wrapper
|
29
|
+
return decorator
|
30
|
+
|
31
|
+
class OllamaRerankService(BaseRerankService):
|
32
|
+
"""Reranking service wrapper around Ollama"""
|
33
|
+
|
34
|
+
def __init__(self, provider: 'BaseProvider', model_name: str):
|
35
|
+
super().__init__(provider, model_name)
|
36
|
+
|
37
|
+
# Initialize the Ollama client for reranking
|
38
|
+
self.client = AsyncClient(
|
39
|
+
host=self.config.get('base_url', 'http://localhost:11434')
|
40
|
+
)
|
41
|
+
self.model_name = model_name
|
42
|
+
|
43
|
+
@retry_on_connection_error()
|
44
|
+
async def rerank(
|
45
|
+
self,
|
46
|
+
query: str,
|
47
|
+
documents: List[Dict],
|
48
|
+
top_k: int = 5
|
49
|
+
) -> List[Dict]:
|
50
|
+
"""Rerank documents based on query relevance"""
|
51
|
+
try:
|
52
|
+
if not query:
|
53
|
+
raise ValueError("Query cannot be empty")
|
54
|
+
if not documents:
|
55
|
+
return []
|
56
|
+
|
57
|
+
results = []
|
58
|
+
for doc in documents:
|
59
|
+
if "content" not in doc:
|
60
|
+
raise ValueError("Each document must have a 'content' field")
|
61
|
+
|
62
|
+
# Format prompt for relevance scoring
|
63
|
+
prompt = f"""Rate the relevance of the following text to the query on a scale of 0-100.
|
64
|
+
Query: {query}
|
65
|
+
Text: {doc['content']}
|
66
|
+
Only respond with a number between 0 and 100."""
|
67
|
+
|
68
|
+
# Get relevance score using direct Ollama API
|
69
|
+
response = await self.client.generate(
|
70
|
+
model=self.model_name,
|
71
|
+
prompt=prompt,
|
72
|
+
stream=False
|
73
|
+
)
|
74
|
+
try:
|
75
|
+
score = float(response.response.strip())
|
76
|
+
score = max(0.0, min(100.0, score)) / 100.0 # Normalize to 0-1
|
77
|
+
except ValueError:
|
78
|
+
logger.warning(f"Could not parse score from response: {response.response}")
|
79
|
+
score = 0.0
|
80
|
+
|
81
|
+
# Update document with rerank score
|
82
|
+
doc_copy = doc.copy()
|
83
|
+
doc_copy["rerank_score"] = score
|
84
|
+
doc_copy["final_score"] = doc.get("score", 1.0) * score
|
85
|
+
results.append(doc_copy)
|
86
|
+
|
87
|
+
# Sort by final score in descending order
|
88
|
+
results.sort(key=lambda x: x["final_score"], reverse=True)
|
89
|
+
return results[:top_k]
|
90
|
+
|
91
|
+
except Exception as e:
|
92
|
+
logger.error(f"Error in rerank: {e}")
|
93
|
+
raise
|
94
|
+
|
95
|
+
@retry_on_connection_error()
|
96
|
+
async def rerank_texts(
|
97
|
+
self,
|
98
|
+
query: str,
|
99
|
+
texts: List[str]
|
100
|
+
) -> List[Dict]:
|
101
|
+
"""Rerank raw texts based on query relevance"""
|
102
|
+
try:
|
103
|
+
if not query:
|
104
|
+
raise ValueError("Query cannot be empty")
|
105
|
+
if not texts:
|
106
|
+
return []
|
107
|
+
|
108
|
+
# Convert texts to document format
|
109
|
+
documents = [{"content": text, "score": 1.0} for text in texts]
|
110
|
+
return await self.rerank(query, documents)
|
111
|
+
|
112
|
+
except Exception as e:
|
113
|
+
logger.error(f"Error in rerank_texts: {str(e)}")
|
114
|
+
raise
|
115
|
+
|
116
|
+
async def close(self):
|
117
|
+
"""Cleanup resources"""
|
118
|
+
await self.client.aclose()
|
@@ -0,0 +1,73 @@
|
|
1
|
+
from typing import Dict, Any, List, Union, Optional
|
2
|
+
from ...base_service import BaseService
|
3
|
+
from ...base_provider import BaseProvider
|
4
|
+
from transformers import AutoTokenizer
|
5
|
+
import onnxruntime as ort
|
6
|
+
import numpy as np
|
7
|
+
import torch
|
8
|
+
import os
|
9
|
+
from pathlib import Path
|
10
|
+
|
11
|
+
class ONNXRerankService(BaseService):
|
12
|
+
"""ONNX Reranker service for BGE models"""
|
13
|
+
|
14
|
+
def __init__(self, provider: 'BaseProvider', model_name: str):
|
15
|
+
super().__init__(provider, model_name)
|
16
|
+
self.model_path = self._get_model_path(model_name)
|
17
|
+
self.session = provider.get_session(self.model_path)
|
18
|
+
|
19
|
+
# Initialize tokenizer
|
20
|
+
self.tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3')
|
21
|
+
self.max_length = 512
|
22
|
+
|
23
|
+
def _get_model_path(self, model_name: str) -> str:
|
24
|
+
"""Get path to ONNX model file"""
|
25
|
+
base_dir = Path(__file__).parent
|
26
|
+
model_path = base_dir / "model_converted" / model_name / "model.onnx"
|
27
|
+
if not model_path.exists():
|
28
|
+
raise FileNotFoundError(f"ONNX model not found at {model_path}. Please run the conversion script first.")
|
29
|
+
return str(model_path)
|
30
|
+
|
31
|
+
async def compute_score(self,
|
32
|
+
pairs: Union[List[str], List[List[str]]],
|
33
|
+
normalize: bool = False) -> Union[float, List[float]]:
|
34
|
+
"""Compute reranking scores for query-passage pairs"""
|
35
|
+
try:
|
36
|
+
# Handle single pair case
|
37
|
+
if isinstance(pairs[0], str):
|
38
|
+
pairs = [pairs]
|
39
|
+
|
40
|
+
# Tokenize inputs
|
41
|
+
inputs = self.tokenizer(
|
42
|
+
pairs,
|
43
|
+
padding=True,
|
44
|
+
truncation=True,
|
45
|
+
return_tensors='np',
|
46
|
+
max_length=self.max_length
|
47
|
+
)
|
48
|
+
|
49
|
+
# Run inference
|
50
|
+
ort_inputs = {
|
51
|
+
'input_ids': inputs['input_ids'],
|
52
|
+
'attention_mask': inputs['attention_mask']
|
53
|
+
}
|
54
|
+
|
55
|
+
scores = self.session.run(
|
56
|
+
None, # output names, None means all
|
57
|
+
ort_inputs
|
58
|
+
)[0]
|
59
|
+
|
60
|
+
# Convert to float and optionally normalize
|
61
|
+
scores = scores.flatten().tolist()
|
62
|
+
if normalize:
|
63
|
+
scores = [self._sigmoid(score) for score in scores]
|
64
|
+
|
65
|
+
# Return single score for single pair
|
66
|
+
return scores[0] if len(scores) == 1 else scores
|
67
|
+
|
68
|
+
except Exception as e:
|
69
|
+
raise RuntimeError(f"ONNX reranking failed: {e}")
|
70
|
+
|
71
|
+
def _sigmoid(self, x: float) -> float:
|
72
|
+
"""Apply sigmoid function to score"""
|
73
|
+
return 1 / (1 + np.exp(-x))
|
@@ -0,0 +1,16 @@
|
|
1
|
+
"""
|
2
|
+
LLM Services - Business logic services for Language Models
|
3
|
+
"""
|
4
|
+
|
5
|
+
# Import LLM services here when created
|
6
|
+
from .ollama_llm_service import OllamaLLMService
|
7
|
+
from .triton_llm_service import TritonLLMService
|
8
|
+
from .openai_llm_service import OpenAILLMService
|
9
|
+
from .replicate_llm_service import ReplicateLLMService
|
10
|
+
|
11
|
+
__all__ = [
|
12
|
+
"OllamaLLMService",
|
13
|
+
"TritonLLMService",
|
14
|
+
"OpenAILLMService",
|
15
|
+
"ReplicateLLMService",
|
16
|
+
]
|
@@ -0,0 +1,143 @@
|
|
1
|
+
import json
|
2
|
+
import logging
|
3
|
+
import asyncio
|
4
|
+
from typing import Dict, List, Any, Optional, Union
|
5
|
+
|
6
|
+
from isa_model.inference.services.base_service import BaseService
|
7
|
+
from isa_model.inference.backends.triton_client import TritonClient
|
8
|
+
|
9
|
+
logger = logging.getLogger(__name__)
|
10
|
+
|
11
|
+
|
12
|
+
class GemmaService(BaseService):
|
13
|
+
"""
|
14
|
+
Service for Gemma LLM using Triton Inference Server.
|
15
|
+
"""
|
16
|
+
|
17
|
+
def __init__(self, triton_url: str = "localhost:8001", model_name: str = "gemma"):
|
18
|
+
"""
|
19
|
+
Initialize the Gemma service.
|
20
|
+
|
21
|
+
Args:
|
22
|
+
triton_url: URL of the Triton Inference Server
|
23
|
+
model_name: Name of the model in Triton
|
24
|
+
"""
|
25
|
+
super().__init__()
|
26
|
+
self.triton_url = triton_url
|
27
|
+
self.model_name = model_name
|
28
|
+
self.client = None
|
29
|
+
|
30
|
+
# Default generation config
|
31
|
+
self.default_config = {
|
32
|
+
"max_new_tokens": 512,
|
33
|
+
"temperature": 0.7,
|
34
|
+
"top_p": 0.9,
|
35
|
+
"top_k": 50,
|
36
|
+
"repetition_penalty": 1.1,
|
37
|
+
"do_sample": True
|
38
|
+
}
|
39
|
+
|
40
|
+
self.logger = logger
|
41
|
+
|
42
|
+
async def load(self) -> None:
|
43
|
+
"""
|
44
|
+
Load the client connection to Triton.
|
45
|
+
"""
|
46
|
+
if self.is_loaded():
|
47
|
+
return
|
48
|
+
|
49
|
+
try:
|
50
|
+
# Create Triton client
|
51
|
+
self.logger.info(f"Connecting to Triton server at {self.triton_url}")
|
52
|
+
self.client = TritonClient(self.triton_url)
|
53
|
+
|
54
|
+
# Check if model is ready
|
55
|
+
if not await self.client.is_model_ready(self.model_name):
|
56
|
+
self.logger.error(f"Model {self.model_name} is not ready on Triton server")
|
57
|
+
raise RuntimeError(f"Model {self.model_name} is not ready on Triton server")
|
58
|
+
|
59
|
+
self._loaded = True
|
60
|
+
self.logger.info(f"Connected to Triton for model {self.model_name}")
|
61
|
+
|
62
|
+
except Exception as e:
|
63
|
+
self.logger.error(f"Failed to connect to Triton: {str(e)}")
|
64
|
+
raise
|
65
|
+
|
66
|
+
async def unload(self) -> None:
|
67
|
+
"""
|
68
|
+
Unload the client connection.
|
69
|
+
"""
|
70
|
+
if not self.is_loaded():
|
71
|
+
return
|
72
|
+
|
73
|
+
self.client = None
|
74
|
+
self._loaded = False
|
75
|
+
self.logger.info("Triton client connection closed")
|
76
|
+
|
77
|
+
async def generate(self,
|
78
|
+
prompt: str,
|
79
|
+
system_prompt: Optional[str] = None,
|
80
|
+
generation_config: Optional[Dict[str, Any]] = None) -> str:
|
81
|
+
"""
|
82
|
+
Generate text from a prompt using Triton.
|
83
|
+
|
84
|
+
Args:
|
85
|
+
prompt: User prompt
|
86
|
+
system_prompt: System prompt to control model behavior
|
87
|
+
generation_config: Configuration for text generation
|
88
|
+
|
89
|
+
Returns:
|
90
|
+
Generated text
|
91
|
+
"""
|
92
|
+
if not self.is_loaded():
|
93
|
+
await self.load()
|
94
|
+
|
95
|
+
# Get configuration
|
96
|
+
merged_config = self.default_config.copy()
|
97
|
+
if generation_config:
|
98
|
+
merged_config.update(generation_config)
|
99
|
+
|
100
|
+
try:
|
101
|
+
# Prepare inputs
|
102
|
+
inputs = {
|
103
|
+
"prompt": [prompt],
|
104
|
+
}
|
105
|
+
|
106
|
+
# Add optional inputs
|
107
|
+
if system_prompt:
|
108
|
+
inputs["system_prompt"] = [system_prompt]
|
109
|
+
|
110
|
+
if merged_config:
|
111
|
+
inputs["generation_config"] = [json.dumps(merged_config)]
|
112
|
+
|
113
|
+
# Run inference
|
114
|
+
result = await self.client.infer(
|
115
|
+
model_name=self.model_name,
|
116
|
+
inputs=inputs,
|
117
|
+
outputs=["text_output"]
|
118
|
+
)
|
119
|
+
|
120
|
+
# Extract generated text
|
121
|
+
generated_text = result["text_output"][0].decode('utf-8')
|
122
|
+
|
123
|
+
return generated_text
|
124
|
+
|
125
|
+
except Exception as e:
|
126
|
+
self.logger.error(f"Error during text generation: {str(e)}")
|
127
|
+
raise
|
128
|
+
|
129
|
+
def get_model_info(self) -> Dict[str, Any]:
|
130
|
+
"""
|
131
|
+
Get information about the model.
|
132
|
+
|
133
|
+
Returns:
|
134
|
+
Dictionary containing model information
|
135
|
+
"""
|
136
|
+
return {
|
137
|
+
"name": self.model_name,
|
138
|
+
"type": "llm",
|
139
|
+
"backend": "triton",
|
140
|
+
"url": self.triton_url,
|
141
|
+
"loaded": self.is_loaded(),
|
142
|
+
"config": self.default_config
|
143
|
+
}
|
@@ -0,0 +1,143 @@
|
|
1
|
+
import json
|
2
|
+
import logging
|
3
|
+
import asyncio
|
4
|
+
from typing import Dict, List, Any, Optional, Union
|
5
|
+
|
6
|
+
from isa_model.inference.services.base_service import BaseService
|
7
|
+
from isa_model.inference.backends.triton_client import TritonClient
|
8
|
+
|
9
|
+
logger = logging.getLogger(__name__)
|
10
|
+
|
11
|
+
|
12
|
+
class LlamaService(BaseService):
|
13
|
+
"""
|
14
|
+
Service for Llama LLM using Triton Inference Server.
|
15
|
+
"""
|
16
|
+
|
17
|
+
def __init__(self, triton_url: str = "localhost:8001", model_name: str = "llama"):
|
18
|
+
"""
|
19
|
+
Initialize the Llama service.
|
20
|
+
|
21
|
+
Args:
|
22
|
+
triton_url: URL of the Triton Inference Server
|
23
|
+
model_name: Name of the model in Triton
|
24
|
+
"""
|
25
|
+
super().__init__()
|
26
|
+
self.triton_url = triton_url
|
27
|
+
self.model_name = model_name
|
28
|
+
self.client = None
|
29
|
+
|
30
|
+
# Default generation config
|
31
|
+
self.default_config = {
|
32
|
+
"max_new_tokens": 512,
|
33
|
+
"temperature": 0.7,
|
34
|
+
"top_p": 0.9,
|
35
|
+
"top_k": 50,
|
36
|
+
"repetition_penalty": 1.1,
|
37
|
+
"do_sample": True
|
38
|
+
}
|
39
|
+
|
40
|
+
self.logger = logger
|
41
|
+
|
42
|
+
async def load(self) -> None:
|
43
|
+
"""
|
44
|
+
Load the client connection to Triton.
|
45
|
+
"""
|
46
|
+
if self.is_loaded():
|
47
|
+
return
|
48
|
+
|
49
|
+
try:
|
50
|
+
# Create Triton client
|
51
|
+
self.logger.info(f"Connecting to Triton server at {self.triton_url}")
|
52
|
+
self.client = TritonClient(self.triton_url)
|
53
|
+
|
54
|
+
# Check if model is ready
|
55
|
+
if not await self.client.is_model_ready(self.model_name):
|
56
|
+
self.logger.error(f"Model {self.model_name} is not ready on Triton server")
|
57
|
+
raise RuntimeError(f"Model {self.model_name} is not ready on Triton server")
|
58
|
+
|
59
|
+
self._loaded = True
|
60
|
+
self.logger.info(f"Connected to Triton for model {self.model_name}")
|
61
|
+
|
62
|
+
except Exception as e:
|
63
|
+
self.logger.error(f"Failed to connect to Triton: {str(e)}")
|
64
|
+
raise
|
65
|
+
|
66
|
+
async def unload(self) -> None:
|
67
|
+
"""
|
68
|
+
Unload the client connection.
|
69
|
+
"""
|
70
|
+
if not self.is_loaded():
|
71
|
+
return
|
72
|
+
|
73
|
+
self.client = None
|
74
|
+
self._loaded = False
|
75
|
+
self.logger.info("Triton client connection closed")
|
76
|
+
|
77
|
+
async def generate(self,
|
78
|
+
prompt: str,
|
79
|
+
system_prompt: Optional[str] = None,
|
80
|
+
generation_config: Optional[Dict[str, Any]] = None) -> str:
|
81
|
+
"""
|
82
|
+
Generate text from a prompt using Triton.
|
83
|
+
|
84
|
+
Args:
|
85
|
+
prompt: User prompt
|
86
|
+
system_prompt: System prompt to control model behavior
|
87
|
+
generation_config: Configuration for text generation
|
88
|
+
|
89
|
+
Returns:
|
90
|
+
Generated text
|
91
|
+
"""
|
92
|
+
if not self.is_loaded():
|
93
|
+
await self.load()
|
94
|
+
|
95
|
+
# Get configuration
|
96
|
+
merged_config = self.default_config.copy()
|
97
|
+
if generation_config:
|
98
|
+
merged_config.update(generation_config)
|
99
|
+
|
100
|
+
try:
|
101
|
+
# Prepare inputs
|
102
|
+
inputs = {
|
103
|
+
"prompt": [prompt],
|
104
|
+
}
|
105
|
+
|
106
|
+
# Add optional inputs
|
107
|
+
if system_prompt:
|
108
|
+
inputs["system_prompt"] = [system_prompt]
|
109
|
+
|
110
|
+
if merged_config:
|
111
|
+
inputs["generation_config"] = [json.dumps(merged_config)]
|
112
|
+
|
113
|
+
# Run inference
|
114
|
+
result = await self.client.infer(
|
115
|
+
model_name=self.model_name,
|
116
|
+
inputs=inputs,
|
117
|
+
outputs=["text_output"]
|
118
|
+
)
|
119
|
+
|
120
|
+
# Extract generated text
|
121
|
+
generated_text = result["text_output"][0].decode('utf-8')
|
122
|
+
|
123
|
+
return generated_text
|
124
|
+
|
125
|
+
except Exception as e:
|
126
|
+
self.logger.error(f"Error during text generation: {str(e)}")
|
127
|
+
raise
|
128
|
+
|
129
|
+
def get_model_info(self) -> Dict[str, Any]:
|
130
|
+
"""
|
131
|
+
Get information about the model.
|
132
|
+
|
133
|
+
Returns:
|
134
|
+
Dictionary containing model information
|
135
|
+
"""
|
136
|
+
return {
|
137
|
+
"name": self.model_name,
|
138
|
+
"type": "llm",
|
139
|
+
"backend": "triton",
|
140
|
+
"url": self.triton_url,
|
141
|
+
"loaded": self.is_loaded(),
|
142
|
+
"config": self.default_config
|
143
|
+
}
|
@@ -0,0 +1,108 @@
|
|
1
|
+
import logging
|
2
|
+
from typing import Dict, Any, List, Union, AsyncGenerator, Optional
|
3
|
+
from isa_model.inference.services.base_service import BaseLLMService
|
4
|
+
from isa_model.inference.providers.base_provider import BaseProvider
|
5
|
+
from isa_model.inference.backends.local_services import OllamaBackendClient
|
6
|
+
|
7
|
+
logger = logging.getLogger(__name__)
|
8
|
+
|
9
|
+
class OllamaLLMService(BaseLLMService):
|
10
|
+
"""Ollama LLM service using backend client"""
|
11
|
+
|
12
|
+
def __init__(self, provider: 'BaseProvider', model_name: str = "llama3.1", backend: Optional[OllamaBackendClient] = None):
|
13
|
+
super().__init__(provider, model_name)
|
14
|
+
|
15
|
+
# Use provided backend or create new one
|
16
|
+
if backend:
|
17
|
+
self.backend = backend
|
18
|
+
else:
|
19
|
+
host = self.config.get("host", "localhost")
|
20
|
+
port = self.config.get("port", 11434)
|
21
|
+
self.backend = OllamaBackendClient(host, port)
|
22
|
+
|
23
|
+
self.last_token_usage = {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
|
24
|
+
logger.info(f"Initialized OllamaLLMService with model {model_name}")
|
25
|
+
|
26
|
+
async def ainvoke(self, prompt: Union[str, List[Dict[str, str]], Any]):
|
27
|
+
"""Universal invocation method"""
|
28
|
+
if isinstance(prompt, str):
|
29
|
+
return await self.acompletion(prompt)
|
30
|
+
elif isinstance(prompt, list):
|
31
|
+
return await self.achat(prompt)
|
32
|
+
else:
|
33
|
+
raise ValueError("Prompt must be string or list of messages")
|
34
|
+
|
35
|
+
async def achat(self, messages: List[Dict[str, str]]):
|
36
|
+
"""Chat completion method"""
|
37
|
+
try:
|
38
|
+
payload = {
|
39
|
+
"model": self.model_name,
|
40
|
+
"messages": messages,
|
41
|
+
"stream": False
|
42
|
+
}
|
43
|
+
response = await self.backend.post("/api/chat", payload)
|
44
|
+
|
45
|
+
# Update token usage if available
|
46
|
+
if "eval_count" in response:
|
47
|
+
self.last_token_usage = {
|
48
|
+
"prompt_tokens": response.get("prompt_eval_count", 0),
|
49
|
+
"completion_tokens": response.get("eval_count", 0),
|
50
|
+
"total_tokens": response.get("prompt_eval_count", 0) + response.get("eval_count", 0)
|
51
|
+
}
|
52
|
+
|
53
|
+
return response["message"]["content"]
|
54
|
+
|
55
|
+
except Exception as e:
|
56
|
+
logger.error(f"Error in chat completion: {e}")
|
57
|
+
raise
|
58
|
+
|
59
|
+
async def acompletion(self, prompt: str):
|
60
|
+
"""Text completion method"""
|
61
|
+
try:
|
62
|
+
payload = {
|
63
|
+
"model": self.model_name,
|
64
|
+
"prompt": prompt,
|
65
|
+
"stream": False
|
66
|
+
}
|
67
|
+
response = await self.backend.post("/api/generate", payload)
|
68
|
+
|
69
|
+
# Update token usage if available
|
70
|
+
if "eval_count" in response:
|
71
|
+
self.last_token_usage = {
|
72
|
+
"prompt_tokens": response.get("prompt_eval_count", 0),
|
73
|
+
"completion_tokens": response.get("eval_count", 0),
|
74
|
+
"total_tokens": response.get("prompt_eval_count", 0) + response.get("eval_count", 0)
|
75
|
+
}
|
76
|
+
|
77
|
+
return response["response"]
|
78
|
+
|
79
|
+
except Exception as e:
|
80
|
+
logger.error(f"Error in text completion: {e}")
|
81
|
+
raise
|
82
|
+
|
83
|
+
async def agenerate(self, messages: List[Dict[str, str]], n: int = 1) -> List[str]:
|
84
|
+
"""Generate multiple completions"""
|
85
|
+
results = []
|
86
|
+
for _ in range(n):
|
87
|
+
result = await self.achat(messages)
|
88
|
+
results.append(result)
|
89
|
+
return results
|
90
|
+
|
91
|
+
async def astream_chat(self, messages: List[Dict[str, str]]) -> AsyncGenerator[str, None]:
|
92
|
+
"""Stream chat responses"""
|
93
|
+
# Note: This would require modifying the backend to support streaming
|
94
|
+
# For now, return the full response
|
95
|
+
response = await self.achat(messages)
|
96
|
+
yield response
|
97
|
+
|
98
|
+
def get_token_usage(self):
|
99
|
+
"""Get total token usage statistics"""
|
100
|
+
return self.last_token_usage
|
101
|
+
|
102
|
+
def get_last_token_usage(self) -> Dict[str, int]:
|
103
|
+
"""Get token usage from last request"""
|
104
|
+
return self.last_token_usage
|
105
|
+
|
106
|
+
async def close(self):
|
107
|
+
"""Close the backend client"""
|
108
|
+
await self.backend.close()
|