isa-model 0.1.0__py3-none-any.whl → 0.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. isa_model/__init__.py +1 -1
  2. isa_model/core/model_registry.py +273 -46
  3. isa_model/deployment/gpu_fp16_ds8/models/deepseek_r1/1/model.py +120 -0
  4. isa_model/deployment/gpu_fp16_ds8/scripts/download_model.py +18 -0
  5. isa_model/deployment/gpu_int8_ds8/app/server.py +66 -0
  6. isa_model/deployment/gpu_int8_ds8/scripts/test_client.py +43 -0
  7. isa_model/deployment/gpu_int8_ds8/scripts/test_client_os.py +35 -0
  8. isa_model/eval/__init__.py +56 -0
  9. isa_model/eval/benchmarks.py +469 -0
  10. isa_model/eval/factory.py +582 -0
  11. isa_model/eval/metrics.py +628 -0
  12. isa_model/inference/ai_factory.py +98 -93
  13. isa_model/inference/providers/openai_provider.py +21 -7
  14. isa_model/inference/providers/replicate_provider.py +18 -5
  15. isa_model/inference/providers/triton_provider.py +1 -1
  16. isa_model/inference/services/audio/base_stt_service.py +91 -0
  17. isa_model/inference/services/audio/base_tts_service.py +136 -0
  18. isa_model/inference/services/audio/{yyds_audio_service.py → openai_tts_service.py} +4 -4
  19. isa_model/inference/services/embedding/ollama_embed_service.py +48 -36
  20. isa_model/inference/services/llm/__init__.py +0 -4
  21. isa_model/inference/services/llm/base_llm_service.py +134 -0
  22. isa_model/inference/services/llm/ollama_llm_service.py +1 -10
  23. isa_model/inference/services/llm/openai_llm_service.py +70 -61
  24. isa_model/inference/services/vision/__init__.py +1 -1
  25. isa_model/inference/services/vision/ollama_vision_service.py +4 -4
  26. isa_model/inference/services/vision/{yyds_vision_service.py → openai_vision_service.py} +5 -5
  27. isa_model/inference/services/vision/replicate_image_gen_service.py +185 -0
  28. isa_model/training/__init__.py +44 -0
  29. isa_model/training/factory.py +393 -0
  30. isa_model-0.1.1.dist-info/METADATA +327 -0
  31. {isa_model-0.1.0.dist-info → isa_model-0.1.1.dist-info}/RECORD +35 -60
  32. isa_model/deployment/mlflow_gateway/__init__.py +0 -8
  33. isa_model/deployment/mlflow_gateway/start_gateway.py +0 -65
  34. isa_model/deployment/unified_multimodal_client.py +0 -341
  35. isa_model/inference/adapter/triton_adapter.py +0 -453
  36. isa_model/inference/backends/Pytorch/bge_embed_backend.py +0 -188
  37. isa_model/inference/backends/Pytorch/gemma_backend.py +0 -167
  38. isa_model/inference/backends/Pytorch/llama_backend.py +0 -166
  39. isa_model/inference/backends/Pytorch/whisper_backend.py +0 -194
  40. isa_model/inference/backends/__init__.py +0 -53
  41. isa_model/inference/backends/base_backend_client.py +0 -26
  42. isa_model/inference/backends/container_services.py +0 -104
  43. isa_model/inference/backends/local_services.py +0 -72
  44. isa_model/inference/backends/openai_client.py +0 -130
  45. isa_model/inference/backends/replicate_client.py +0 -197
  46. isa_model/inference/backends/third_party_services.py +0 -239
  47. isa_model/inference/backends/triton_client.py +0 -97
  48. isa_model/inference/client_sdk/client.py +0 -134
  49. isa_model/inference/client_sdk/client_data_std.py +0 -34
  50. isa_model/inference/client_sdk/client_sdk_schema.py +0 -16
  51. isa_model/inference/client_sdk/exceptions.py +0 -0
  52. isa_model/inference/engine/triton/model_repository/bge/1/model.py +0 -174
  53. isa_model/inference/engine/triton/model_repository/gemma/1/model.py +0 -250
  54. isa_model/inference/engine/triton/model_repository/llama/1/model.py +0 -76
  55. isa_model/inference/engine/triton/model_repository/whisper/1/model.py +0 -195
  56. isa_model/inference/providers/vllm_provider.py +0 -0
  57. isa_model/inference/providers/yyds_provider.py +0 -83
  58. isa_model/inference/services/audio/fish_speech/handler.py +0 -215
  59. isa_model/inference/services/audio/runpod_tts_fish_service.py +0 -212
  60. isa_model/inference/services/audio/triton_speech_service.py +0 -138
  61. isa_model/inference/services/audio/whisper_service.py +0 -186
  62. isa_model/inference/services/base_tts_service.py +0 -66
  63. isa_model/inference/services/embedding/bge_service.py +0 -183
  64. isa_model/inference/services/embedding/ollama_rerank_service.py +0 -118
  65. isa_model/inference/services/embedding/onnx_rerank_service.py +0 -73
  66. isa_model/inference/services/llm/gemma_service.py +0 -143
  67. isa_model/inference/services/llm/llama_service.py +0 -143
  68. isa_model/inference/services/llm/replicate_llm_service.py +0 -179
  69. isa_model/inference/services/llm/triton_llm_service.py +0 -230
  70. isa_model/inference/services/vision/replicate_vision_service.py +0 -241
  71. isa_model/inference/services/vision/triton_vision_service.py +0 -199
  72. isa_model-0.1.0.dist-info/METADATA +0 -116
  73. /isa_model/inference/{client_sdk/__init__.py → services/embedding/openai_embed_service.py} +0 -0
  74. {isa_model-0.1.0.dist-info → isa_model-0.1.1.dist-info}/WHEEL +0 -0
  75. {isa_model-0.1.0.dist-info → isa_model-0.1.1.dist-info}/licenses/LICENSE +0 -0
  76. {isa_model-0.1.0.dist-info → isa_model-0.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,628 @@
1
+ """
2
+ Evaluation Metrics for ISA Model Framework
3
+
4
+ This module provides various metrics for evaluating AI models:
5
+ - LLM metrics: perplexity, BLEU, ROUGE, accuracy, etc.
6
+ - Image metrics: FID, IS, LPIPS, etc.
7
+ - Custom metrics and benchmark runners
8
+ """
9
+
10
+ import os
11
+ import json
12
+ import logging
13
+ import numpy as np
14
+ from typing import Dict, List, Any, Optional, Union
15
+ from enum import Enum
16
+ from abc import ABC, abstractmethod
17
+
18
+ logger = logging.getLogger(__name__)
19
+
20
+
21
+ class MetricType(str, Enum):
22
+ """Types of evaluation metrics."""
23
+ PERPLEXITY = "perplexity"
24
+ BLEU = "bleu"
25
+ ROUGE = "rouge"
26
+ ACCURACY = "accuracy"
27
+ F1_SCORE = "f1"
28
+ DIVERSITY = "diversity"
29
+ COHERENCE = "coherence"
30
+ FLUENCY = "fluency"
31
+ FID = "fid"
32
+ IS = "is"
33
+ LPIPS = "lpips"
34
+
35
+
36
+ class BaseMetric(ABC):
37
+ """Base class for all metrics."""
38
+
39
+ @abstractmethod
40
+ def compute(self, predictions: List[str], references: List[str] = None, **kwargs) -> Dict[str, float]:
41
+ """Compute the metric."""
42
+ pass
43
+
44
+
45
+ class LLMMetrics:
46
+ """
47
+ Metrics calculator for Language Models.
48
+
49
+ Supports various metrics including:
50
+ - Perplexity
51
+ - BLEU score
52
+ - ROUGE score
53
+ - Accuracy
54
+ - F1 score
55
+ - Generation quality metrics
56
+ """
57
+
58
+ def __init__(self):
59
+ self.available_metrics = [
60
+ MetricType.PERPLEXITY,
61
+ MetricType.BLEU,
62
+ MetricType.ROUGE,
63
+ MetricType.ACCURACY,
64
+ MetricType.F1_SCORE,
65
+ MetricType.DIVERSITY,
66
+ MetricType.COHERENCE,
67
+ MetricType.FLUENCY
68
+ ]
69
+
70
+ def evaluate(
71
+ self,
72
+ model_path: str,
73
+ dataset: List[Dict[str, Any]],
74
+ metrics: List[str],
75
+ batch_size: int = 8,
76
+ provider: str = "ollama",
77
+ **kwargs
78
+ ) -> Dict[str, Any]:
79
+ """
80
+ Evaluate LLM on dataset with specified metrics.
81
+
82
+ Args:
83
+ model_path: Path to the model
84
+ dataset: Evaluation dataset
85
+ metrics: List of metrics to compute
86
+ batch_size: Batch size for evaluation
87
+ provider: Model provider
88
+ **kwargs: Additional parameters
89
+
90
+ Returns:
91
+ Dictionary with metric results
92
+ """
93
+ results = {
94
+ "model_path": model_path,
95
+ "num_samples": len(dataset),
96
+ "metrics": {}
97
+ }
98
+
99
+ # Generate predictions
100
+ predictions, references = self._generate_predictions(
101
+ model_path, dataset, batch_size, provider, **kwargs
102
+ )
103
+
104
+ # Compute each metric
105
+ for metric in metrics:
106
+ try:
107
+ if metric == MetricType.PERPLEXITY:
108
+ score = self._compute_perplexity(predictions, references)
109
+ elif metric == MetricType.BLEU:
110
+ score = self._compute_bleu(predictions, references)
111
+ elif metric == MetricType.ROUGE:
112
+ score = self._compute_rouge(predictions, references)
113
+ elif metric == MetricType.ACCURACY:
114
+ score = self._compute_accuracy(predictions, references)
115
+ elif metric == MetricType.F1_SCORE:
116
+ score = self._compute_f1(predictions, references)
117
+ elif metric == MetricType.DIVERSITY:
118
+ score = self._compute_diversity(predictions)
119
+ elif metric == MetricType.COHERENCE:
120
+ score = self._compute_coherence(predictions)
121
+ elif metric == MetricType.FLUENCY:
122
+ score = self._compute_fluency(predictions)
123
+ else:
124
+ logger.warning(f"Unknown metric: {metric}")
125
+ continue
126
+
127
+ results["metrics"][metric] = score
128
+ logger.info(f"Computed {metric}: {score}")
129
+
130
+ except Exception as e:
131
+ logger.error(f"Failed to compute {metric}: {e}")
132
+ results["metrics"][metric] = {"error": str(e)}
133
+
134
+ return results
135
+
136
+ def evaluate_generation(
137
+ self,
138
+ model_path: str,
139
+ prompts: List[str],
140
+ reference_texts: List[str] = None,
141
+ metrics: List[str] = None,
142
+ provider: str = "ollama",
143
+ **kwargs
144
+ ) -> Dict[str, Any]:
145
+ """
146
+ Evaluate text generation quality.
147
+
148
+ Args:
149
+ model_path: Path to the model
150
+ prompts: Input prompts
151
+ reference_texts: Reference texts (optional)
152
+ metrics: Metrics to compute
153
+ provider: Model provider
154
+ **kwargs: Additional parameters
155
+
156
+ Returns:
157
+ Generation evaluation results
158
+ """
159
+ if metrics is None:
160
+ metrics = [MetricType.DIVERSITY, MetricType.COHERENCE, MetricType.FLUENCY]
161
+
162
+ # Generate texts
163
+ generated_texts = self._generate_texts(model_path, prompts, provider, **kwargs)
164
+
165
+ results = {
166
+ "model_path": model_path,
167
+ "num_prompts": len(prompts),
168
+ "metrics": {}
169
+ }
170
+
171
+ # Compute metrics
172
+ for metric in metrics:
173
+ try:
174
+ if metric == MetricType.DIVERSITY:
175
+ score = self._compute_diversity(generated_texts)
176
+ elif metric == MetricType.COHERENCE:
177
+ score = self._compute_coherence(generated_texts)
178
+ elif metric == MetricType.FLUENCY:
179
+ score = self._compute_fluency(generated_texts)
180
+ elif metric == MetricType.BLEU and reference_texts:
181
+ score = self._compute_bleu(generated_texts, reference_texts)
182
+ elif metric == MetricType.ROUGE and reference_texts:
183
+ score = self._compute_rouge(generated_texts, reference_texts)
184
+ else:
185
+ continue
186
+
187
+ results["metrics"][metric] = score
188
+
189
+ except Exception as e:
190
+ logger.error(f"Failed to compute {metric}: {e}")
191
+ results["metrics"][metric] = {"error": str(e)}
192
+
193
+ return results
194
+
195
+ def _generate_predictions(
196
+ self,
197
+ model_path: str,
198
+ dataset: List[Dict[str, Any]],
199
+ batch_size: int,
200
+ provider: str,
201
+ **kwargs
202
+ ) -> tuple:
203
+ """Generate predictions from model."""
204
+ predictions = []
205
+ references = []
206
+
207
+ # This is a simplified implementation
208
+ # In practice, you'd use the actual model inference
209
+ for item in dataset:
210
+ if isinstance(item, dict):
211
+ if "input" in item and "output" in item:
212
+ # Simulate prediction (replace with actual model inference)
213
+ predictions.append(f"Generated response for: {item['input']}")
214
+ references.append(item["output"])
215
+ elif "prompt" in item and "response" in item:
216
+ predictions.append(f"Generated response for: {item['prompt']}")
217
+ references.append(item["response"])
218
+
219
+ logger.info(f"Generated {len(predictions)} predictions")
220
+ return predictions, references
221
+
222
+ def _generate_texts(
223
+ self,
224
+ model_path: str,
225
+ prompts: List[str],
226
+ provider: str,
227
+ **kwargs
228
+ ) -> List[str]:
229
+ """Generate texts from prompts."""
230
+ # Simplified implementation - replace with actual model inference
231
+ generated_texts = []
232
+ for prompt in prompts:
233
+ generated_texts.append(f"Generated response for: {prompt}")
234
+
235
+ return generated_texts
236
+
237
+ def _compute_perplexity(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
238
+ """Compute perplexity score (simplified implementation)."""
239
+ # This is a placeholder - actual perplexity requires model probabilities
240
+ return {
241
+ "perplexity": np.random.uniform(10, 100), # Placeholder
242
+ "log_perplexity": np.random.uniform(2, 5)
243
+ }
244
+
245
+ def _compute_bleu(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
246
+ """Compute BLEU score (simplified implementation)."""
247
+ try:
248
+ # Placeholder implementation - use actual BLEU calculation
249
+ # from nltk.translate.bleu_score import sentence_bleu
250
+ scores = []
251
+ for pred, ref in zip(predictions, references):
252
+ # Simplified BLEU calculation
253
+ pred_words = pred.lower().split()
254
+ ref_words = ref.lower().split()
255
+
256
+ # Simple overlap calculation (not actual BLEU)
257
+ overlap = len(set(pred_words) & set(ref_words))
258
+ total = len(set(pred_words) | set(ref_words))
259
+
260
+ if total > 0:
261
+ scores.append(overlap / total)
262
+ else:
263
+ scores.append(0.0)
264
+
265
+ return {
266
+ "bleu": np.mean(scores),
267
+ "bleu_std": np.std(scores)
268
+ }
269
+ except Exception as e:
270
+ logger.error(f"BLEU computation failed: {e}")
271
+ return {"bleu": 0.0, "error": str(e)}
272
+
273
+ def _compute_rouge(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
274
+ """Compute ROUGE score (simplified implementation)."""
275
+ try:
276
+ rouge_1_scores = []
277
+ rouge_l_scores = []
278
+
279
+ for pred, ref in zip(predictions, references):
280
+ pred_words = set(pred.lower().split())
281
+ ref_words = set(ref.lower().split())
282
+
283
+ # ROUGE-1 (unigram overlap)
284
+ if len(ref_words) > 0:
285
+ rouge_1 = len(pred_words & ref_words) / len(ref_words)
286
+ rouge_1_scores.append(rouge_1)
287
+
288
+ # Simplified ROUGE-L (longest common subsequence)
289
+ rouge_l = len(pred_words & ref_words) / max(len(pred_words), len(ref_words), 1)
290
+ rouge_l_scores.append(rouge_l)
291
+
292
+ return {
293
+ "rouge_1": np.mean(rouge_1_scores),
294
+ "rouge_l": np.mean(rouge_l_scores),
295
+ "rouge_1_std": np.std(rouge_1_scores),
296
+ "rouge_l_std": np.std(rouge_l_scores)
297
+ }
298
+ except Exception as e:
299
+ logger.error(f"ROUGE computation failed: {e}")
300
+ return {"rouge_1": 0.0, "rouge_l": 0.0, "error": str(e)}
301
+
302
+ def _compute_accuracy(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
303
+ """Compute accuracy score."""
304
+ try:
305
+ correct = 0
306
+ total = len(predictions)
307
+
308
+ for pred, ref in zip(predictions, references):
309
+ if pred.strip().lower() == ref.strip().lower():
310
+ correct += 1
311
+
312
+ accuracy = correct / total if total > 0 else 0.0
313
+
314
+ return {
315
+ "accuracy": accuracy,
316
+ "correct": correct,
317
+ "total": total
318
+ }
319
+ except Exception as e:
320
+ logger.error(f"Accuracy computation failed: {e}")
321
+ return {"accuracy": 0.0, "error": str(e)}
322
+
323
+ def _compute_f1(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
324
+ """Compute F1 score (simplified implementation)."""
325
+ try:
326
+ f1_scores = []
327
+
328
+ for pred, ref in zip(predictions, references):
329
+ pred_words = set(pred.lower().split())
330
+ ref_words = set(ref.lower().split())
331
+
332
+ if len(pred_words) == 0 and len(ref_words) == 0:
333
+ f1_scores.append(1.0)
334
+ elif len(pred_words) == 0 or len(ref_words) == 0:
335
+ f1_scores.append(0.0)
336
+ else:
337
+ intersection = len(pred_words & ref_words)
338
+ precision = intersection / len(pred_words)
339
+ recall = intersection / len(ref_words)
340
+
341
+ if precision + recall > 0:
342
+ f1 = 2 * (precision * recall) / (precision + recall)
343
+ f1_scores.append(f1)
344
+ else:
345
+ f1_scores.append(0.0)
346
+
347
+ return {
348
+ "f1": np.mean(f1_scores),
349
+ "f1_std": np.std(f1_scores)
350
+ }
351
+ except Exception as e:
352
+ logger.error(f"F1 computation failed: {e}")
353
+ return {"f1": 0.0, "error": str(e)}
354
+
355
+ def _compute_diversity(self, texts: List[str]) -> Dict[str, float]:
356
+ """Compute diversity metrics."""
357
+ try:
358
+ # Distinct-1 and Distinct-2
359
+ all_unigrams = []
360
+ all_bigrams = []
361
+
362
+ for text in texts:
363
+ words = text.lower().split()
364
+ all_unigrams.extend(words)
365
+
366
+ # Create bigrams
367
+ for i in range(len(words) - 1):
368
+ all_bigrams.append((words[i], words[i + 1]))
369
+
370
+ distinct_1 = len(set(all_unigrams)) / len(all_unigrams) if all_unigrams else 0
371
+ distinct_2 = len(set(all_bigrams)) / len(all_bigrams) if all_bigrams else 0
372
+
373
+ return {
374
+ "distinct_1": distinct_1,
375
+ "distinct_2": distinct_2,
376
+ "vocab_size": len(set(all_unigrams))
377
+ }
378
+ except Exception as e:
379
+ logger.error(f"Diversity computation failed: {e}")
380
+ return {"distinct_1": 0.0, "distinct_2": 0.0, "error": str(e)}
381
+
382
+ def _compute_coherence(self, texts: List[str]) -> Dict[str, float]:
383
+ """Compute coherence score (simplified implementation)."""
384
+ try:
385
+ # Simplified coherence based on sentence length consistency
386
+ coherence_scores = []
387
+
388
+ for text in texts:
389
+ sentences = text.split('.')
390
+ if len(sentences) > 1:
391
+ lengths = [len(s.split()) for s in sentences if s.strip()]
392
+ if lengths:
393
+ # Coherence as inverse of length variance
394
+ coherence = 1.0 / (1.0 + np.var(lengths))
395
+ coherence_scores.append(coherence)
396
+ else:
397
+ coherence_scores.append(0.5)
398
+ else:
399
+ coherence_scores.append(0.5)
400
+
401
+ return {
402
+ "coherence": np.mean(coherence_scores),
403
+ "coherence_std": np.std(coherence_scores)
404
+ }
405
+ except Exception as e:
406
+ logger.error(f"Coherence computation failed: {e}")
407
+ return {"coherence": 0.5, "error": str(e)}
408
+
409
+ def _compute_fluency(self, texts: List[str]) -> Dict[str, float]:
410
+ """Compute fluency score (simplified implementation)."""
411
+ try:
412
+ fluency_scores = []
413
+
414
+ for text in texts:
415
+ # Simplified fluency based on word count and sentence structure
416
+ words = text.split()
417
+ sentences = text.split('.')
418
+
419
+ if len(words) > 0 and len(sentences) > 0:
420
+ avg_words_per_sentence = len(words) / len(sentences)
421
+ # Fluency based on reasonable sentence length (5-20 words)
422
+ if 5 <= avg_words_per_sentence <= 20:
423
+ fluency = 1.0
424
+ else:
425
+ fluency = max(0.0, 1.0 - abs(avg_words_per_sentence - 12.5) / 12.5)
426
+
427
+ fluency_scores.append(fluency)
428
+ else:
429
+ fluency_scores.append(0.0)
430
+
431
+ return {
432
+ "fluency": np.mean(fluency_scores),
433
+ "fluency_std": np.std(fluency_scores)
434
+ }
435
+ except Exception as e:
436
+ logger.error(f"Fluency computation failed: {e}")
437
+ return {"fluency": 0.0, "error": str(e)}
438
+
439
+
440
+ class ImageMetrics:
441
+ """
442
+ Metrics calculator for Image Generation Models.
443
+
444
+ Supports metrics including:
445
+ - FID (Fréchet Inception Distance)
446
+ - IS (Inception Score)
447
+ - LPIPS (Learned Perceptual Image Patch Similarity)
448
+ """
449
+
450
+ def __init__(self):
451
+ self.available_metrics = [
452
+ MetricType.FID,
453
+ MetricType.IS,
454
+ MetricType.LPIPS
455
+ ]
456
+
457
+ def evaluate(
458
+ self,
459
+ model_path: str,
460
+ test_images_dir: str,
461
+ reference_images_dir: Optional[str] = None,
462
+ metrics: List[str] = None,
463
+ **kwargs
464
+ ) -> Dict[str, Any]:
465
+ """
466
+ Evaluate image generation model.
467
+
468
+ Args:
469
+ model_path: Path to the image model
470
+ test_images_dir: Directory with test images
471
+ reference_images_dir: Directory with reference images
472
+ metrics: Metrics to compute
473
+ **kwargs: Additional parameters
474
+
475
+ Returns:
476
+ Image evaluation results
477
+ """
478
+ if metrics is None:
479
+ metrics = [MetricType.FID, MetricType.IS]
480
+
481
+ results = {
482
+ "model_path": model_path,
483
+ "test_images_dir": test_images_dir,
484
+ "reference_images_dir": reference_images_dir,
485
+ "metrics": {}
486
+ }
487
+
488
+ for metric in metrics:
489
+ try:
490
+ if metric == MetricType.FID:
491
+ score = self._compute_fid(test_images_dir, reference_images_dir)
492
+ elif metric == MetricType.IS:
493
+ score = self._compute_is(test_images_dir)
494
+ elif metric == MetricType.LPIPS:
495
+ score = self._compute_lpips(test_images_dir, reference_images_dir)
496
+ else:
497
+ logger.warning(f"Unknown image metric: {metric}")
498
+ continue
499
+
500
+ results["metrics"][metric] = score
501
+ logger.info(f"Computed {metric}: {score}")
502
+
503
+ except Exception as e:
504
+ logger.error(f"Failed to compute {metric}: {e}")
505
+ results["metrics"][metric] = {"error": str(e)}
506
+
507
+ return results
508
+
509
+ def _compute_fid(self, test_dir: str, reference_dir: Optional[str]) -> Dict[str, float]:
510
+ """Compute FID score (placeholder implementation)."""
511
+ # This is a placeholder - actual FID requires complex neural network computations
512
+ logger.warning("FID computation not fully implemented - returning placeholder")
513
+ return {
514
+ "fid": np.random.uniform(20, 100), # Placeholder
515
+ "note": "Placeholder implementation"
516
+ }
517
+
518
+ def _compute_is(self, images_dir: str) -> Dict[str, float]:
519
+ """Compute Inception Score (placeholder implementation)."""
520
+ # This is a placeholder - actual IS requires Inception network
521
+ logger.warning("IS computation not fully implemented - returning placeholder")
522
+ return {
523
+ "is_mean": np.random.uniform(2, 10), # Placeholder
524
+ "is_std": np.random.uniform(0.1, 1.0),
525
+ "note": "Placeholder implementation"
526
+ }
527
+
528
+ def _compute_lpips(self, test_dir: str, reference_dir: Optional[str]) -> Dict[str, float]:
529
+ """Compute LPIPS score (placeholder implementation)."""
530
+ # This is a placeholder - actual LPIPS requires perceptual loss networks
531
+ logger.warning("LPIPS computation not fully implemented - returning placeholder")
532
+ return {
533
+ "lpips": np.random.uniform(0.1, 0.8), # Placeholder
534
+ "note": "Placeholder implementation"
535
+ }
536
+
537
+
538
+ class BenchmarkRunner:
539
+ """
540
+ Runner for standard AI benchmarks.
541
+
542
+ Supports running various benchmarks and collecting results.
543
+ """
544
+
545
+ def __init__(self):
546
+ self.supported_benchmarks = ["mmlu", "hellaswag", "arc", "gsm8k"]
547
+
548
+ def run(
549
+ self,
550
+ benchmark,
551
+ model_path: str,
552
+ num_shots: int = 0,
553
+ max_samples: Optional[int] = None,
554
+ provider: str = "ollama",
555
+ **kwargs
556
+ ) -> Dict[str, Any]:
557
+ """
558
+ Run a benchmark evaluation.
559
+
560
+ Args:
561
+ benchmark: Benchmark instance
562
+ model_path: Path to the model
563
+ num_shots: Number of few-shot examples
564
+ max_samples: Maximum samples to evaluate
565
+ provider: Model provider
566
+ **kwargs: Additional parameters
567
+
568
+ Returns:
569
+ Benchmark results
570
+ """
571
+ logger.info(f"Running benchmark {benchmark.name} on {model_path}")
572
+
573
+ # Load benchmark data
574
+ test_data = benchmark.load_data(max_samples=max_samples)
575
+
576
+ # Run evaluation
577
+ results = {
578
+ "benchmark": benchmark.name,
579
+ "model_path": model_path,
580
+ "num_shots": num_shots,
581
+ "num_samples": len(test_data),
582
+ "results": {}
583
+ }
584
+
585
+ # Process each sample
586
+ correct = 0
587
+ total = 0
588
+
589
+ for sample in test_data:
590
+ try:
591
+ # Generate prediction (simplified)
592
+ prediction = self._generate_prediction(
593
+ model_path, sample, num_shots, provider, **kwargs
594
+ )
595
+
596
+ # Check if correct
597
+ is_correct = benchmark.evaluate_sample(sample, prediction)
598
+ if is_correct:
599
+ correct += 1
600
+ total += 1
601
+
602
+ except Exception as e:
603
+ logger.error(f"Failed to process sample: {e}")
604
+ continue
605
+
606
+ # Calculate final score
607
+ accuracy = correct / total if total > 0 else 0.0
608
+
609
+ results["results"] = {
610
+ "accuracy": accuracy,
611
+ "correct": correct,
612
+ "total": total
613
+ }
614
+
615
+ logger.info(f"Benchmark completed: {accuracy:.3f} accuracy ({correct}/{total})")
616
+ return results
617
+
618
+ def _generate_prediction(
619
+ self,
620
+ model_path: str,
621
+ sample: Dict[str, Any],
622
+ num_shots: int,
623
+ provider: str,
624
+ **kwargs
625
+ ) -> str:
626
+ """Generate prediction for a sample (simplified implementation)."""
627
+ # This is a placeholder - replace with actual model inference
628
+ return "A" # Placeholder answer