isa-model 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- isa_model/eval/__init__.py +56 -0
- isa_model/eval/benchmarks.py +469 -0
- isa_model/eval/factory.py +582 -0
- isa_model/eval/metrics.py +628 -0
- isa_model/training/__init__.py +44 -0
- isa_model/training/factory.py +393 -0
- {isa_model-0.0.1.dist-info → isa_model-0.0.2.dist-info}/METADATA +1 -1
- {isa_model-0.0.1.dist-info → isa_model-0.0.2.dist-info}/RECORD +11 -5
- {isa_model-0.0.1.dist-info → isa_model-0.0.2.dist-info}/WHEEL +0 -0
- {isa_model-0.0.1.dist-info → isa_model-0.0.2.dist-info}/licenses/LICENSE +0 -0
- {isa_model-0.0.1.dist-info → isa_model-0.0.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,628 @@
|
|
1
|
+
"""
|
2
|
+
Evaluation Metrics for ISA Model Framework
|
3
|
+
|
4
|
+
This module provides various metrics for evaluating AI models:
|
5
|
+
- LLM metrics: perplexity, BLEU, ROUGE, accuracy, etc.
|
6
|
+
- Image metrics: FID, IS, LPIPS, etc.
|
7
|
+
- Custom metrics and benchmark runners
|
8
|
+
"""
|
9
|
+
|
10
|
+
import os
|
11
|
+
import json
|
12
|
+
import logging
|
13
|
+
import numpy as np
|
14
|
+
from typing import Dict, List, Any, Optional, Union
|
15
|
+
from enum import Enum
|
16
|
+
from abc import ABC, abstractmethod
|
17
|
+
|
18
|
+
logger = logging.getLogger(__name__)
|
19
|
+
|
20
|
+
|
21
|
+
class MetricType(str, Enum):
|
22
|
+
"""Types of evaluation metrics."""
|
23
|
+
PERPLEXITY = "perplexity"
|
24
|
+
BLEU = "bleu"
|
25
|
+
ROUGE = "rouge"
|
26
|
+
ACCURACY = "accuracy"
|
27
|
+
F1_SCORE = "f1"
|
28
|
+
DIVERSITY = "diversity"
|
29
|
+
COHERENCE = "coherence"
|
30
|
+
FLUENCY = "fluency"
|
31
|
+
FID = "fid"
|
32
|
+
IS = "is"
|
33
|
+
LPIPS = "lpips"
|
34
|
+
|
35
|
+
|
36
|
+
class BaseMetric(ABC):
|
37
|
+
"""Base class for all metrics."""
|
38
|
+
|
39
|
+
@abstractmethod
|
40
|
+
def compute(self, predictions: List[str], references: List[str] = None, **kwargs) -> Dict[str, float]:
|
41
|
+
"""Compute the metric."""
|
42
|
+
pass
|
43
|
+
|
44
|
+
|
45
|
+
class LLMMetrics:
|
46
|
+
"""
|
47
|
+
Metrics calculator for Language Models.
|
48
|
+
|
49
|
+
Supports various metrics including:
|
50
|
+
- Perplexity
|
51
|
+
- BLEU score
|
52
|
+
- ROUGE score
|
53
|
+
- Accuracy
|
54
|
+
- F1 score
|
55
|
+
- Generation quality metrics
|
56
|
+
"""
|
57
|
+
|
58
|
+
def __init__(self):
|
59
|
+
self.available_metrics = [
|
60
|
+
MetricType.PERPLEXITY,
|
61
|
+
MetricType.BLEU,
|
62
|
+
MetricType.ROUGE,
|
63
|
+
MetricType.ACCURACY,
|
64
|
+
MetricType.F1_SCORE,
|
65
|
+
MetricType.DIVERSITY,
|
66
|
+
MetricType.COHERENCE,
|
67
|
+
MetricType.FLUENCY
|
68
|
+
]
|
69
|
+
|
70
|
+
def evaluate(
|
71
|
+
self,
|
72
|
+
model_path: str,
|
73
|
+
dataset: List[Dict[str, Any]],
|
74
|
+
metrics: List[str],
|
75
|
+
batch_size: int = 8,
|
76
|
+
provider: str = "ollama",
|
77
|
+
**kwargs
|
78
|
+
) -> Dict[str, Any]:
|
79
|
+
"""
|
80
|
+
Evaluate LLM on dataset with specified metrics.
|
81
|
+
|
82
|
+
Args:
|
83
|
+
model_path: Path to the model
|
84
|
+
dataset: Evaluation dataset
|
85
|
+
metrics: List of metrics to compute
|
86
|
+
batch_size: Batch size for evaluation
|
87
|
+
provider: Model provider
|
88
|
+
**kwargs: Additional parameters
|
89
|
+
|
90
|
+
Returns:
|
91
|
+
Dictionary with metric results
|
92
|
+
"""
|
93
|
+
results = {
|
94
|
+
"model_path": model_path,
|
95
|
+
"num_samples": len(dataset),
|
96
|
+
"metrics": {}
|
97
|
+
}
|
98
|
+
|
99
|
+
# Generate predictions
|
100
|
+
predictions, references = self._generate_predictions(
|
101
|
+
model_path, dataset, batch_size, provider, **kwargs
|
102
|
+
)
|
103
|
+
|
104
|
+
# Compute each metric
|
105
|
+
for metric in metrics:
|
106
|
+
try:
|
107
|
+
if metric == MetricType.PERPLEXITY:
|
108
|
+
score = self._compute_perplexity(predictions, references)
|
109
|
+
elif metric == MetricType.BLEU:
|
110
|
+
score = self._compute_bleu(predictions, references)
|
111
|
+
elif metric == MetricType.ROUGE:
|
112
|
+
score = self._compute_rouge(predictions, references)
|
113
|
+
elif metric == MetricType.ACCURACY:
|
114
|
+
score = self._compute_accuracy(predictions, references)
|
115
|
+
elif metric == MetricType.F1_SCORE:
|
116
|
+
score = self._compute_f1(predictions, references)
|
117
|
+
elif metric == MetricType.DIVERSITY:
|
118
|
+
score = self._compute_diversity(predictions)
|
119
|
+
elif metric == MetricType.COHERENCE:
|
120
|
+
score = self._compute_coherence(predictions)
|
121
|
+
elif metric == MetricType.FLUENCY:
|
122
|
+
score = self._compute_fluency(predictions)
|
123
|
+
else:
|
124
|
+
logger.warning(f"Unknown metric: {metric}")
|
125
|
+
continue
|
126
|
+
|
127
|
+
results["metrics"][metric] = score
|
128
|
+
logger.info(f"Computed {metric}: {score}")
|
129
|
+
|
130
|
+
except Exception as e:
|
131
|
+
logger.error(f"Failed to compute {metric}: {e}")
|
132
|
+
results["metrics"][metric] = {"error": str(e)}
|
133
|
+
|
134
|
+
return results
|
135
|
+
|
136
|
+
def evaluate_generation(
|
137
|
+
self,
|
138
|
+
model_path: str,
|
139
|
+
prompts: List[str],
|
140
|
+
reference_texts: List[str] = None,
|
141
|
+
metrics: List[str] = None,
|
142
|
+
provider: str = "ollama",
|
143
|
+
**kwargs
|
144
|
+
) -> Dict[str, Any]:
|
145
|
+
"""
|
146
|
+
Evaluate text generation quality.
|
147
|
+
|
148
|
+
Args:
|
149
|
+
model_path: Path to the model
|
150
|
+
prompts: Input prompts
|
151
|
+
reference_texts: Reference texts (optional)
|
152
|
+
metrics: Metrics to compute
|
153
|
+
provider: Model provider
|
154
|
+
**kwargs: Additional parameters
|
155
|
+
|
156
|
+
Returns:
|
157
|
+
Generation evaluation results
|
158
|
+
"""
|
159
|
+
if metrics is None:
|
160
|
+
metrics = [MetricType.DIVERSITY, MetricType.COHERENCE, MetricType.FLUENCY]
|
161
|
+
|
162
|
+
# Generate texts
|
163
|
+
generated_texts = self._generate_texts(model_path, prompts, provider, **kwargs)
|
164
|
+
|
165
|
+
results = {
|
166
|
+
"model_path": model_path,
|
167
|
+
"num_prompts": len(prompts),
|
168
|
+
"metrics": {}
|
169
|
+
}
|
170
|
+
|
171
|
+
# Compute metrics
|
172
|
+
for metric in metrics:
|
173
|
+
try:
|
174
|
+
if metric == MetricType.DIVERSITY:
|
175
|
+
score = self._compute_diversity(generated_texts)
|
176
|
+
elif metric == MetricType.COHERENCE:
|
177
|
+
score = self._compute_coherence(generated_texts)
|
178
|
+
elif metric == MetricType.FLUENCY:
|
179
|
+
score = self._compute_fluency(generated_texts)
|
180
|
+
elif metric == MetricType.BLEU and reference_texts:
|
181
|
+
score = self._compute_bleu(generated_texts, reference_texts)
|
182
|
+
elif metric == MetricType.ROUGE and reference_texts:
|
183
|
+
score = self._compute_rouge(generated_texts, reference_texts)
|
184
|
+
else:
|
185
|
+
continue
|
186
|
+
|
187
|
+
results["metrics"][metric] = score
|
188
|
+
|
189
|
+
except Exception as e:
|
190
|
+
logger.error(f"Failed to compute {metric}: {e}")
|
191
|
+
results["metrics"][metric] = {"error": str(e)}
|
192
|
+
|
193
|
+
return results
|
194
|
+
|
195
|
+
def _generate_predictions(
|
196
|
+
self,
|
197
|
+
model_path: str,
|
198
|
+
dataset: List[Dict[str, Any]],
|
199
|
+
batch_size: int,
|
200
|
+
provider: str,
|
201
|
+
**kwargs
|
202
|
+
) -> tuple:
|
203
|
+
"""Generate predictions from model."""
|
204
|
+
predictions = []
|
205
|
+
references = []
|
206
|
+
|
207
|
+
# This is a simplified implementation
|
208
|
+
# In practice, you'd use the actual model inference
|
209
|
+
for item in dataset:
|
210
|
+
if isinstance(item, dict):
|
211
|
+
if "input" in item and "output" in item:
|
212
|
+
# Simulate prediction (replace with actual model inference)
|
213
|
+
predictions.append(f"Generated response for: {item['input']}")
|
214
|
+
references.append(item["output"])
|
215
|
+
elif "prompt" in item and "response" in item:
|
216
|
+
predictions.append(f"Generated response for: {item['prompt']}")
|
217
|
+
references.append(item["response"])
|
218
|
+
|
219
|
+
logger.info(f"Generated {len(predictions)} predictions")
|
220
|
+
return predictions, references
|
221
|
+
|
222
|
+
def _generate_texts(
|
223
|
+
self,
|
224
|
+
model_path: str,
|
225
|
+
prompts: List[str],
|
226
|
+
provider: str,
|
227
|
+
**kwargs
|
228
|
+
) -> List[str]:
|
229
|
+
"""Generate texts from prompts."""
|
230
|
+
# Simplified implementation - replace with actual model inference
|
231
|
+
generated_texts = []
|
232
|
+
for prompt in prompts:
|
233
|
+
generated_texts.append(f"Generated response for: {prompt}")
|
234
|
+
|
235
|
+
return generated_texts
|
236
|
+
|
237
|
+
def _compute_perplexity(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
|
238
|
+
"""Compute perplexity score (simplified implementation)."""
|
239
|
+
# This is a placeholder - actual perplexity requires model probabilities
|
240
|
+
return {
|
241
|
+
"perplexity": np.random.uniform(10, 100), # Placeholder
|
242
|
+
"log_perplexity": np.random.uniform(2, 5)
|
243
|
+
}
|
244
|
+
|
245
|
+
def _compute_bleu(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
|
246
|
+
"""Compute BLEU score (simplified implementation)."""
|
247
|
+
try:
|
248
|
+
# Placeholder implementation - use actual BLEU calculation
|
249
|
+
# from nltk.translate.bleu_score import sentence_bleu
|
250
|
+
scores = []
|
251
|
+
for pred, ref in zip(predictions, references):
|
252
|
+
# Simplified BLEU calculation
|
253
|
+
pred_words = pred.lower().split()
|
254
|
+
ref_words = ref.lower().split()
|
255
|
+
|
256
|
+
# Simple overlap calculation (not actual BLEU)
|
257
|
+
overlap = len(set(pred_words) & set(ref_words))
|
258
|
+
total = len(set(pred_words) | set(ref_words))
|
259
|
+
|
260
|
+
if total > 0:
|
261
|
+
scores.append(overlap / total)
|
262
|
+
else:
|
263
|
+
scores.append(0.0)
|
264
|
+
|
265
|
+
return {
|
266
|
+
"bleu": np.mean(scores),
|
267
|
+
"bleu_std": np.std(scores)
|
268
|
+
}
|
269
|
+
except Exception as e:
|
270
|
+
logger.error(f"BLEU computation failed: {e}")
|
271
|
+
return {"bleu": 0.0, "error": str(e)}
|
272
|
+
|
273
|
+
def _compute_rouge(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
|
274
|
+
"""Compute ROUGE score (simplified implementation)."""
|
275
|
+
try:
|
276
|
+
rouge_1_scores = []
|
277
|
+
rouge_l_scores = []
|
278
|
+
|
279
|
+
for pred, ref in zip(predictions, references):
|
280
|
+
pred_words = set(pred.lower().split())
|
281
|
+
ref_words = set(ref.lower().split())
|
282
|
+
|
283
|
+
# ROUGE-1 (unigram overlap)
|
284
|
+
if len(ref_words) > 0:
|
285
|
+
rouge_1 = len(pred_words & ref_words) / len(ref_words)
|
286
|
+
rouge_1_scores.append(rouge_1)
|
287
|
+
|
288
|
+
# Simplified ROUGE-L (longest common subsequence)
|
289
|
+
rouge_l = len(pred_words & ref_words) / max(len(pred_words), len(ref_words), 1)
|
290
|
+
rouge_l_scores.append(rouge_l)
|
291
|
+
|
292
|
+
return {
|
293
|
+
"rouge_1": np.mean(rouge_1_scores),
|
294
|
+
"rouge_l": np.mean(rouge_l_scores),
|
295
|
+
"rouge_1_std": np.std(rouge_1_scores),
|
296
|
+
"rouge_l_std": np.std(rouge_l_scores)
|
297
|
+
}
|
298
|
+
except Exception as e:
|
299
|
+
logger.error(f"ROUGE computation failed: {e}")
|
300
|
+
return {"rouge_1": 0.0, "rouge_l": 0.0, "error": str(e)}
|
301
|
+
|
302
|
+
def _compute_accuracy(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
|
303
|
+
"""Compute accuracy score."""
|
304
|
+
try:
|
305
|
+
correct = 0
|
306
|
+
total = len(predictions)
|
307
|
+
|
308
|
+
for pred, ref in zip(predictions, references):
|
309
|
+
if pred.strip().lower() == ref.strip().lower():
|
310
|
+
correct += 1
|
311
|
+
|
312
|
+
accuracy = correct / total if total > 0 else 0.0
|
313
|
+
|
314
|
+
return {
|
315
|
+
"accuracy": accuracy,
|
316
|
+
"correct": correct,
|
317
|
+
"total": total
|
318
|
+
}
|
319
|
+
except Exception as e:
|
320
|
+
logger.error(f"Accuracy computation failed: {e}")
|
321
|
+
return {"accuracy": 0.0, "error": str(e)}
|
322
|
+
|
323
|
+
def _compute_f1(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
|
324
|
+
"""Compute F1 score (simplified implementation)."""
|
325
|
+
try:
|
326
|
+
f1_scores = []
|
327
|
+
|
328
|
+
for pred, ref in zip(predictions, references):
|
329
|
+
pred_words = set(pred.lower().split())
|
330
|
+
ref_words = set(ref.lower().split())
|
331
|
+
|
332
|
+
if len(pred_words) == 0 and len(ref_words) == 0:
|
333
|
+
f1_scores.append(1.0)
|
334
|
+
elif len(pred_words) == 0 or len(ref_words) == 0:
|
335
|
+
f1_scores.append(0.0)
|
336
|
+
else:
|
337
|
+
intersection = len(pred_words & ref_words)
|
338
|
+
precision = intersection / len(pred_words)
|
339
|
+
recall = intersection / len(ref_words)
|
340
|
+
|
341
|
+
if precision + recall > 0:
|
342
|
+
f1 = 2 * (precision * recall) / (precision + recall)
|
343
|
+
f1_scores.append(f1)
|
344
|
+
else:
|
345
|
+
f1_scores.append(0.0)
|
346
|
+
|
347
|
+
return {
|
348
|
+
"f1": np.mean(f1_scores),
|
349
|
+
"f1_std": np.std(f1_scores)
|
350
|
+
}
|
351
|
+
except Exception as e:
|
352
|
+
logger.error(f"F1 computation failed: {e}")
|
353
|
+
return {"f1": 0.0, "error": str(e)}
|
354
|
+
|
355
|
+
def _compute_diversity(self, texts: List[str]) -> Dict[str, float]:
|
356
|
+
"""Compute diversity metrics."""
|
357
|
+
try:
|
358
|
+
# Distinct-1 and Distinct-2
|
359
|
+
all_unigrams = []
|
360
|
+
all_bigrams = []
|
361
|
+
|
362
|
+
for text in texts:
|
363
|
+
words = text.lower().split()
|
364
|
+
all_unigrams.extend(words)
|
365
|
+
|
366
|
+
# Create bigrams
|
367
|
+
for i in range(len(words) - 1):
|
368
|
+
all_bigrams.append((words[i], words[i + 1]))
|
369
|
+
|
370
|
+
distinct_1 = len(set(all_unigrams)) / len(all_unigrams) if all_unigrams else 0
|
371
|
+
distinct_2 = len(set(all_bigrams)) / len(all_bigrams) if all_bigrams else 0
|
372
|
+
|
373
|
+
return {
|
374
|
+
"distinct_1": distinct_1,
|
375
|
+
"distinct_2": distinct_2,
|
376
|
+
"vocab_size": len(set(all_unigrams))
|
377
|
+
}
|
378
|
+
except Exception as e:
|
379
|
+
logger.error(f"Diversity computation failed: {e}")
|
380
|
+
return {"distinct_1": 0.0, "distinct_2": 0.0, "error": str(e)}
|
381
|
+
|
382
|
+
def _compute_coherence(self, texts: List[str]) -> Dict[str, float]:
|
383
|
+
"""Compute coherence score (simplified implementation)."""
|
384
|
+
try:
|
385
|
+
# Simplified coherence based on sentence length consistency
|
386
|
+
coherence_scores = []
|
387
|
+
|
388
|
+
for text in texts:
|
389
|
+
sentences = text.split('.')
|
390
|
+
if len(sentences) > 1:
|
391
|
+
lengths = [len(s.split()) for s in sentences if s.strip()]
|
392
|
+
if lengths:
|
393
|
+
# Coherence as inverse of length variance
|
394
|
+
coherence = 1.0 / (1.0 + np.var(lengths))
|
395
|
+
coherence_scores.append(coherence)
|
396
|
+
else:
|
397
|
+
coherence_scores.append(0.5)
|
398
|
+
else:
|
399
|
+
coherence_scores.append(0.5)
|
400
|
+
|
401
|
+
return {
|
402
|
+
"coherence": np.mean(coherence_scores),
|
403
|
+
"coherence_std": np.std(coherence_scores)
|
404
|
+
}
|
405
|
+
except Exception as e:
|
406
|
+
logger.error(f"Coherence computation failed: {e}")
|
407
|
+
return {"coherence": 0.5, "error": str(e)}
|
408
|
+
|
409
|
+
def _compute_fluency(self, texts: List[str]) -> Dict[str, float]:
|
410
|
+
"""Compute fluency score (simplified implementation)."""
|
411
|
+
try:
|
412
|
+
fluency_scores = []
|
413
|
+
|
414
|
+
for text in texts:
|
415
|
+
# Simplified fluency based on word count and sentence structure
|
416
|
+
words = text.split()
|
417
|
+
sentences = text.split('.')
|
418
|
+
|
419
|
+
if len(words) > 0 and len(sentences) > 0:
|
420
|
+
avg_words_per_sentence = len(words) / len(sentences)
|
421
|
+
# Fluency based on reasonable sentence length (5-20 words)
|
422
|
+
if 5 <= avg_words_per_sentence <= 20:
|
423
|
+
fluency = 1.0
|
424
|
+
else:
|
425
|
+
fluency = max(0.0, 1.0 - abs(avg_words_per_sentence - 12.5) / 12.5)
|
426
|
+
|
427
|
+
fluency_scores.append(fluency)
|
428
|
+
else:
|
429
|
+
fluency_scores.append(0.0)
|
430
|
+
|
431
|
+
return {
|
432
|
+
"fluency": np.mean(fluency_scores),
|
433
|
+
"fluency_std": np.std(fluency_scores)
|
434
|
+
}
|
435
|
+
except Exception as e:
|
436
|
+
logger.error(f"Fluency computation failed: {e}")
|
437
|
+
return {"fluency": 0.0, "error": str(e)}
|
438
|
+
|
439
|
+
|
440
|
+
class ImageMetrics:
|
441
|
+
"""
|
442
|
+
Metrics calculator for Image Generation Models.
|
443
|
+
|
444
|
+
Supports metrics including:
|
445
|
+
- FID (Fréchet Inception Distance)
|
446
|
+
- IS (Inception Score)
|
447
|
+
- LPIPS (Learned Perceptual Image Patch Similarity)
|
448
|
+
"""
|
449
|
+
|
450
|
+
def __init__(self):
|
451
|
+
self.available_metrics = [
|
452
|
+
MetricType.FID,
|
453
|
+
MetricType.IS,
|
454
|
+
MetricType.LPIPS
|
455
|
+
]
|
456
|
+
|
457
|
+
def evaluate(
|
458
|
+
self,
|
459
|
+
model_path: str,
|
460
|
+
test_images_dir: str,
|
461
|
+
reference_images_dir: Optional[str] = None,
|
462
|
+
metrics: List[str] = None,
|
463
|
+
**kwargs
|
464
|
+
) -> Dict[str, Any]:
|
465
|
+
"""
|
466
|
+
Evaluate image generation model.
|
467
|
+
|
468
|
+
Args:
|
469
|
+
model_path: Path to the image model
|
470
|
+
test_images_dir: Directory with test images
|
471
|
+
reference_images_dir: Directory with reference images
|
472
|
+
metrics: Metrics to compute
|
473
|
+
**kwargs: Additional parameters
|
474
|
+
|
475
|
+
Returns:
|
476
|
+
Image evaluation results
|
477
|
+
"""
|
478
|
+
if metrics is None:
|
479
|
+
metrics = [MetricType.FID, MetricType.IS]
|
480
|
+
|
481
|
+
results = {
|
482
|
+
"model_path": model_path,
|
483
|
+
"test_images_dir": test_images_dir,
|
484
|
+
"reference_images_dir": reference_images_dir,
|
485
|
+
"metrics": {}
|
486
|
+
}
|
487
|
+
|
488
|
+
for metric in metrics:
|
489
|
+
try:
|
490
|
+
if metric == MetricType.FID:
|
491
|
+
score = self._compute_fid(test_images_dir, reference_images_dir)
|
492
|
+
elif metric == MetricType.IS:
|
493
|
+
score = self._compute_is(test_images_dir)
|
494
|
+
elif metric == MetricType.LPIPS:
|
495
|
+
score = self._compute_lpips(test_images_dir, reference_images_dir)
|
496
|
+
else:
|
497
|
+
logger.warning(f"Unknown image metric: {metric}")
|
498
|
+
continue
|
499
|
+
|
500
|
+
results["metrics"][metric] = score
|
501
|
+
logger.info(f"Computed {metric}: {score}")
|
502
|
+
|
503
|
+
except Exception as e:
|
504
|
+
logger.error(f"Failed to compute {metric}: {e}")
|
505
|
+
results["metrics"][metric] = {"error": str(e)}
|
506
|
+
|
507
|
+
return results
|
508
|
+
|
509
|
+
def _compute_fid(self, test_dir: str, reference_dir: Optional[str]) -> Dict[str, float]:
|
510
|
+
"""Compute FID score (placeholder implementation)."""
|
511
|
+
# This is a placeholder - actual FID requires complex neural network computations
|
512
|
+
logger.warning("FID computation not fully implemented - returning placeholder")
|
513
|
+
return {
|
514
|
+
"fid": np.random.uniform(20, 100), # Placeholder
|
515
|
+
"note": "Placeholder implementation"
|
516
|
+
}
|
517
|
+
|
518
|
+
def _compute_is(self, images_dir: str) -> Dict[str, float]:
|
519
|
+
"""Compute Inception Score (placeholder implementation)."""
|
520
|
+
# This is a placeholder - actual IS requires Inception network
|
521
|
+
logger.warning("IS computation not fully implemented - returning placeholder")
|
522
|
+
return {
|
523
|
+
"is_mean": np.random.uniform(2, 10), # Placeholder
|
524
|
+
"is_std": np.random.uniform(0.1, 1.0),
|
525
|
+
"note": "Placeholder implementation"
|
526
|
+
}
|
527
|
+
|
528
|
+
def _compute_lpips(self, test_dir: str, reference_dir: Optional[str]) -> Dict[str, float]:
|
529
|
+
"""Compute LPIPS score (placeholder implementation)."""
|
530
|
+
# This is a placeholder - actual LPIPS requires perceptual loss networks
|
531
|
+
logger.warning("LPIPS computation not fully implemented - returning placeholder")
|
532
|
+
return {
|
533
|
+
"lpips": np.random.uniform(0.1, 0.8), # Placeholder
|
534
|
+
"note": "Placeholder implementation"
|
535
|
+
}
|
536
|
+
|
537
|
+
|
538
|
+
class BenchmarkRunner:
|
539
|
+
"""
|
540
|
+
Runner for standard AI benchmarks.
|
541
|
+
|
542
|
+
Supports running various benchmarks and collecting results.
|
543
|
+
"""
|
544
|
+
|
545
|
+
def __init__(self):
|
546
|
+
self.supported_benchmarks = ["mmlu", "hellaswag", "arc", "gsm8k"]
|
547
|
+
|
548
|
+
def run(
|
549
|
+
self,
|
550
|
+
benchmark,
|
551
|
+
model_path: str,
|
552
|
+
num_shots: int = 0,
|
553
|
+
max_samples: Optional[int] = None,
|
554
|
+
provider: str = "ollama",
|
555
|
+
**kwargs
|
556
|
+
) -> Dict[str, Any]:
|
557
|
+
"""
|
558
|
+
Run a benchmark evaluation.
|
559
|
+
|
560
|
+
Args:
|
561
|
+
benchmark: Benchmark instance
|
562
|
+
model_path: Path to the model
|
563
|
+
num_shots: Number of few-shot examples
|
564
|
+
max_samples: Maximum samples to evaluate
|
565
|
+
provider: Model provider
|
566
|
+
**kwargs: Additional parameters
|
567
|
+
|
568
|
+
Returns:
|
569
|
+
Benchmark results
|
570
|
+
"""
|
571
|
+
logger.info(f"Running benchmark {benchmark.name} on {model_path}")
|
572
|
+
|
573
|
+
# Load benchmark data
|
574
|
+
test_data = benchmark.load_data(max_samples=max_samples)
|
575
|
+
|
576
|
+
# Run evaluation
|
577
|
+
results = {
|
578
|
+
"benchmark": benchmark.name,
|
579
|
+
"model_path": model_path,
|
580
|
+
"num_shots": num_shots,
|
581
|
+
"num_samples": len(test_data),
|
582
|
+
"results": {}
|
583
|
+
}
|
584
|
+
|
585
|
+
# Process each sample
|
586
|
+
correct = 0
|
587
|
+
total = 0
|
588
|
+
|
589
|
+
for sample in test_data:
|
590
|
+
try:
|
591
|
+
# Generate prediction (simplified)
|
592
|
+
prediction = self._generate_prediction(
|
593
|
+
model_path, sample, num_shots, provider, **kwargs
|
594
|
+
)
|
595
|
+
|
596
|
+
# Check if correct
|
597
|
+
is_correct = benchmark.evaluate_sample(sample, prediction)
|
598
|
+
if is_correct:
|
599
|
+
correct += 1
|
600
|
+
total += 1
|
601
|
+
|
602
|
+
except Exception as e:
|
603
|
+
logger.error(f"Failed to process sample: {e}")
|
604
|
+
continue
|
605
|
+
|
606
|
+
# Calculate final score
|
607
|
+
accuracy = correct / total if total > 0 else 0.0
|
608
|
+
|
609
|
+
results["results"] = {
|
610
|
+
"accuracy": accuracy,
|
611
|
+
"correct": correct,
|
612
|
+
"total": total
|
613
|
+
}
|
614
|
+
|
615
|
+
logger.info(f"Benchmark completed: {accuracy:.3f} accuracy ({correct}/{total})")
|
616
|
+
return results
|
617
|
+
|
618
|
+
def _generate_prediction(
|
619
|
+
self,
|
620
|
+
model_path: str,
|
621
|
+
sample: Dict[str, Any],
|
622
|
+
num_shots: int,
|
623
|
+
provider: str,
|
624
|
+
**kwargs
|
625
|
+
) -> str:
|
626
|
+
"""Generate prediction for a sample (simplified implementation)."""
|
627
|
+
# This is a placeholder - replace with actual model inference
|
628
|
+
return "A" # Placeholder answer
|
@@ -0,0 +1,44 @@
|
|
1
|
+
"""
|
2
|
+
ISA Model Training Framework
|
3
|
+
|
4
|
+
This module provides unified interfaces for training various types of AI models:
|
5
|
+
- LLM training with LlamaFactory
|
6
|
+
- Image model training with Flux/LoRA
|
7
|
+
- Model evaluation and benchmarking
|
8
|
+
|
9
|
+
Usage:
|
10
|
+
from isa_model.training import TrainingFactory
|
11
|
+
|
12
|
+
# Create training factory
|
13
|
+
factory = TrainingFactory()
|
14
|
+
|
15
|
+
# Fine-tune Gemma 3:4B
|
16
|
+
model_path = factory.finetune_llm(
|
17
|
+
model_name="gemma:4b",
|
18
|
+
dataset_path="path/to/data.json",
|
19
|
+
training_type="sft"
|
20
|
+
)
|
21
|
+
"""
|
22
|
+
|
23
|
+
from .factory import TrainingFactory, finetune_gemma
|
24
|
+
from .engine.llama_factory import (
|
25
|
+
LlamaFactory,
|
26
|
+
LlamaFactoryConfig,
|
27
|
+
SFTConfig,
|
28
|
+
RLConfig,
|
29
|
+
DPOConfig,
|
30
|
+
TrainingStrategy,
|
31
|
+
DatasetFormat
|
32
|
+
)
|
33
|
+
|
34
|
+
__all__ = [
|
35
|
+
"TrainingFactory",
|
36
|
+
"finetune_gemma",
|
37
|
+
"LlamaFactory",
|
38
|
+
"LlamaFactoryConfig",
|
39
|
+
"SFTConfig",
|
40
|
+
"RLConfig",
|
41
|
+
"DPOConfig",
|
42
|
+
"TrainingStrategy",
|
43
|
+
"DatasetFormat"
|
44
|
+
]
|